PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 4, Pages 1039–1045 S 0002-9939(99)05040-6 Article electronically published on July 28, 1999

ON AUTOMATIC CONTINUITY OF HOMOMORPHISMS

A. BEDDAA, S. J. BHATT, AND M. OUDADESS

(Communicated by Dale Alspach)

ABSTRACT. Introducing a weaker notion of regularity in a topological algebra, we examine and improve an automatic continuity theorem given by the second author. Examples and applications are given.

All topological algebras considered are commutative and Hausdorff, having a unit element. A topological algebra A is a Q-algebra if the set G(A) of invertible elements is open. Let B be a subalgebra of an algebra A. Then B is inverse closed in A if $G(B) = B \cap G(A)$. A is strongly semisimple if for every $x \in A$, $x \neq 0$, there exists a nonzero continuous multiplicative linear functional χ such that $\chi(x) \neq 0$. A is advertibly complete if a Cauchy net x_{α} in A converges in A whenever for some y in A, $x_{\alpha} + y - x_{\alpha}y$ converges to 0. A Q-algebra is advertibly complete [Ma, p. 45]. A uniform seminorm on an algebra A is a seminorm p such that $p(x^2) = p(x)^2$ for all x in A. Such a p is submultiplicative [BK]. A uniform topological algebra A is a topological algebra whose topology is defined by a family of uniform seminorms. Such an A is semisimple. The abbreviation lmca will stand for locally m-convex algebra.

In [B], the following is given.

Theorem ([B, Theorem 2.2]). Let A be a spectrally bounded, regular, complete, uniform topological algebra. If B is an lmca and $\phi : A \to B$ is a one-to-one homomorphism such that $(\operatorname{Im} \phi)^-$ (the closure of $\operatorname{Im} \phi$) is a semisimple Q-algebra, then $\phi^{-1}/\operatorname{Im} \phi$ is continuous.

In the proof, the author considers the map $\phi^* : \sigma(C) \to \sigma(A)$, with $\phi^*(f) = f \circ \phi$, $\sigma(C)$ and $\sigma(A)$ denoting respectively the spaces of nonzero continuous multiplicative functionals on $C = (\operatorname{Im} \phi)^-$ and A. In Math. Reviews, the reviewer R. J. Loy [L] asserted that the continuity of ϕ has been implicitly used in [B]. Indeed, ϕ^* is not always well defined when ϕ is not continuous as the following example shows.

Example 1. Let Ω denote the first uncountable ordinal and $[0, \Omega)$ the set of all ordinals smaller than Ω . Consider the algebra $C[0, \Omega)$ of complex continuous functions on $[0, \Omega)$ with compact open topology τ . Every $f \in C[0, \Omega)$ is bounded. It is a regular uniform lmca. The identity map $\phi : (C[0, \Omega), \tau) \to (C[0, \Omega), \| \parallel_{\infty}), \phi(f) = f$, satisfies the hypotheses of the above statement. It is well known that $(C[0, \Omega), \tau)$ has discontinuous multiplicative linear functionals (see, for example, [Mi], [Z]); let χ

©2000 American Mathematical Society

Received by the editors September 10, 1997 and, in revised form, May 18, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46H40; Secondary 46H05.

Key words and phrases. Uniform topological algebra, locally *m*-convex algebra, weakly regular algebra, advertibly complete algebra, *Q*-algebra, automatic continuity of homomorphism.

be such a functional. It is in $\sigma(C[0,\Omega), || ||_{\infty})$, but $\phi^*(\chi) = \chi$ is not in $\sigma([0,\Omega), \tau)$. One may give another example in a more general situation. Let X be a noncompact, locally compact pseudocompact space. Take A = C(X) the algebra of all continuous functions on X with compact open topology, B the algebra C(X)endowed with the sup norm $|| ||_{\infty}$ and $\phi : A \to B$ be $\phi(f) = f$. Since X is pseudocompact, non-compact, it is not realcompact [S, p. 44]. Let y be an element of the real compactification of X with y not in X. The evaluation δ_y at y is in $\sigma(B)$ but not in $\sigma(A)$. Hence ϕ^* is not defined on δ_y .

On the other hand, ϕ^* can be well defined even when ϕ is not continuous; in this case, the proof given in [B] works. Here is an example of such a situation.

Example 2. Let X be a compact Hausdorff space. Consider the algebra C(X) of continuous complex functions on X. Take $A = (C(X), \tau_d), \tau_d$ being the topology of uniform convergence on all countable compact subsets of X, B the algebra $(C(X), \| \parallel_{\infty})$ and ϕ the identity map from A to B. It is of course discontinuous, only if X is uncountable. But in this case, $\sigma(A)$ and $\sigma(B)$ are both homeomorphic to X. So ϕ^* is well defined.

The following theorem repairs the above result. On one hand, it provides a positive result in a context more general than above; on the other hand, it shows that if one assumes the continuity of ϕ in the above result, then the algebra A is necessarily a Banach algebra.

Theorem 1. Let A be weakly regular, advertibly complete, uniform topological algebra, let B be an lmca, and let $\phi : A \to B$ be a one-to-one homomorphism such that $(\operatorname{Im} \phi)^-$ is a semisimple Q-algebra.

- (1) If A is functionally continuous, then $\phi^{-1}/\text{Im}\phi$ is continuous.
- (2) If ϕ is continuous, then the topology of A is normable.

Following [Mi, p. 51], A is functionally continuous (FC) if every multiplicative functional on A is continuous. Note that $(C(X), \tau_d)$ in Example 2 is FC, but not Q. A major unsolved problem in topological algebras is the Michael problem: Is every multiplicative linear functional on a Frechet lmc algebra continuous? This has led to several sufficient conditions for A to be FC. This makes FC a reasonable assumption.

Let A be a commutative topological algebra. A is weakly regular if given a closed set $F \subset \sigma(A)$, $F \neq \sigma(A)$, there exists $x \neq 0$ in A such that f(x) = 0 for all $f \in F$. In the context of Banach algebras, weak regularity arises naturally in the study of uniqueness of the uniform norm [BD]; and it is weaker than regularity. This is exhibited in an example due to Barnes [Me, Example 1]. Let $D = \{z \in C : |z| < 1\}$, $X = \overline{D} \times [0, 1]$. Let $A = \{f \in C(X) : f \text{ is holomorphic on } D \times \{0\}\}$, a uniform Banach algebra. Then A is weakly regular, but not regular. Since regularity in a uniform algebra is a stringent property, the validity of Theorem 1 under weak regularity is interesting.

Proof of Theorem 1. (1) Let $C = (\operatorname{Im} \phi)^-$. Since A is FC, $\phi^* : \sigma(C) \to \sigma(A)$, $\phi^*(f) = f \circ \phi$ is well defined. It is also continuous with respective Gelfand topologies. Since the algebra C is a locally convex Q-algebra, $\sigma(C)$ is compact [Ma, p. 187]. Then $\phi^*(\sigma(C))$ is a compact subset of $\sigma(A)$. We have $\phi^*(\sigma(C)) = \sigma(A)$. Indeed, if $\phi^*(\sigma(C)) \neq \sigma(A)$, there exists $x \neq 0$ in A such that $\chi(\phi(x)) = 0$ for all χ in $\sigma(C)$. Since C is commutative semisimple and lmc, $\phi(x) = 0$; and then x = 0 for ϕ is oneto-one. Thus $\phi^*(\sigma(C)) = \sigma(A)$. Now let $P = (p_\alpha)$ be a family of uniform seminorms defining the topology τ of A. Since A is advertibly complete, the spectrum $\operatorname{Sp}_A(x) = \{\chi(x) : \chi \in \sigma(A)\}$ and the spectral radius $\rho_A(x) = \sup_\alpha \{\lim_{n\to\infty} (p_\alpha(x^n))^{1/n}\}$ for all x in A [Ma, p. 104, p. 99]. Since $\sigma(A)$ is compact, $\operatorname{Sp}_A(x)$ is bounded. Since $p_\alpha(x^2) = p_\alpha(x)^2$ for all x and α , $\rho_A(x) = \sup_\alpha p_\alpha(x)$ for all $x \in A$. Also, $\sigma(A) = \phi^*(\sigma(C))$ gives $\operatorname{Sp}_A(x) = \{f(\phi(x)) : f \in \sigma(C)\} \subset \operatorname{Sp}_C(\phi(x))$. Further, as C is a Q-algebra, $s(C) = \{x \in C : \rho_C(x) \leq 1\}$ is a neighbourhood of 0 by [Mi, Prop. 13.5, p. 58]; and there exists a convex balanced open set W such that $0 \in W \subseteq s(C)$. The Minkowski functional q of W in C is a continuous seminorm satisfying $\rho_C(y) \leq q(y)$ for all $y \in C$. Hence for each α , for each $x \in A$, $p_\alpha(x) \leq \rho_A(x) \leq \rho_C(\phi(x))$. This proves that $\phi^{-1}/\operatorname{Im} \phi$ is continuous.

(2) Suppose ϕ is continuous. Then $\phi^* : \sigma(C) \to \sigma(A)$ is well defined even if A is not FC. Then $\phi^{-1}/\text{Im}\,\phi$ is continuous as above making ϕ a topological isomorphism. Thus $\phi(A)$ is advertibly complete; and hence inverse closed in its completion. Whence it is inverse closed in the Q-algebra C, for the completion of $\phi(A)$ is contained in C. Therefore $\phi(A)$, and so A, is a Q-algebra. Hence the topology on A given by the algebra norm ρ_A is finer than τ . Now since A is a Q-algebra, $s(A) = \{x \in A : \rho_A(x) \leq 1\}$ is a neighbourhood of 0 on (A, τ) . Thus ρ determines τ .

Remark. Once ϕ^* is defined, the full strength of weak regularity has not been used. In fact, one has only to find a nonzero element vanishing on a given compact set.

We now give a result in the absence of FC. We consider the space $\sigma^*(A)$ consisting of all nonzero multiplicative functionals on A endowed with the weak topology $\sigma(A^*, A)$. We then introduce the following notion of weak σ^* -compact-regular weakened in the sense of the previous remark.

Definition. A commutative topological algebra A is called *weakly* σ^* -compactregular if for a compact subset K of $\sigma^*(A)$, $K \neq \sigma^*(A)$, there exists a nonzero $x \in A$ such that $\chi(x) = 0$ for all $\chi \in K$.

Theorem 2. Let A be a weakly σ^* -compact-regular advertibly complete uniform algebra, B a locally convex algebra and $\phi : A \to B$ a one-to-one homomorphism such that $C = (\operatorname{Im} \phi)^-$ is a strongly semisimple Q-algebra. Then $\phi^{-1}/\operatorname{Im} \phi$ is continuous. If ϕ is continuous, then the topology of A is normable.

For the proof, consider the map $\phi^{**}: \sigma(C) \to \sigma^*(A)$, $\phi^{**}(\chi) = \chi \circ \phi$. If $\chi \circ \phi$ is identically zero, then by the continuity of χ , one obtains that χ is also identically zero. This contradicts $\chi \in \sigma(C)$. Thus ϕ^{**} is defined; and then it is continuous. Now one obtains $\phi^{**}(\sigma(C)) = \sigma^*(A)$; and the proof can be completed as in Theorem 1.

We conjecture that the semisimplicity of $(\text{Im }\phi)^-$ in Theorem 1 (and strong semisimplicity in Theorem 2) can be omitted. The following supports this.

Theorem 3. Let A be a uniform lmca, B a locally convex algebra, and $\phi : A \to B$ a one-to-one homomorphism such that $(\operatorname{Im} \phi)^-$ is a Q-algebra. Assume that at least one of the following holds.

- (a) A is advertibly complete and $\operatorname{Im} \phi$ is FC with continuous product.
- (b) A is FC, Ptak (as a l.c. space), regular, having locally equicontinuous spectrum $\sigma(A)$ (in particular, A is FC, Frechet, regular, having locally compact spectrum

 $\sigma(A)$, and B is lmca. Then $\phi^{-1}/\text{Im}\phi$ is continuous. If ϕ is continuous, then the topology of A is normable.

Proof. (1) Assume (a). Then $\sigma^*((\operatorname{Im} \phi)^-) = \sigma((\operatorname{Im} \phi)^-)$ (since a *Q*-algebra is FC) $= \sigma(\operatorname{Im} \phi)$ (by the joint continuity of multiplication in $\operatorname{Im} \phi) = \sigma^*(\operatorname{Im} \phi)$ and $\phi^*(\sigma^*(\operatorname{Im} \phi)) = \sigma^*(A)$ as ϕ is one-to-one. Then, for all $x \in A$, $\operatorname{Sp}_A(x) = \{\chi(x) : \chi \in \sigma(A)\} = \{\chi(x) : \chi \in \sigma^*(A)\} = \{f(\phi(x)) : f \in \sigma^*(\operatorname{Im} \phi)\} = \{f(\phi(x)) : f \in \sigma^*(C)\}$. Hence for some continuous seminorm q, $\rho_A(x) = \rho_C(x) \leq q(\phi(x))$ ($x \in A$).

(2) Assume (b). By [Ma, Coro. 1.3, p. 184], local equicontinuity of $\sigma(A)$ implies continuity of the Gelfand map $x \to \hat{x}$ and local compactness of $\sigma(A)$. We show that $\sigma(A) = \phi^*(\sigma(C))$. Note that $\phi^*(\sigma(C)) \subset \sigma(A)$. Suppose $\chi \in \sigma(A) \setminus \phi^*(\sigma(C))$. By the local compactness, there exists a compact set $K \subseteq \sigma(A)$ and disjoint open sets U, V in $\sigma(A)$ such that $\chi \in K \subset U$, $\phi^*(\sigma(C)) \subset V$. As A is Ptak, regular and having continuous Gelfand map, [Ma, Coro. 4.4, p. 344] implies that there exist $x, y \in A$ such that g(x) = 1 $(g \in \phi^*(\sigma(C))), g(x) = 0$ $(g \in \sigma(A) \setminus V);$ q(y) = 1 $(q \in K)$, q(y) = 0 $(q \in \sigma(A) \setminus U)$. Then q(x)q(y) = 0 for all $q \in \sigma(A)$. By the semisimplicity of A, $xy = 0 = \phi(x)\phi(y)$. On the other hand, for all $f \in \sigma(C)$, $f(\phi(x)) = 1$. Thus $0 \notin \{f(\phi(x)) : f \in \sigma(C)\} = \operatorname{Sp}_{C}(\phi(x)), C$ being lmc and a Q-algebra. Thus $\phi(x)$ is invertible in C. Hence $\phi(y) = \phi(x)^{-1}\phi(x)\phi(y) = 0$, so that y = 0, a contradiction. It follows that $\phi^*(\sigma(C)) = \sigma(A)$. Now the proof can be completed as in Theorem 1. Note that if A is Frechet, then every compact subset of $\sigma(A)$ is equicontinuous [Mi, Prop. 4.2, p. 17]. Hence by [Ma, Th. 1.1, p. 182], the Gelfand map is continuous. Further if $\sigma(A)$ is locally compact, then it is locally equicontinuous [Ma, Cor. 1.3, p. 184].

Remarks. (1) If B is lmca and $C = (\text{Im }\phi)^-$ is a semisimple Q-algebra, then C is strongly semisimple.

(2) Actually in the above theorems, $\phi^{-1} : \phi(A) \to (A, || ||)$ is continuous, where || || is the uniform norm given by $||x|| = \sup\{p(x) : p \text{ is a continuous uniform seminorm}\}$. The existence of this norm implies that A is spectrally bounded.

(3) Theorem 2 also applies to Example 1. Indeed, the algebra $(C[0, \Omega), \tau)$ is a complete uniform algebra. It is weakly σ^* -compact-regular, for $\sigma^*(C[0, \Omega))$ is homeomorphic to the Stone-Cech compactification $\beta[0, \Omega)$ of $[0, \Omega)$ and $C[0, \Omega)$ is isomorphic to the algebra $C(\beta[0, \Omega))$ [GJ].

(4) The hypothesis $(\operatorname{Im} \phi)^-$ is a Q-algebra cannot be omitted. Let $A = C_b(\mathbb{R})$ be the algebra of all continuous bounded functions on the real line. Endowed with the sup norm, it is a uniform Banach algebra. By the same arguments as in (3), one shows that A is weakly σ^* -compact-regular. Consider $B = C(\mathbb{R})$ to be the algebra of all continuous functions with the compact open topology. Consider $\phi : A \to B$, $\phi(f) = f$. Then $(\operatorname{Im} \phi)^- = C(\mathbb{R})$. It is well known that it is not a Q-algebra. Clearly ϕ^{-1} is discontinuous.

(5) The referee has asked: (In above theorems) does the automatic continuity of ϕ^{-1} on Im ϕ necessitate (Im ϕ)⁻ a *Q*-algebra? The following answers this.

Proposition 4. Let A be a complete Q-lmca, B an lmca, and $\phi : A \to B$ a one-toone homomorphism such that $\phi^{-1}/\text{Im }\phi$ is continuous. Then $(\text{Im }\phi)^-$ is a Q-algebra.

Proof. We may assume that B is complete, hence $C = (\operatorname{Im} \phi)^{-1}$ is complete. Then $\phi^{-1}/\operatorname{Im} \phi$ extends as a continuous homomorphism $\psi : C \to A$. By assumption, there exists a continuous seminorm p on A such that for all x in A, $r_C(\phi(x)) \leq r_{\operatorname{Im} \phi}(\phi(x)) \leq r_A(x) \leq p(x) \leq p(\psi(\phi(x)))$. Since ψ is continuous, there exists a

continuous seminorm q on C such that $p(\psi(y)) \leq q(y)$ $(y \in C)$. Hence in the above, $r_C(\phi(x)) \leq p(\psi(\phi(x))) \leq q(\phi(x))$ for all x in A. Now let $y \in C$, $y = \lim \phi(x_\alpha)$ for some net (x_α) in A. For any continuous multiplicative functional f on C, $|f(y)| \leq |f(y - \phi(x_\alpha))| + |f(\phi(x_\alpha))| \leq |f(y - \phi(x_\alpha))| + q(\phi(x_\alpha)) \to q(y)$. Hence $r_C(y) = \sup |f(y)| \leq q(y)$ $(y \in C)$ showing that C is a Q-algebra.

If A is not a Q-algebra, then this does not hold. For the open unit disc U in the complex plane, let A = H(U) be the uniform Frechet algebra consisting of holomorphic functions on U with the compact-open topology, B = C(U) with the compact-open topology, and $\phi : A \to B$ be $\phi(f) = f$. Clearly ϕ is a homeomorphism and $(\operatorname{Im} \phi)^- = B$ fails to be a Q-algebra.

Applications

(1) **Proposition.** Let A be an advertibly complete lmca. Let || || be any continuous norm on A. Then A cannot be simultaneously weakly regular and uniform unless the topology of A is normable.

Proof. Let τ denote the lmc topology on A. Let $P = (p_{\alpha})$ be a family of submultiplicative seminorms on A defining τ . Then $P_0 = P \cup \{\| \|\}$ also determines τ . Suppose (A, τ) is uniform. Then τ is defined by a family $S = (q_i)$ of uniform seminorms. By closing S with maxima of finite subfamilies and applying the continuity of $\| \|$, there exists a q in S which is a norm. Let A_q be the uniform Banach algebra obtained by completing (A, q). Let $\phi : A \to A_q$ be $\phi(x) = x$. Now if A is weakly regular, then Theorem 1 applied to ϕ implies that τ is normable.

It follows that an advertibly complete non-normed weakly regular uniform algebra cannot support a continuous norm. Let X be a compact Hausdorff space. By a well known result of Kaplansky, if $| \ |$ is any norm on C(X) making it a normed algebra, then the support $|| \ | \le | |$. The following has a bearing with this. A norm on an algebra A is *semisimple* if the completion of (A, | |) is semisimple [BD]. \Box

(2) Corollary. Let || || be a uniform norm on an algebra A such that (A, || ||) is a weakly regular Q-normed algebra. Let || be any submultiplicative norm on A.

- (i) If | | is semisimple, then $|| || \le | |$. Further if | | is continuous, then | | is equivalent to || ||.
- (ii) Let (A, || ||) be complete and regular. Then $|| || \le ||$ for any submultiplicative norm ||.

Indeed let $\phi: (A, || ||) \to (\widetilde{A}, ||) (\widetilde{A} = \text{completion of } (A, ||)), \ \phi(x) = x$. Theorem 1 implies that there exists k > 0 such that $|| || \le k ||$. Since (A, || ||) is $Q, \ \rho_A(x) = \inf ||x^n||^{1/n} = \lim ||x^n||^{1/n} = ||x|| \le \lim |x^n|^{1/n} \le |x|$ for all $x \in A$. (ii) follows by Theorem 3(b).

(3) Let $A = \mathbb{C} \times C_c^{\infty}(\mathbb{R})$ (resp. $B = \mathbb{C} \times C_c(\mathbb{R})$) be the algebra of all complex C^{∞} -functions (resp. continuous functions) on \mathbb{R} which are constant outside some compact set (depending on the function). We endow A (resp. B) with the inductive limit topology τ_D (resp. τ_K). The algebra (A, τ_D) is a complete regular linca, (B, τ_K) is a linc Q-algebra [Ma, p. 128] and A is dense in B [K, p. 148]. Consider $\phi: A \to B, \phi(f) = f$. Since the topology τ_D is finer than τ_K on A, ϕ is continuous. It is classical that A is not normable. Hence by Theorem 1, (A, τ_D) cannot be uniform.

Let A be the algebra $\mathbb{C} \times C_c^{\infty}(\mathbb{R})$ endowed with the compact open topology τ . It is a weakly σ^* -compact-regular uniform lmca. Since it is inverse closed in $C(\mathbb{R})$, it is advertibly complete. Take (B, τ_K) as above. Let $\phi : (A, \tau) \to (B, \tau_K), \phi(f) = f$. By Theorem 1, ϕ^{-1} is continuous.

(4) Let $U \subset \mathbb{C}^d$ be open. Let H(U) be the uniform Frechet algebra of all holomorphic functions on U with the compact open topology. Let $H^{\infty}(U) = \{f \in H(U) : f \text{ is bounded}\}$, a uniform Banach algebra. Let $X \subset \mathbb{C}^d$ be compact. Let H(K) be the algebra of holomorphic germs on X. Choose a decreasing sequence (U_n) of open neighbourhoods of X such that $\overline{U}_{n+1} \subset U_n$ and \overline{U}_{n+1} is compact. In view of the continuous embeddings

$$\cdots \to H^{\infty}(U_n) \to H(U_n) \to H^{\infty}(U_{n+1}) \to H(U_{n+1}) \to \cdots,$$

H(X) can be realized as inductive limits $H(X) = \varinjlim H(U_n) = \varinjlim H^{\infty}(U_n)$, its topology τ being the finest locally convex topology making all $\phi_n : H(U_n) \to H(X)$, $\phi_n(f) = f/X$ and similarly making all $\psi_n : H^{\infty}(U_n) \to H(X)$, $\psi_n(f) = f/X$ continuous.

None of $H^{\infty}(U)$ and H(U) is weakly regular. Note that $(H(X), \tau)$ is a complete semisimple Q-algebra [Ma, p. 134]. If $H(U_n)$ is weakly regular, then by Theorem 1, it becomes a Banach algebra and ϕ_n becomes a homeomorphism. If $H^{\infty}(U_n)$ is weakly regular, then ψ_n becomes a homeomorphism. Either of these forces H(X)to be a uniform Banach algebra. Being a complete, non-normed Q-algebra, H(X)is not a uniform algebra [BD].

(5) Let $D = \{z \in \mathbb{C} : |z| < 1\}$, $Y = D \times [0,1]$, $Z = \overline{D} \times [0,1)$. Let $A = \{f \in C(Y) : f \text{ is holomorphic on } D \times \{0\}\}$, $B = \{f \in C(Z) : f \text{ is holomorphic on } D \times \{0\}\}$. Let 0 < r < 1. Let $||f||_r = \sup\{|f(x)| : x \in \overline{D}_r \times [0,1]\}$ $(f \in A)$; $|f|_r = \sup\{|f(x)| : x \in \overline{D} \times [0,r]\}$ $(f \in B)$. Each of A and B with the topology defined respectively by $\{|| ||_r : 0 < r < 1\}$ and $\{| ||_r : 0 < r < 1\}$ is a uniform Frechet algebra. Any $f \in C(Y)$ (resp. $f \in C(Z)$) vanishing on $D \times \{0\}$ is in A (resp. in B). This implies that both A and B are weakly regular, not regular. Thus each of A and B fails to support a continuous norm.

Acknowledgement

A query by the referee resulted in Proposition 4. The referee has also made several suggestions regarding the exposition. We sincerely thank the referee for these.

References

- [BK] S. J. Bhatt and D. J. Karia, Uniqueness of the uniform norm with an application to topological algebras, Proc. Amer. Math. Soc. 116 (2) (1992), 499–503. MR 92m:46068
- [B] S. J. Bhatt, Automatic continuity of homomorphisms in topological algebras, Proc. Amer. Math. Soc. 119 (1) (1993), 135–139. MR 93k:46042
- [BD] S. J. Bhatt and H. V. Dedania, Banach algebras with unique uniform norm, Proc. Amer. Math. Soc. 124 (2) (1996), 579–584. MR 96d:46067
- [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York, Heidelberg, Berlin, 1976. MR 53:11352
- [K] Vo-Khac Khoan, Distributions Analyse de Fourier Operateurs aux dérivees partielles, vol. T. 1, Vuibert, Paris, 1972.
- [L] R. J. Loy, Math. Reviews, 93k:46042, p. 6116, Amer. Math. Soc., 1993.
- [Ma] A. Mallios, Topological Algebras, Selected Topics, North-Holland, 1986. MR 87m:46099
- [Me] M. J. Meyer, Spectral extension property and extension of multiplicative linear functionals, Proc. Amer. Math. Soc. 112 (1991), 855–861. MR 91j:46059
- [Mi] E. Michael, Locally multiplicatively-convex algebras, Mem. Amer. Math. Soc., vol. 11, Providence, RI, 1952. MR 14:482a

1044

- [S] J. Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics 519, Springer-Verlag, 1976. MR 54:11041
- W. Zelazko, Banach algebras, Elsevier Publishing Co. Amsterdam, London, New York, 1973. MR 56:6389

(A. Beddaa and M. Oudadess) Ecole Normale Superieure, B.P. 5118 Takaddoum, Rabat, Moroc

(S. J. Bhatt) DEPARTMENT OF MATHEMATICS, SARDAR PATEL UNIVERSITY, VALLABH VIDYANA-GAR 388120, GUJARAT, INDIA