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UNIQUENESS OF THE UNIFORM NORM
WITH AN APPLICATION TO TOPOLOGICAL ALGEBRAS

S. J. BHATT AND D. J. KARIA

(Communicated by Palle E. T. Jorgensen)

Abstract. Any square-preserving linear seminorm on a unital commutative al-

gebra is submultiplicative; and the uniform norm on a uniform Banach algebra

is the only uniform Q-algebra norm on it. This is proved and is used to show

that (i) uniform norm on a regular uniform Banach algebra is unique among all

uniform (not necessarily complete) norms and (ii) a complete uniform topologi-

cal algebra that is a ß-algebra is a uniform Banach algebra. Relevant examples,

showing that the respective assumptions regarding regularity, Q-algebra norm,

and uniform property of topology cannot be omitted, have been discussed.

Introduction

We prove the following

Theorem 1. (i) Any linear norm with square property on a commutative algebra

is an algebra norm.

(ii) Let {A, || • ||) be a uniform Banach algebra. Let | • | be a linear norm

with square property on A such that the set A~x of invertible elements forms an

open set in {A, | • |). Then \\ ■ \\ = | • |.

Corollary. Let (A, || • ||) be a regular uniform Banach algebra. Let \ • | be any

norm on A such that (A, | • |) is a normed algebra. Then \\ • \\ < \ • \. Addition-

ally, if | • | is a uniform norm then \\ • || = | • |.

Theorem 1 is used to prove the following

Theorem 2. Let A be a complete uniform topological algebra that is a Q-algebra.

Then the topology of A is normable and A is a uniform Banach algebra.

After briefly discussing the preliminaries in § 1, the proofs are presented in

§2. In §3 we discuss some relevant remarks and examples showing that various

assumptions of the above results cannot be omitted.
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1. Preliminaries

By an algebra we mean a linear associative algebra A with complex scalars

and having identity 1. A norm | • | is a linear norm if (A, | • |) is a normed linear

space. Such a norm has the square property (respectively, is an algebra norm)

if |x2| = |x|2 for all x (respectively, if \xy\ < \x\ \y\ for all x, y). A uniform

isemi)norm is an algebra (semi)norm with square property. We do not assume,

in either of these cases (A, | • |) to be complete. A uniform Banach algebra

[5] is a Banach algebra (A, || • ||) with uniform norm || • ||. Gelfand theory

describes A as a closed subalgebra of the supnorm Banach algebra C(A) (=

all continuous functions on a compact Hausdorff space A) separating points

of A and containing constants. For regular Banach algebras, we refer to [5,

Chapter 7].
A topological algebra (A, t) is a Hausdorff topological vector space A (hav-

ing topology t) that is an algebra with separately continuous multiplication. It

is a complete uniform topological algebra if it is complete and r is determined by

a separating family 7 of uniform seminorms. One can replace 7 by the family

SiA) of all continuous uniform seminorms. For each p e S{A), the completion

Ap of the normed algebra A/kerp with norm ||xp||p = p(x), xp — x + ker/?,

is a uniform Banach algebra, hence commutative; and, as in [6, Theorem 5.1],

A is an inverse limit of uniform Banach algebras A„ viz., A = lim A» .6 P <-PZS{A)     P

Such an A is a locally m-convex algebra [6], i.e., a topological algebra whose

topology is determined by a family of algebra seminorms. The bounded part of

A is 6(A) = {x € A| suppgs^ p{x) < oo} , a subalgebra of A that is easily seen

to be a uniform Banach algebra with norm ||x||oo = suPPes(.4) P(x) continuously

embedded in A . A topological algebra A is a Q-algebra [8, Chapter 1] if the
set A-1 of invertible elements forms an open set.

2. Proofs

Proof of Theorem 1. (i) Let |-| be a linear norm with square property on

a commutative algebra A. By commutativity, for all x, y in A, 4xy =

(x + y)2 - (x - y)2, so that 2|xy| < (|x| + |y|)2. This gives |xy| < 2 for

|^c| < 1, |y| < 1 and so, by bilinearity, |xy| < 2|x| |y| for all x, y. For n G N

this gives |x2y | < 2|x2"| |y2"|, |xy|2" < 2(|x| |y|)2", \xy\ < 2x'2"\x\ \y\. Since

« is arbitrary, |xy| < |x| |y|.
(ii) In a normed algebra (J5,p), the limit r'(x) = \imnpixn)lln exists [1,

Proposition 2.8] and r'(x) < r(x), the spectral radius [1, Theorem 5.7]. Also,

among normed algebras, Q-algebra is known to be characterized by the spectral

radius formula r'(x) = r(x) [2, Proposition 15]. Using this in (A, |-|) together

with the uniform property of | • | and || • ||, we get |x| = lim„ Ix"!1/" = r'(x) =

r{x) = ||x|| for all x .

Proof of Corollary. Let K be the Gelfand space of A, a compact Hausdorff

space consisting of all nonzero multiplicative linear functionals on A. Let

x G A -» x G C{K) be the Gelfand transform. Let Kx = {</> G K\<j> is

| • |-continuous}. Then K\ c K . We claim that K\ = K. If not, there ex-

ists an open set G in K such that G c K\K\ . The regularity of (A, || • ||) [5,
Corollary 7.3.4] implies that there exists an x G A such that x{<p) = 1 for all

4> G Ki , xi4>) = 0 for all 4> G G. Let A be the completion of (A, | • |). Then
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x is invertible in A , because if not then there exists a multiplicative functional

on A whose restriction cf>o G K\ satisfies x(r/>n) = 0, a contradiction. Again by

regularity of {A, \\ • ||), choose a y G A such that y ^ 0, suppy c G. Then

(yx)~ = yx = 0 on K, yx G Rad(A), hence yx = 0. Multiplying by x_1,

y = 0, a contradiction. Thus K{ = K . Now for all x in A ,

|x|> lim|x"|1/,! = rAx)
1    ' —      „    '       i A^    '

= sup \x{<p)\ = sup \x{<p)\ = rA{x) = \\x\\
<t>eK, <peK

establishing the first assertion. Thereby, additionally, if | • | is a uniform norm

then Theorem 1 (ii) applies giving || • || = | • |.

Proof of Theorem 2. In a complete uniform topological algebra A b{A) = {x G

A\SpaÍx) is bounded for all x}. Indeed, A being complete and locally m-

convex, [8, Theorem 12.8] implies that for each x

SpA{x) = \J{SpAp{xp)\pe${Á)}

and
r{x) =   sup limsupp(x")1/" =   sup p{x)

p€S(A)    n^oc PES(A)

in view of p{x2) = pix)2.

Further, by [6, Appendix E], in a Q-algebra, each element has bounded spec-

trum. Thus 6(A) = A. Now since A-1 is open, there exists a p G S {A) and

e > 0 such that Se = {x G A\p{\ - x) < e} c A-1 . We show that ker/? = (0).
Let x G ker/?, x ^ 0. There is a q G S {A) such that xq = x + ker«? / 0 in

Aq. Since q{x2) = qix)2, it follows that x2 ^ 0. Thus, for some X jk 0,

X G SpAqix2) c S/^x2), and so 1 - X~lx2 is not invertible in A. But

p{\ - (1 - /"'x2)) = A-!/7(x2) = /l-'/7(x)2 = 0 giving (1 - /"'x2) G ^f-1,

a contradiction. Thus ker/? = (0) ; and p is a uniform norm on the uniform

Banach algebra {b{A), ||-||oo). Also Se c A~x shows that {b{A),p) is a Q-

algebra. Part (ii) of Theorem 1 shows that /?(•) = II • lloo on A showing that

the topology of A is determined by || • lloo •

3. Concluding remarks and examples

3.1. Uniform Fréchet algebras (uF-algebras) have been extensively investi-

gated by Kramm (see references in [6] and the forthcoming book by Goldmann

[3]) in view of recapturing holomorphy through a functional analytic approach.

They also have a bearing with the famous Michael problem [6]: Whether every

multiplicative linear functional on a Fréchet w-convex algebra is necessarily

continuous. Schottenloher [7] has discussed a class of nuclear DFN-spaces E

such that the Michael problem has a solution in general iff it has a solution for

the uF-algebras 6{E) (in this case, nuclear and having Schauder basis) con-

sisting of all holomorphic functions on E with compact open topology. Let

A be a non-Banach uF-algebra. Then A-1 is a (/¿-set by [8, Theorem 1.6]

that is not open by Theorem 2, hence by [9, Corollary 3], not every element

of A has bounded spectrum. Thus by [9, Corollary 1], A possesses a dense

maximal ideal of infinite codimension (the content of Michael problem is [8,

p. 87]: Whether every dense maximal ideal is of infinite codimension); and [9,
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Theorem 1] implies that A-1 fails to be open in any complete locally ra-convex

topology on A . Theorem 2 also implies, in view of [8, Theorem 12.21], that A

has the extension property that the convergence of a power series $2 &nXn {a„

scalars) for all x in an open subset of A implies its convergence for all x in
A.

3.2. The assumptions regarding openness of A-1 in Theorem 1 and regularity

in its corollary cannot be omitted. Let D = {z e C\\z\ < 1}, let A{D) be

the disc algebra consisting of functions continuous on D and holomorphic in

intD. It is a uniform Banach algebra with norm ||/|| = sup{|/(z)| \\z\ = 1}.

For any a, 0 < a < 1, |/| = sup{|/(z)| | |z| = a} defines a uniform algebra on

A{D). By [5, p. 167], {A{D), || • H«,) is not regular and A(D)-1 does not form

an open set in | • |, otherwise ||/1| = /■(/) = \f\ if G A{D)) by [2, Proposition
15].

3.3. Theorem 1 (ii) is related to a well-known result that if A is a subalgebra of

C{X), for a compact Hausdorff A, that is a Banach algebra with some norm

| • |, then supnorm || • ||oo < I • I • Even if (A, || • ||oo) is a Q-algebra, it is no

longer true that || • ||oo = I • I ■ Take the Banach algebra C[0, 1] consisting of

C'-functions on [0, 1] with norm |/| = \\f\\oo + ll/'lloo • It is easily seen that

(C'[0, 1], || • lloo) is a Q-algebra. However, if (A, |-|) is a uniform algebra

such that either (a) it is regular or (b) (A, || • ||) is a Q-algebra, then || • || = | • |.

3.4. In passing, we inquire whether the uniform algebra is determined locally,

i.e., let (A, || • ||) be a commutative Banach algebra such that for each x in A ,

the closed subalgebra C(x) generated by 1 and x admits a norm px such that

(C(x), px) is a uniform Banach algebra. Is A a uniform Banach algebra under

an equivalent norm? By uniqueness of topology on semisimple Banach algebra

[1, Theorem 25.9], px determines the relative || • ||-topology on C{x).

3.5. The assumption regarding the uniform property of the topology in Theo-

rem 2 is crucial. Consider the algebra A = C°°[0, 1] of all C°°-functions on

[0,1] with topology t defined by the algebra seminorms

/?„(/) = sup
0</<l

zZ(\f{k](t)\/k\)
k=0

Then (A, t) is a Fréchet «z-convex algebra that is a Q-algebra [6, Appendix E]

and t is not Banachizable. In fact, A is non-Banachizable with any norm, since

a semisimple commutative Banach algebra is known not to admit a nonzero

derivation [1, Theorem 18.21]. The algebra (A, t) is not a uniform topological

algebra, either by Theorem 2, or by noting that otherwise b{A) = A has to be

a uniform algebra.

3.6. Let U be the open unit disc. Consider the complete uniform topological

algebra E consisting of all entire functions and H{U) consisting of all holo-

morphic functions on U, both with compact open topology. Then b{E) = C

by Liouville's theorem; and b{H{U)) — HX{U), the uniform Banach algebra

of all bounded holomorphic functions on U , which is dense in H{U). This

suggests the following question. Given a complete uniform topological algebra

A , is it true that either b{A) is finite-dimensional or biA) is dense in A ?
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3.7. The following problem (suggested by the referee) is related with Theorem

1. Let A be an algebra not necessarily commutative. Let | • | be a (semi)norm

on A satisfying |x2| = |x|2 for all x . Does it follow that |xy| < |x| \y\ for all

x,y1
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