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Abstra
t. Plants are 
apable of intelligent responses to 
omplexenvironmental signals. Learning and memory play fundamental roles insu
h responses. Two simple models of plant memory are proposed based onthe 
al
ium-signalling system. The memory states 
orrespond to steadystate distributions of 
al
ium ions.P.A.C.S. Nos.: 05.10.-a, 05.45.-a, 87.16.-b, 87.17.-d
* email - indrani�bi
.boseinst.ernet.in# email - rkarmakar2001�yahoo.
om1

http://arXiv.org/abs/cond-mat/0306738v2


1. Introdu
tionPlants have long been regarded as passive organisms sin
e they do notpossess brains, 
annot speak and la
k in motility. Plants, on the otherhand, 
onstitute 99% of the biomass of the earth demonstrating theiradaptive ability to survive in widely di�erent environments. In re
ent years,there is a growing belief that plants are 
apable of intelligent responses toenvironmental stimuli [1, 2℄. Intelligen
e 
an be de�ned as adaptivelyvariable behaviour in the lifetime of an organism. It is in this sense thatone 
an speak of plant intelligen
e. Plant behaviour is remarkably 
omplexin that plants exhibit 
onsiderable �exibility in their responses, haveforesight and 
an anti
ipate future problems[3℄. To give a spe
i�
 example,the parasiti
 plant dodder 
an assess the exploitability of a host soon aftertheir initial 
onta
t. The dodder 
oils about the host with a spe
i�
number of turns and sends in a number of tenta
les depending on itsassessment of possible future yield from the host. Aspe
ts of intelligentbehaviour in
lude the ability to 
ompute, to learn and to retain memory.Similarities between the neuronal network of brains and 
al
ium signallingsystems in plants have been pointed out [2, 4℄. There are many examples of
rosstalk, i.e., 
onne
tions between the bio
hemi
al signalling pathways inplants. A Boolean representation of the networks of signalling pathways ispossible in terms of well-known logi
al gates like AND, OR, NAND, NOR,XOR, and XNOR [4℄. The Boolean des
ription makes it possible to drawanalogies between plant signalling networks and 
omputing devi
es.Re
ently, an ele
tri
al network model of plant intelligen
e has beenproposed whi
h 
an perform logi
al operations [5℄.There are 
lose parallels between a neural network and a 
al
ium signallingsystem. The former is a network of neurons or nerve 
ells. The network hasa 
omplex stru
ture as ea
h neuron is 
onne
ted to a large number of otherneurons. The input to a neuron is in the form of ele
tri
al pulses from theneurons to whi
h it is 
onne
ted. If the resultant sum ex
eeds a thresholdvalue, the neuron �res (�on� state) and sends out ele
tri
al pulses to theother 
onne
ted neurons through axons and synapti
 jun
tions [6, 7℄. Theina
tive state of the neuron is known as the �o�� state. In a 
al
iumsignalling system, one has a network of ion 
hannels whi
h may be lo
atedon the outer plasma membrane of the 
ell or on the membranes ofintra
ellular vesi
les and organelles. Like the neurons, an ion 
hannel 
anbe in two states, 
losed or open. The normal 
on
entration of free Ca2+ in2



the 
ytoplasm is mu
h lower than that in the extra-
ellular �uid and in theintra-
ellular vesi
les and organelles. When a 
ell re
eives an input signal, aseries of bio
hemi
al events 
onstituting the signalling pathway are initiatedleading to a rapid rise in the 
on
entration of the sugar phosphate inosital1,4,5-triphosphate IP3 in the 
ytoplasm. A Ca2+ ion 
hannel opens whenboth IP3 and Ca2+ bind at appropriate sites of the 
hannel. Through theopen 
hannel, Ca2+ ions move from the interior to the exterior of themembrane. The released 
al
ium ions di�use to neighbouring 
hannels andopen them up giving rise to further 
al
ium release. The 
oordinatedrelease of 
al
ium ions gives rise to a 
al
ium wave in the network. The �owof 
al
ium wave is analogous to the transmission of ele
tri
al pulses in aneural network. Long before the 
al
ium signalling pathway was identi�ed,J. C. Bose through his pioneering experiments showed that plant 
ells areex
itable and 
an transmit millivolt order ele
tri
al signals at the speed of10 - 40 mm/se
. [8℄. Even after Bose's experimental observations, theprevalent belief amongst plant physiologists was that 
ell signalling involvessolely 
hemi
al di�usion. With the elu
idation of the 
al
ium signallingpathway, it is now well established that the release and subsequent di�usionof Ca2+ions gives rise to propagating ele
tri
al pulses in the 
ellularnetwork thus vindi
ating Bose's earlier predi
tion.Synapti
 transmission is not the ex
lusive me
hanism for neurotransmissionin a neural network. There is in
reasing eviden
e that non-synapti
di�usion neurotransmission plays a signi�
ant role in some brain fun
tions[9℄. Rea
tion-di�usion (RD) pro
esses involving antagonisti
neurotransmitters 
an give rise to spatio-temporal organization in theneural network. RD systems using only lo
al intera
tions have been shownto give rise to wide-ranging phenomena in
luding travelling waves,os
illations and formation of stationary patterns [10, 11℄. In this paper, wedis
uss two simple RD-type models of networks of 
al
ium ion 
hannels andshow that spatiotemporal organization takes pla
e in the steady state. Thepossible role of su
h organization in plant learning and memory is furtherpointed out. Sin
e learning and memory are attributes of intelligen
e, ourmodel studies 
an be 
onsidered as tentative attempts to obtain insight onthe 
omplexities of plant intelligen
e.
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2. Rea
tion - di�usion models of 
al
iumsignalling networksThe �rst model is a minimal model in
orporating some of the essentialfeatures of 
al
ium 
ell signalling. We 
onsider a network of ion 
hannels inone dimension (1D). Ea
h 
hannel 
an exist in two possible states: ina
tiveand a
tive. In the ina
tive state a 
hannel is 
losed and in the a
tive state a
hannel is open. An open 
hannel allows for the release of Ca2+ ions fromthe internal store of the 
hannel. The model dynami
s are des
ribed interms of two 
on
entration variables, u1 and u2, denoting the 
on
entrationsof a
tive 
hannels and 
al
ium ions respe
tively. Detailed pro
esses, like IP3and 
al
ium binding, leading to the opening of the 
hannel are ignored. Ana
tive 
hannel 
an be
ome ina
tivated on the binding of 
al
ium ion to anina
tivating site. Ca2+ 
an di�use through the network of 
hannels and onbinding at appropriate sites 
an a
tivate/ina
tivate the 
hannels. The
on
entration of a
tive 
hannels at a parti
ular lo
ation 
an 
hange due to
hanges in the 
on
entrations of a
tive 
hannels in neighbouring regions.This e�e
t is represented through a �di�usive� 
oupling, the di�usion in this
ase refers to the propagation of 
hannel a
tivity.The dynami
s of the model are des
ribed by the following di�erentialequations:
∂tu1 = D1∂

2

x
u1 + a1u1 − b1u2 (1)

∂tu2 = D2∂
2

x
u2 + b2u1 − a2u2 (2)In Eq.(1), D1 represents the e�e
tive �di�usion 
onstant� for thepropagation of 
hannel a
tivity. The rate of 
hange of the 
on
entration ofa
tive 
hannels is assumed to be linearly proportional to the 
on
entrationof a
tive 
hannels. The release of Ca2+ions through open 
hannels 
ana
tivate further opening up of 
al
ium 
hannels. This e�e
t is indire
tlyin
orporated through the se
ond term in Eq. (1). The third term in Eq.(1)represents expli
itly the role of Ca2+ ions in ina
tivating ion 
hannels andthereby de
reasing ∂tu1. The �rst term in Eq.(2) des
ribes the di�usion ofCa2+ ions, D2 being the di�usion 
onstant. The se
ond term shows that

∂tu2 in
reases if the 
on
entration u1 of a
tive 
hannels in
reases. The thirdterm is a de
ay term and arises out of the pumping ba
k of Ca2+ions intothe internal stores. 4



In a remarkable paper in 1952, Turing showed that a RD system involving aslowly-di�using a
tivator and a fast-di�using inhibitor 
an give rise to apattern forming instability [12, 13℄ in whi
h stationary patterns are formedin the non-equilibrium steady state. RD systems with dynami
s of the typedes
ribed in Eqs.(1) and (2) 
an exhibit di�erent types of instabilityin
luding the Turing-type [12℄. We provide the details below.In Eqs.(1) and (2), u1 and u2 represent the 
on
entrations of the a
tivator(a
tive 
hannels) and inhibitor (Ca2+) respe
tively. The growth of u1stimulates the growths of u1 and u2. On the other hand, as the nameimplies, a rise in the 
on
entration u2 of the inhibitor inhibits the growths of
u1 and u2. The inhibitor di�uses further than the a
tivator, i.e., D2 > D1.In the absen
e of di�usion, the steady state of Eqs.(1) and (2) is given by

(u1s, u2s) = (0, 0) (3)The stability 
onditions from linear stability analysis are:
a1 − a2 < 0 (4)

detA = b1b2 − a1a2 > 0 (5)One would now like to determine whether the homogeneous steady statebe
omes unstable on in
lusion of the di�usion terms in Eqs.(1) and (2).De�ne a two-
omponent 
olumns ve
tor u with elements u1 and u2. Welook for solutions of the form u ∼ ewteikx. Linearising Eqs.(1) and (2) aboutthe steady state in (3), one gets the following 
hara
teristi
 equation for w :

w2 − Tw + ∆ = 0 (6)where
T = a1 − a2 − (D1 + D2)k

2 (7)and
∆ = b1b2 − a1a2 − k2(a1D2 − a2D1) + D1D2k

4 (8)The solutions of the 
hara
teristi
 equation are
w± =

1

2
[T ±

√
T 2 − 4∆] (9)5



The steady state (u1s, u2s) is linearly stable if Re (w±) is < 0. We havealready imposed the 
onditions, Eqs.(4) and (5), that the steady state isstable in the absen
e of di�usion, i.e., Re w±(k2 = 0) is < 0. If the steadystate is to be unstable to spatial disturban
es, Re w+(k) > 0 for some
k 6= 0. This is true if either T is > 0 or if ∆(k2) < 0 for some k 6= 0. Due tothe 
ondition in Eq.(4), T is always less than zero. The 
ondition in Eq.(5)demands that the only possibility for ∆(k2) to be negative is if
(a1D2 − a2D1) > 0. Sin
e a1 < a2 (Eq.(4)), one gets the additional 
ondition

D2 > D1 (10)That is, the inhibitor di�uses faster than the a
tivator. For ∆(k2) to benegative for some non-zero k, the minimum value of ∆, ∆min, must benegative. Di�erentiating Eq.(8) w.r.t. k2, one gets
∆min(k2) = b1b2 − a1a2 −

(a1D2 − a2D1)
2

4D1D2

(11)with
k2 = k2

m
=

a1D2 − a2D1

2D1D2

(12)Thus the 
ondition that ∆(k2) < 0 for some k2 6= 0 is
(a1D2 − a2D1)

2

4D1D2

> b1b2 − a1a2 (13)To summarize, if the 
onditions (4), (5), (10) and (13) are satis�ed, thehomogeneous steady state is unstable towards a stationary state with wavenumber
km = [

1

2
[
a1

D1

− a2

D2

]]
1

2 (14)At the bifur
ation point, ∆min = 0. Sin
e ∆ = w+w−, this implies that oneof the roots of the 
hara
teristi
 equation is zero. The bifur
ation 
an bebrought about by 
hanging the parameters of the system. In the steadystate, stationary distributions of the a
tivator and inhibitor 
on
entrationsare obtained.In the simple network model of 
al
ium ion 
hannels 
onsidered by us, the
ondition (10) implies that Ca2+ ions di�use faster 
ompared to the�di�usion� of 
hannel a
tivity. This is plausible in a real 
al
ium signalling6



system as for a 
hannel to be a
tivated by neighbouring 
hannels, thereleased Ca2+ ions from these 
hannels have to di�use to the 
hannel inquestion followed by the binding of IP3 and Ca2+ ions at the appropriate
hannel sites. The steady state stationary distributions are analogous to theattra
tors (memory states) in the 
ase of a neural network. Figure 1 showsthe steady state distributions of u1 and u2 in an 1d latti
e of 50 sites withperiodi
 boundary 
onditions. The distributions have been obtained bysolving Eqs.(1) and (2) numeri
ally on dis
retizing the derivative terms inthe two equations in the Euler s
heme. The values of ∆x and ∆t have been
hosen to be 1 and 0.01 respe
tively. The dis
retization 
an be treated as asimple approximation to the partial di�erential Eqs. (1) and (2). The �nitedi�eren
e equation may alternatively be treated as a representation of theRD system on a latti
e. The initial state of the latti
e is the (u1, u2) = (0, 0)state perturbed by small random amounts at all the latti
e sites.In a neural network, learning and memory are interlinked. Networks learnthrough reinfor
ement of pathways 
onne
ting signals to response. One wayin whi
h reinfor
ement 
an o

ur is through in
reasing the strength ofexisting synapti
 
onne
tions between neurons. As pointed out by Trewavas[2℄, learning and memory are also interrelated in the 
al
ium signallingsystem. On re
eiving an input signal, the 
ellular 
ontent of the mole
ules(like IP3) parti
ipating in the signalling pathway is in
reased by a largeamount. This is an example of 
ellular learning leading to an a

eleratedinformation �ux along 
al
ium dependent pathways. Memory of previoussignals in a network 
an be a

essed to transform 
urrent signals. A
al
ium-based memory 
orresponds to an inhomogeneous stationarydistribution of Ca2+ ions. The 
al
ium wave generated by a new signal willpropagate preferentially in those regions where 
al
ium 
on
entration ishigh. The �nal distribution of 
al
ium will be the out
ome of theintegration of the 
urrent signal modi�ed by a stable, long term memory. Inour model, the inhomogeneous stationary distribution of 
al
ium whi
h
onstitutes long term memory is an out
ome of the Turing instability. Thesignal modi�ed by previous memory a
tivates a unique 
ombination ofe�e
tor proteins whi
h ultimately brings about the desired response to theinput . Trewavas has further pointed out that important aspe
ts of the 
ellmemory are possibly asso
iated with the 
ell wall as its removal a�e
tsmany of the developmental pro
esses in algae and higher plants. It iswell-known that 
al
ium signalling networks 
an exhibit limit-
y
lebehaviour in the form of os
illations in the Ca2+ 
on
entration [14℄. In the7



model 
onsidered by us, the homogeneous steady state (Eq.(3)) undergoes aHopf bifur
ation when a1 > a2 [12℄. In this 
ase, w± (Eq.(9)) are purelyimaginary, i.e., T = 0 (Eq.(7)). Sin
e the solution for u 
ontains the fa
tor
ewt, stable os
illations are obtained in the system.Mi
roorganisms like ba
teria and ba
teriophage share a 
ommon featurewith plants, namely, the absen
e of brains. A re
ent study [15℄ hasdis
ussed eviden
e that mi
roorganisms exhibit memory. Memory impliessystems the present state of whi
h is not entirely determined by present
onditions but depends on past history, i.e., on the path by whi
h thepresent state is rea
hed. Several examples of history dependen
e inbiologi
al systems are known [15℄. Most of these systems have two or morestable steady states, the so-
alled memory states. The 
hoi
e of a parti
ularstate depends on the pathway followed to rea
h it. Similar examples ofmemory in a 
al
ium signalling system 
an be given. Ref.[12℄ dis
usses asimple model of 
al
ium-stimulated 
al
ium release the kineti
s of whi
h isdes
ribed by the rate law

dx

dt
=

k1x
2

k2 + x2
− k3x (15)where x denotes the 
on
entration of Ca2+ ions. The �rst term on the r.h.sdes
ribes the auto
atalyti
 release of 
al
ium ions (more 
al
ium ions implymore open 
hannels leading to further in
reases in 
al
ium 
on
entration).The auto
atalyti
 produ
tion saturates for high 
on
entrations of Ca2+.The se
ond term represents the pumping ba
k of 
al
ium ions into internalstores. There are three steady states of the system with 
on
entrationsgiven by x1, x2 and x3 respe
tively. The �rst and the third states are stablesteady states and the se
ond state is unstable. For all 0 < x < x2, x → x1,whereas for all x > x2, x → x3. Thus the signalling system exhibits memoryof past history. A neural network has multiple steady states be
ausetransmissions a
ross synapti
 jun
tions 
an be both ex
itatory andinhibitory in nature. A 
al
ium signalling network 
an also have multiplesteady states sin
e Ca2+ions have both a
tivating and inhibiting e�e
ts onthe opening of ion 
hannels.
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3. Con
luding remarksThe models of 
al
ium signalling networks studied in this paper are toymodels meant to illustrate the origin of memory states in plants in analogywith similar states in neural networks. In reality, the ion 
hannels have a
omplex three subunit stru
ture and a 
hannel is open only if all the threesubunits are simultaneously open [16℄. Furthermore, the dynami
s aregoverned by non-linear rate equations. Work on a more realisti
 model ofthe 
al
ium signalling network is in progress and the results will be reportedelsewhere. Re
ently some dis
rete sto
hasti
 models of 
al
ium dynami
shave been proposed [14, 17℄. These models address other interesting aspe
tsof 
al
ium signalling networks. In one su
h model de�ned on a 1d latti
e, aset of probabilities for the opening/
losing of 
al
ium 
hannels is assumedto depend on the 
al
ium 
on
entration. By in
reasing the number of
hannels/site, a transition from a non-propagating region of a
tivity to apropagating one o

urs. The transition belongs to the dire
ted per
olation
lass of similar transitions. To sum up, 
al
ium signalling networks presentus with a ri
h array of problems ranging from 
ellular learning/memory tonovel phenomena arising out of a
tivated dynami
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