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Abstract. Plants are capable of intelligent responses to complex
environmental signals. Learning and memory play fundamental roles in
such responses. Two simple models of plant memory are proposed based on
the calcium-signalling system. The memory states correspond to steady
state distributions of calcium ions.
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1. Introduction

Plants have long been regarded as passive organisms since they do not
possess brains, cannot speak and lack in motility. Plants, on the other
hand, constitute 99% of the biomass of the earth demonstrating their
adaptive ability to survive in widely different environments. In recent years,
there is a growing belief that plants are capable of intelligent responses to
environmental stimuli [T, 2]. Intelligence can be defined as adaptively
variable behaviour in the lifetime of an organism. It is in this sense that
one can speak of plant intelligence. Plant behaviour is remarkably complex
in that plants exhibit considerable flexibility in their responses, have
foresight and can anticipate future problems|3]. To give a specific example,
the parasitic plant dodder can assess the exploitability of a host soon after
their initial contact. The dodder coils about the host with a specific
number of turns and sends in a number of tentacles depending on its
assessment of possible future yield from the host. Aspects of intelligent
behaviour include the ability to compute, to learn and to retain memory.
Similarities between the neuronal network of brains and calcium signalling
systems in plants have been pointed out |2, H]. There are many examples of
crosstalk, i.e., connections between the biochemical signalling pathways in
plants. A Boolean representation of the networks of signalling pathways is
possible in terms of well-known logical gates like AND, OR, NAND, NOR,
XOR, and XNOR [4]. The Boolean description makes it possible to draw
analogies between plant signalling networks and computing devices.
Recently, an electrical network model of plant intelligence has been
proposed which can perform logical operations [5].

There are close parallels between a neural network and a calcium signalling
system. The former is a network of neurons or nerve cells. The network has
a complex structure as each neuron is connected to a large number of other
neurons. The input to a neuron is in the form of electrical pulses from the
neurons to which it is connected. If the resultant sum exceeds a threshold
value, the neuron fires (“on” state) and sends out electrical pulses to the
other connected neurons through axons and synaptic junctions [6l [7]. The
inactive state of the neuron is known as the “off” state. In a calcium
signalling system, one has a network of ion channels which may be located
on the outer plasma membrane of the cell or on the membranes of
intracellular vesicles and organelles. Like the neurons, an ion channel can
be in two states, closed or open. The normal concentration of free Ca?* in



the cytoplasm is much lower than that in the extra-cellular fluid and in the
intra-cellular vesicles and organelles. When a cell receives an input signal, a
series of biochemical events constituting the signalling pathway are initiated
leading to a rapid rise in the concentration of the sugar phosphate inosital
1,4,5-triphosphate IP3 in the cytoplasm. A Ca?* ion channel opens when
both IP3 and Ca?* bind at appropriate sites of the channel. Through the
open channel, Ca?* ions move from the interior to the exterior of the
membrane. The released calcium ions diffuse to neighbouring channels and
open them up giving rise to further calcium release. The coordinated
release of calcium ions gives rise to a calcium wave in the network. The flow
of calcium wave is analogous to the transmission of electrical pulses in a
neural network. Long before the calcium signalling pathway was identified,
J. C. Bose through his pioneering experiments showed that plant cells are
excitable and can transmit millivolt order electrical signals at the speed of
10 - 40 mm/sec. [8]. Even after Bose’s experimental observations, the
prevalent belief amongst plant physiologists was that cell signalling involves
solely chemical diffusion. With the elucidation of the calcium signalling
pathway, it is now well established that the release and subsequent diffusion
of Ca*Tions gives rise to propagating electrical pulses in the cellular
network thus vindicating Bose’s earlier prediction.

Synaptic transmission is not the exclusive mechanism for neurotransmission
in a neural network. There is increasing evidence that non-synaptic
diffusion neurotransmission plays a significant role in some brain functions
[9]. Reaction-diffusion (RD) processes involving antagonistic
neurotransmitters can give rise to spatio-temporal organization in the
neural network. RD systems using only local interactions have been shown
to give rise to wide-ranging phenomena including travelling waves,
oscillations and formation of stationary patterns [I0), IT]. In this paper, we
discuss two simple RD-type models of networks of calcium ion channels and
show that spatiotemporal organization takes place in the steady state. The
possible role of such organization in plant learning and memory is further
pointed out. Since learning and memory are attributes of intelligence, our
model studies can be considered as tentative attempts to obtain insight on
the complexities of plant intelligence.



2. Reaction - diffusion models of calcium
signalling networks

The first model is a minimal model incorporating some of the essential
features of calcium cell signalling. We consider a network of ion channels in
one dimension (1D). Each channel can exist in two possible states: inactive
and active. In the inactive state a channel is closed and in the active state a
channel is open. An open channel allows for the release of Ca?* ions from
the internal store of the channel. The model dynamics are described in
terms of two concentration variables, u; and wusy, denoting the concentrations
of active channels and calcium ions respectively. Detailed processes, like [P
and calcium binding, leading to the opening of the channel are ignored. An
active channel can become inactivated on the binding of calcium ion to an
inactivating site. Ca?* can diffuse through the network of channels and on
binding at appropriate sites can activate/inactivate the channels. The
concentration of active channels at a particular location can change due to
changes in the concentrations of active channels in neighbouring regions.
This effect is represented through a “diffusive” coupling, the diffusion in this
case refers to the propagation of channel activity.
The dynamics of the model are described by the following differential
equations:

8tul = Dlﬁiul + aiup — b1U2 (1)

8{&2 = Dgaz’U/g + bgul — A2U2 (2)

In Eq.(1), D; represents the effective “diffusion constant” for the
propagation of channel activity. The rate of change of the concentration of
active channels is assumed to be linearly proportional to the concentration
of active channels. The release of Ca?Tions through open channels can
activate further opening up of calcium channels. This effect is indirectly
incorporated through the second term in Eq. (1). The third term in Eq.(1)
represents explicitly the role of Ca?t ions in inactivating ion channels and
thereby decreasing dyu;. The first term in Eq.(2) describes the diffusion of
Ca?" ions, Dy being the diffusion constant. The second term shows that
Oyu9 increases if the concentration u; of active channels increases. The third
term is a decay term and arises out of the pumping back of Ca*ions into
the internal stores.



In a remarkable paper in 1952, Turing showed that a RD system involving a
slowly-diffusing activator and a fast-diffusing inhibitor can give rise to a
pattern forming instability [T2), T3] in which stationary patterns are formed
in the non-equilibrium steady state. RD systems with dynamics of the type
described in Eqs.(1) and (2) can exhibit different types of instability
including the Turing-type [I2]. We provide the details below.

In Egs.(1) and (2), uy and uy represent the concentrations of the activator
(active channels) and inhibitor (Ca*") respectively. The growth of u;
stimulates the growths of u; and us. On the other hand, as the name
implies, a rise in the concentration us of the inhibitor inhibits the growths of
uy and us. The inhibitor diffuses further than the activator, i.e., Dy > D;.
In the absence of diffusion, the steady state of Eqs.(1) and (2) is given by

(Uls, U2s) = (07 0) (3)

The stability conditions from linear stability analysis are:

ap —ag <0 (4)

detA = biby — ajas >0 (5)

One would now like to determine whether the homogeneous steady state
becomes unstable on inclusion of the diffusion terms in Eqgs.(1) and (2).
Define a two-component columns vector v with elements u; and uy. We
look for solutions of the form u ~ e“t¢™*®. Linearising Egs.(1) and (2) about
the steady state in (3), one gets the following characteristic equation for w :

w? —Tw+ A =0 (6)
where
T = ay —as — (Dl + Dg)/{?2 (7)
and
A= blbg — 19 — kz(a1D2 - CL2D1) + D1D2]€4 (8)

The solutions of the characteristic equation are

ws = %[T + VT2 — 14 (9)



The steady state (uys, ugs) is linearly stable if Re (wy) is < 0. We have
already imposed the conditions, Eqgs.(4) and (5), that the steady state is
stable in the absence of diffusion, i.e., Re wy(k* = 0) is < 0. If the steady
state is to be unstable to spatial disturbances, Re w. (k) > 0 for some

k # 0. This is true if either T is > 0 or if A(k?) < 0 for some k # 0. Due to
the condition in Eq.(4), T is always less than zero. The condition in Eq.(5)
demands that the only possibility for A(k?) to be negative is if

(a1 Dy —agDy) > 0. Since a; < ay (Eq.(4)), one gets the additional condition

D2 > D1 (10)

That is, the inhibitor diffuses faster than the activator. For A(k?) to be
negative for some non-zero k, the minimum value of A, A,,;,, must be
negative. Differentiating Eq.(8) w.r.t. k%, one gets

(alDz - Clle)2

A, in () = biby — — 11

(k%) 102 — G1G2 4D, D, (11)
with D D

A A ! 12

m 3DiDs (12)

Thus the condition that A(k?) < 0 for some k? # 0 is

(alDz - a2D1)2
4D, D,

> blbg — a10a2 (13)

To summarize, if the conditions (4), (5), (10) and (13) are satisfied, the
homogeneous steady state is unstable towards a stationary state with wave

number ]
ay a2 411
km = =|l=— — =2 14
n= 5 -2 (14

At the bifurcation point, A,,;, = 0. Since A = w w_, this implies that one
of the roots of the characteristic equation is zero. The bifurcation can be
brought about by changing the parameters of the system. In the steady
state, stationary distributions of the activator and inhibitor concentrations
are obtained.
In the simple network model of calcium ion channels considered by us, the
condition (10) implies that Ca*" ions diffuse faster compared to the

“diffusion” of channel activity. This is plausible in a real calcium signalling



system as for a channel to be activated by neighbouring channels, the
released Ca?" ions from these channels have to diffuse to the channel in
question followed by the binding of IP; and Ca?* ions at the appropriate
channel sites. The steady state stationary distributions are analogous to the
attractors (memory states) in the case of a neural network. Figure 1 shows
the steady state distributions of u; and uy in an 1d lattice of 50 sites with
periodic boundary conditions. The distributions have been obtained by
solving Eqgs.(1) and (2) numerically on discretizing the derivative terms in
the two equations in the Euler scheme. The values of Ax and At have been
chosen to be 1 and 0.01 respectively. The discretization can be treated as a
simple approximation to the partial differential Eqs. (1) and (2). The finite
difference equation may alternatively be treated as a representation of the
RD system on a lattice. The initial state of the lattice is the (uy, u2) = (0,0)
state perturbed by small random amounts at all the lattice sites.

In a neural network, learning and memory are interlinked. Networks learn
through reinforcement of pathways connecting signals to response. One way
in which reinforcement can occur is through increasing the strength of
existing synaptic connections between neurons. As pointed out by Trewavas
[2], learning and memory are also interrelated in the calcium signalling
system. On receiving an input signal, the cellular content of the molecules
(like IP3) participating in the signalling pathway is increased by a large
amount. This is an example of cellular learning leading to an accelerated
information flux along calcium dependent pathways. Memory of previous
signals in a network can be accessed to transform current signals. A
calcium-based memory corresponds to an inhomogeneous stationary
distribution of Ca?* ions. The calcium wave generated by a new signal will
propagate preferentially in those regions where calcium concentration is
high. The final distribution of calcium will be the outcome of the
integration of the current signal modified by a stable, long term memory. In
our model, the inhomogeneous stationary distribution of calcium which
constitutes long term memory is an outcome of the Turing instability. The
signal modified by previous memory activates a unique combination of
effector proteins which ultimately brings about the desired response to the
input . Trewavas has further pointed out that important aspects of the cell
memory are possibly associated with the cell wall as its removal affects
many of the developmental processes in algae and higher plants. It is
well-known that calcium signalling networks can exhibit limit-cycle
behaviour in the form of oscillations in the Ca?" concentration [14]. In the
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model considered by us, the homogeneous steady state (Eq.(3)) undergoes a
Hopf bifurcation when a; > ay [I2]. In this case, wy (Eq.(9)) are purely
imaginary, i.e., T'= 0 (Eq.(7)). Since the solution for u contains the factor
et stable oscillations are obtained in the system.

Microorganisms like bacteria and bacteriophage share a common feature
with plants, namely, the absence of brains. A recent study [I5] has
discussed evidence that microorganisms exhibit memory. Memory implies
systems the present state of which is not entirely determined by present
conditions but depends on past history, i.e., on the path by which the
present state is reached. Several examples of history dependence in
biological systems are known [I5]. Most of these systems have two or more
stable steady states, the so-called memory states. The choice of a particular
state depends on the pathway followed to reach it. Similar examples of
memory in a calcium signalling system can be given. Ref.[I2]| discusses a
simple model of calcium-stimulated calcium release the kinetics of which is
described by the rate law

de  kya?

a _ R 1
At kyta? (15)

where x denotes the concentration of Ca?* ions. The first term on the r.h.s
describes the autocatalytic release of calcium ions (more calcium ions imply
more open channels leading to further increases in calcium concentration).
The autocatalytic production saturates for high concentrations of Ca".
The second term represents the pumping back of calcium ions into internal
stores. There are three steady states of the system with concentrations
given by x1, xo and x5 respectively. The first and the third states are stable
steady states and the second state is unstable. For all 0 < & < z9, x — 1,
whereas for all z > 5, © — x3. Thus the signalling system exhibits memory
of past history. A neural network has multiple steady states because
transmissions across synaptic junctions can be both excitatory and
inhibitory in nature. A calcium signalling network can also have multiple
steady states since Ca*"ions have both activating and inhibiting effects on
the opening of ion channels.



3. Concluding remarks

The models of calcium signalling networks studied in this paper are toy
models meant to illustrate the origin of memory states in plants in analogy
with similar states in neural networks. In reality, the ion channels have a
complex three subunit structure and a channel is open only if all the three
subunits are simultaneously open [I6]. Furthermore, the dynamics are
governed by non-linear rate equations. Work on a more realistic model of
the calcium signalling network is in progress and the results will be reported
elsewhere. Recently some discrete stochastic models of calcium dynamics
have been proposed [I4, [I7]. These models address other interesting aspects
of calcium signalling networks. In one such model defined on a 1d lattice, a
set of probabilities for the opening/closing of calcium channels is assumed
to depend on the calcium concentration. By increasing the number of
channels/site, a transition from a non-propagating region of activity to a
propagating one occurs. The transition belongs to the directed percolation
class of similar transitions. To sum up, calcium signalling networks present
us with a rich array of problems ranging from cellular learning/memory to
novel phenomena arising out of activated dynamics.
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