Min-max Computation Tree Logic

Pallab Dasgupta, P.P. Chakrabarti,
Jatindra Kumar Deka and Sriram Sankaranarayanan

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, INDIA 721302
pallab,ppchak,jatin@cse.iitkgp.ernet.in

Abstract

This paper introduces a branching time temporal query language called Min-max CTL
which is similar in syntax to the popular temporal logic, CTL [8]. However unlike CTL,
Min-max CTL can express timing queries on a timed model. We show that interesting
timing queries involving a combination of min and max can be expressed in Min-max
CTL. While model checking using most timed temporal logics is PSPACE complete or
harder[1, 2], we show that many practical timing queries, where we are interested in the
worst case or best case timings, can be answered in polynomial time by querying the
system using Min-max CTL.

1 Introduction

Temporal logic model-checking [8] is one of the most popular and well studied paradigms for
formal verification of hardware and other concurrent systems (see [9] for a survey). In this
approach, each concurrent process is modeled as a finite state non-deterministic transition
system. The correctness property which needs to be verified on the given set of concurrent
transition systems is specified in terms of a temporal logic formula. Model checking has been
extensively studied for two broad categories of temporal logics, namely linear time temporal
logic and branching time temporal logic [5, 9].

Traditional temporal logics such as Linear Temporal Logic (LTL), Computation Tree Logic
(CTL), and CTL* [8] can be used to reason about the temporal behavior of systems without
explicitly quantifying time. These logics are therefore inadequate to quantitatively reason
about timing properties of a system. On the other hand timed temporal logics such as
Timed CTL (TCTL) [1] and Real Time CTL (RTCTL) [11] allow us to verify actual timing
properties on a timed transition system. However, the verification of timed temporal logics
has been found to be much more complex than their untimed counterparts (see [4] for a
survey). For example, while LTL model checking is PSPACE complete, TLTL model checking
is undecidable [3]. The problem is less severe in the case of branching time timed logics, where
TCTL model checking is PSPACE complete [1, 2] (where as CTL model checking is possible in
polynomial time). It has been shown in [2] that TCTL model checking is PSPACE complete
even in discrete-time models. Model checking in discrete-time models has been studied by
other researchers [6, 12] as well.

While analyzing timed transition systems, we often like to reason about the extremal (best
case or worst case) temporal properties of the system. Determining such temporal properties

can also be used as a strategy for verification [7]. For example, we may be interested in
determining the worst case delay that may occur between a request and a grant in an arbiter
circuit. The answer to this query also allows us to verify whether the worst case delay is
bounded by some §.

In this paper, we propose a temporal query language called Min-max CTL which allows
the quantification of CTL state and path properties in terms of a cost function over real time.
Min-max CTL is capable of expressing queries which involve a combination of extremal (min
and max) quantifiers both along paths (or walks) in the timed model, as well as across paths.
It is possible to express complex queries such as the following:

Determine the minimum among the worst-case response times for the earliest request along
all possible computation paths of a client process, where the worst-case response time for
a request of a client is defined as the maximum delay by which the grant is given by the
server.

Fig 1 shows a sample timed model, where the answer to this query is 3, since the worst-case
response time of the requests at states a, b, and c, are 4, 3, and 5 respectively.

req /@\

j)
req req }:K
1/ 1 L_reg gr

" ’ : /C>\ ; ;
Y9 O O

Figure 1: Timed model: Client-Server

We show that for most practical cost functions, Min-max CTL queries can be evaluated in
polynomial time. The result assumes significance since model checking timed logics such as
TCTL and RTCTL are PSPACE complete [1, 2]. Thus Min-max CTL captures an interesting
subset of timing properties (namely most extremal timing properties) which can be evaluated
in polynomial time.

The main contributions of this paper are as follows:

e We present a temporal query language called Min-max CTL which can express queries
related to the worst-case and best-case timings along computation paths, as well as
across computation paths.

e We show that a restriction of Min-max CTL (which covers many practical min-max
timing queries of interest) can be verified in time polynomial in the number of states
of the system and the length of the formula. We also show that the general problem is
DP-hard.

The paper is organized as follows. In Section 2 we define the syntax and semantics of Min-
max CTL, and illustrate Min-max CTL through examples. Section 3 shows that a monotonic

restriction of Min-max CTL can be evaluated in polynomial time, while the general problem
is DP hard. We present a polynomial time algorithm for monotonic Min-max CTL and ana-
lyze it’s correctness and complexity. Section 4 presents three illustrative models of practical
interest where Min-max CTL is used for reasoning about extremal timing behavior. We also
present experimental results demonstrating the time and memory requirements for a proto-
type Min-max CTL evaluator on scaled up versions of these models. Section 5 outlines two
possible extensions.

2 Syntax and Semantics

The syntax of Min-max CTL is similar to that of CTL, except for two special types of until
operators, which we call min-until (Unin) and maz-until (Unax) respectively, and two special
types of existential (E) and universal (A) quantifiers, which (like CTL) must immediately
precede each min-until and maz-until path formula. These special quantifiers act as min or
max operators across paths. Also, since we consider timed models, we exclude the next-time
(X) operator of CTL.

2.1 Syntax

We first describe the model and the formal syntax of Min-max CTL, and then illustrate it
with examples.

Definition 2.1 [Timed Model:]

A timed model is a tuple J = (AP, S, R, s0, L), where:
o AP is the set of atomic propositions,
e S is the finite set of states,

e R C S xS XN is a transition relation, where N denotes the set of positive integers,
and (s;,sj,Tij) € R implies that the delay between successive states s; and s; is T;; units
of time,

sg € S s the initial state,

L:S — 24P is a labeling of states with atomic propositions true in that state.]

The syntax of Min-max CTL is as follows. B denotes boolean formulas, S denotes CTL
formulas, and Z denotes Min-max CTL formulas. C and C’ are user defined functions.

e B = false|true|q|~q|B A B|BV B|-B
e S=BISAS|ISVSIE(SU S)|A(SU S)|-S
e () = min|max

* Z =Z NS|QEc(4,n)(SUQZ)|QEc()(SUQS)|QAc(g,n) (SUQZ)|QAci(4)(SUQS)

We use the following abbreviations:

Fq: true U q
Fminq: true Umin q
Fraxq: true Unax q

Throughout this paper, Z-formulas, S-formulas and B-formulas refer to formulas derived
out of Z, S and B respectively. We first present a few examples to informally explain the
semantics of Min-max CTL and then proceed to define the formal semantics.

In traditional CTL model checking we seek to determine whether a given CTL formula
(of the form of S) is true at a state of the model. In Min-max CTL, we have extended the
syntax of CTL by allowing the quantified until operators (Upin and Upax) and the min and
maz path quantifiers, which are defined over the cost functions C' or C’. Thereby Min-max
CTL also has a semantics of evaluation which returns a numeric value whenever the formula
is true at a state. This numeric value quantifies the value of the objective function C (or
C") which we seek to optimize, and is the answer to the Min-max CTL query at that state.
On the other hand, if the formula is false at a state of the model, then the evaluation of the
formula at that state returns null.

A Min-max CTL formula is said to be true at a state when the CTL restriction of the
Min-max CTL formula is true at that state. This restriction is obtained by removing the
functions C, C' and the quantifiers @ and @’ from the Min-max CTL formula. We present a
couple of examples to illustrate the CTL restriction of a Min-max CTL formula:

e The CTL restriction of the Min-max CTL formula max Aoy (Fming) is AFgq.

e The CTL restriction of the Min-max CTL formula min Egp,(pUmin(min Ey(qUminr)))
is E(pU(E(qUT))).

Min-max CTL evaluation returns a numeric Min-maz value corresponding to the Min-max
CTL formula at states where the CTL restriction of the formula is true. We first illustrate
the semantics of evaluation through examples, and then define the formal semantics of the
evaluation function.

D pa pag

n
S OSNGESOPE
)
e 0

q

Figure 2: A timed model

e Figure 2 shows a sample timed model. Suppose we are interested in determining the
earliest occurrence of a state where ¢ is true, starting from state a. We can pose this
query as min Ey(Fning) to be evaluated at state a. Using the Uy, operator indicates
that we are interested in the earliest occurrence of ¢ along the path. Hence the path
formula Fing evaluates to 3 on all paths through state b. This value is the delay to
reach state b from state a. We refer to the state b as the closing state of these paths.
Similarly, for all paths which go through state e and not through state b, the path
formula F,i,q evaluates to 5, and e is the closing state. The delay from the start state
of the path to the closing state is called the g-value of the path. The quantifier min E,
specifies that the path with minimum g-value has to be chosen, which in this case is

any path through state b. Hence the Min-max CTL formula min Eq(Fi,ing) evaluates
to 3 at state a.

o Consider the query min Ey;(Fming). This query differs from the previous one only in
the cost function, which is 2¢g instead of g. The best path is still the same, but the value
returned at state a is now 6.

e Using the Upax operator, we can determine the latest occurrence of ¢ along a path. For
example, in Figure 2, evaluating the formula min E;(Fnaxq) at state a yields 4 and the
best path is the one through state b followed by state e. State e is the closing state of
the path.

e Consider the Min-max CTL formula ¢ = min Egp,(pUmin(min Ey(qUninr))). Here we
use the cost function C(g,h) = g + h. The h-value of a state with respect to ¢ is the
Min-max value computed at that state for the subformula 1 = min E;(qUminr). Since
we use Upnin, the possible closing states for the path formula pUpnin are b (for all paths
through b) and e (for all paths through e which do not go through b). Evaluation of 1)
yields h = 3 at state b and h = 2 at state e. Thus for all paths where b is the closing state,
C(g,h) = g+ h = 6, and for all paths where e is the closing state, C(g,h) =g+ h =T.
Since the path quantifier is min Ey,j, the value returned by evaluating ¢ at state a is
6.

Thus the numeric values returned by the evaluation of a Min-max CTL formula f at states
of the timed model are determined by the values (namely h-values) returned by evaluating
the subformulas of f at the states of the model and the lengths (namely g-values) computed
by evaluating the special until operator Ug (which may be Umin or Umax) over the paths of
the model. The objective function may have two parameters, namely g and h. The g-value
is associated with the path cost computed by virtue of the Uy operator, and the h-value
is associated with evaluating the subformula' following the Ug operator. The user defined
objective functions C' and C' compute the merits of paths as a function of the g-values and
h-values, and the min and max path quantifiers specifies the criterion for choosing between
values returned by evaluating these paths.

2.2 Semantics

In this subsection we present the formal semantics of Min-max CTL. We first present the
formal definition of the CTL-restriction of a formula.

Definition 2.2 [CTL-restriction CR(f) of a formula f:]
The CTL-restriction, CR(f) of a Min-max CTL formula, f, is the CTL formula, which is
obtained by dropping the min, max quantifiers and cost functions in f. Formally,

If f is an S-formula or B-formula, then CR(f) = f.

For a formula f = 21 A 2o where 29 is an S-formula, CR(f) = CR(z1) A 2.

For a formula f = QE¢i(g)(21Uq 22), CR(f) = E(21 U 22).

For a formula f = QE¢(g 1) (21Uq 22), CR(f) = E(21 U CR(22)).

1t may be noted that a Min-max CTL formula may have at a Min-max CTL subformula only after the U
operator.

e For a formula f = QAcr(g)(21Uqr22), CR(f) = A(21 U 22).
e For a formula f = QAC(g,h) (ZlUQ’ZQ), CR(f) = A(Zl U CR(ZQ)) O

The CTL-restriction of a Min-max CTL formula is an untimed CTL formula whose se-
mantics can be defined in the standard way [8] over a timed model by ignoring the delays.

A path, w, in a timed model J = (AP,S,R,s0,L) is an infinite sequence of states,
v, V1,.--, such that for all 4, v; € S and (v4,v41,0i+1) € R. 1 is called the starting
state of 7. Since the timed model has a finite set of states, one or more states of the timed
model will appear multiple number of times on a path. In other words, a path (as defined
here) is an infinite walk over the state transition graph. 7’ denotes the suffix of 7 starting
from the i** state, v;, of 7.

If a CTL state formula f is true in a state s we write s = f. Likewise, if a CTL path
formula f’ is true in a path m we write = |= f'.

e Vs€S,s =True and s j= False
sEpiff pe L(s)

s = -piff p & L(s)
sEei A iff s =1 and s = ¢

sEp1 Ve iff s =1 or s =

s E E(pU4) iff there exists a path m = sg, 51, 82, ... starting at s = so and some i > 0 such
that s; = ¢ and for all j < i, s; = ¢. We also say that = |= U1, that is, the path formula
U is true in the path 7.

Definition 2.3 [Closing state and g-value of a path: |

Given a CTL path formula, f' = f; U fo, and a path m = vy,v1,..., where 7 = f', the
boolean function isclosing(i, 7, f') is defined as follows. isclosing(0,, f') is true iff vy = fo.
For i > 0, isclosing(i,m, f') is true iff v; |= fo and V5,0 < j < i,v; = f1. Let 6;;41 denote the
delay between v; and v;41, that is, (v;, Vi41,0i3+1) € R. Given a Min-max CTL path formula
f = z1 Ugzy, and a path m where 7 |= CR(f), the closing state, CLS(w, f), and the g-value
GV AL(w, f) of w with respect to f are defined as follows:

o If Q is min, then let ¢ = min{j : isclosing(j, =, CR(f))}. Then:
CLS(?T, f) = VY

0 ifi=0
GVAL(r, f) = {Z;:stj,jﬂ otherwise

e If Q is maz, then we have two cases. If Vj,3i,i > j, and isclosing(i, 7, CR(f)) is true,
then CLS(w, f) is not well defined and GV AL(w, f) = co. Otherwise, let ¢ = max{j :
isclosing(j, m,CR(f))}. Then:

CLS(ﬂ-af) = VY

0 ifi =0
GVAL(m, f) = {Z;j)fsj,jﬂ otherwise

The Min-max value of a state s in a timed model J = (AP, S, R, s, L) with respect to a
Z-formula f will be denoted by EvalS(f,s). The semantics of EvalS(f,s) is as follows.

o If s = f, then EvalS(f,s) = null.

o If f = 21 A z9, where s = f and (wlog) z; is a S-formula and 25 is a Z-formula, then
EvalS(f,s) = EvalS(z2,3).
o If f=QEc(qn (z1Uqr22), or f = QAC(g,h) (z1Ug 22) then
1. If Q' is min then:
— If @ is min, then:

EvalS(f,s) = min{C(GVAL(n,f), EvalS(ze, CLS(m, f)))

among all paths m = vy, v, ... starting from vy = s}
— If @ is maz, then:

EvalS(f,s) = max{C(GVAL(n,f), EvalS(ze, CLS(m,f)))

among all paths m = vy, v, ... starting from vy = s}

2. If Q' is max, then we have a special case to consider. If in some path 7 = v, v, ...
starting from vy = s, we have V34, 3i,i > j and isclosing(i, 7, CR(f)) is true, then
CLS(w, f) is not well defined. However, GV AL(w, f) = co. In order to have a well
defined semantics, we restrict the set of admissible cost functions to those which
have the following limiting behavior:

Jim C(g,h) = lim C(g, k)

where k is an arbitrary constant. In other words, we allow only cost functions
where the value of C(g, h) is independent of h when g approaches co. Under this
restriction, we define EvalS(f,s) as follows.

— If @ is min, then:

EvalS(f,s) = min{C(GV AL(w, f), EvalS(z2,7n))

among all paths m = vy, v1, ... starting from vy = s}

where n = CLS(w, f) if CLS(w, f) is well defined, and some arbitrary constant
k otherwise.
— If @ is maz, then:

EvalS(f,s) = max{C(GVAL(r,f), EvalS(z2,7n))

among all paths m = vy, v, ... starting from vy = s}

where n = CLS(w, f) if CLS(w, f) is well defined, and some arbitrary constant
k otherwise.

o If f= QEC(g) (ZlUQIZ2), or f= QAC(g) (ZlUQIZQ) then
1. If @ is min, then

EvalS(f,s) = min{C(GVAL(r,f))

among all paths m = 1y, v, . .. starting from vy = s}

2. If Q is max, then

EvalS(f,s) = max{C(GVAL(m,f))

among all paths m = vy, 14, . .. starting from vy = s}

From the above semantics it follows that EvalS(f,s) returns the value returned by the
cost function C for some best value path m, where best is either the minimum cost or the

maximum cost. We shall refer to the set of best value paths with respect to EvalS(f,s) as
BestP(f,s).

The following example illustrates the semantics of Min-max CTL.

Example 2.1 We illustrate the syntax and semantics of Min-max CTL through some exam-
ples on the timed models shown in Fig 3, Fig 4 and Fig 5. In these figures the transition
delays are shown on the edges, and the labeling of states with the set of atomic propositions
true in them are shown besides the states.

1/©\2
300, @”
p@ P
Coer %
y P 5
D1

Figure 3: Sample timed model - 1

Sample timed model-1: Consider the timed model shown in Fig 3, and the following
Min-max CTL formulas:

f = minEy(Fmin p)
= max Ey(Fpin p)
= minAy(Fnin p)

In each of these formulas the cost function is C(g) = g and the until operator is of the
min type. In other words we are interested in finding out the delay to the earliest state
where p is true on each path.

e For evaluating f at s, we require the minimum among these delays across all paths
starting at s. Therefore, FvalS(f,s) = 2 and the optimal path is the one leading to
state a.

e For evaluating y at s, we require the maximum among these delays across all paths
starting at s. Therefore, EvalS(y,s) = 5 and the optimal path is the one leading
to state b.

e The CTL-restriction 2’ of z is 2’ = AFp. It is easy to see that s [~ z’. Thus s [~ z,
and FwvalS(z,s) is null.

p.q 4 p,ql
A (O—@—==) =
D /

§

el

q

Figure 4: Sample timed model - 2

Sample timed model-2: Consider the timed model shown in Fig 4, and the following
Min-max CTL formulas:

f = minEy(p Umax q)
y = maxEy(p Unax q)

In both these formulas the cost function is C(g) = g and the until operator is of the
maz type. In other words in each path we are interested in finding out the delay to the
latest state where ¢ is true and p is true in all previous states.

Consider the set of paths which include state b. It is easy to see that the latest state
where ¢ is true along each of these paths is not at a finite delay. In fact, since the state
b is in an infinite loop (where each state is labeled p), there is no well defined latest
state where ¢ is true. However, since for every ¢, we have a g-state at a delay greater
than €, we choose to evaluate the distance to the so called last state as oo.

e For evaluating f at s, we require the minimum among the maximum delays across
all paths starting at s. Therefore, FvalS(f,s) = 8 and the optimal path is the one
leading to state a.

e For evaluating y at s, we require the maximum among the maximum delays across
all paths starting at s. Since all paths through state b have ¢ at infinite delay (and
p on all previous states), EvalS(y,s) = oc.

. /®\

o 2 />\

& oI5 O

‘ ‘ i Q Qgr v
v v
f=min E,(true U max req U gr =
h(Y E,(req ming) EvalS(f,s) = 3
y =min Engh (true n&{n max Eg (req mLiln an) EvalS(y,s) =9

Figure 5: Sample timed model - 3

Sample timed model-3: Consider the timed model shown in Fig 5, and the following
Min-max CTL formulas:

f = minEp(Fuin max Ey(req Unin gr))
y = minEg, (Fnin max Eg(req Unin gr))

Both of these formulas have the subformula z = max Eg(req Upnin gr). At each state ¢
where ¢t |= 2z (that is, the CTL-restriction 2’ = E(req U gr), of z is true at t), we get
a non-null value for FvalS(z,t). For example, in Fig 5, EvalS(z,a) = 4, EvalS(z,b) = 3,
and EvalS(z,c) = 5.

e For evaluating f at s, note that the cost function is C(g,h) = h, that is, the
cost function is independent of the distance g to the state ¢ where z is true. On
the other hand the cost depends only on the value h evaluated at the state ¢ by
EwvalS(z,t). Thus EvalS(f,s) = 3, and the optimal path goes through state b.

e For evaluating y at s, note that the cost function is C(g,h) = g + h, that is, we
require to minimize the sum of the h-value evaluated by EvalS(z,t) and the delay
to the state ¢t. It is easy to see that EwvalS(f,s) = 9, and the optimal path goes
through state a.

The problem of evaluating the minimum and maximum delays between state sets satisfying
given properties have been studied in the context of measuring performance deviation in
systems [7]. Min-max CTL presented here, provides a more general framework for specifying
a wide variety of extremal timing queries embedded in the elegant syntactic structure of
CTL. Thereby it allows the composition of nested extremal timing queries using the basic
reachability operators. Min-max CTL provides operators to compose extremal properties
along paths, as well as across paths. This paper also provides efficient polytime algorithms
for evaluating Min-max CTL queries.

In the following section, we shall show that for certain types of cost functions, C, the
evaluation of Min-max CTL formulas is DP-hard. However, for a large class of practically
relevant cost functions, the evaluation can be done in time polynomial in the number of states
of the system and the length of the formula. This is comparable to the complexity of pure
CTL model checking.

3 Complexity of Evaluation

In this section, we analyze the complexity of evaluating Min-max CTL formulas over timed
models. We first show that the problem is DP-hard in general. Then, we show that for most
practical restrictions the problem is solvable in polynomial time.

Theorem 3.1 FEvaluating a Min-max CTL query on a state of a timed model is DP-hard in
general.

Proof: We reduce the EXACT KNAPSACK problem to this problem to show that it is DP-
hard. The EXACT KNAPSACK problem is defined as follows. We are given a set of N items,
i1,1%2,...,%N, where the item 7; has a weight, w; and a profit p;. Given a sack of capacity M,
we are required to determine whether the maximum profit possible (by filling the sack with
items without exceeding the sack capacity) is exactly P. The EXACT KNAPSACK problem is
known to be DP-complete[13], and can be easily shown to be DP-complete even when p; = w;
for each item i;.

Given an instance of EXACT KNAPSACK where each p; = wj, we create an instance of
Min-max CTL query evaluation as follows. Consider the timed model shown in Fig 6. The

10

1 O/l 1 0/17 1 0/1 P
Figure 6: Timed model equivalent to EXACT KNAPSACK

transition delays are shown on the edges, and state ¢ is labeled with the atomic proposition
p. We are required to evaluate the following formula, f, at state s:

- ') g ifg<M+2N
f= maXEC(g) (Fminp) where C(g) = { 0 otherwise

Each path from s through t represents a selection of items whose weights get added in the
path delay g. The cost function, C(g), returns a non-zero value for only those paths where the
delay g is bounded by M + 2N (that is, the total weight of the selected items is bounded by
M). Clearly EvalS(f,s) returns P*+2N, where P* is the maximum profit possible. Checking
whether P* is equal to the given value P, yields the answer to the EXACT KNAPSACK problem.
Hence ExAcT KNAPSACK reduces to Min-max CTL query evaluation. O

Though the complexity of Min-max CTL evaluation is hard in general, there are important
special cases which cover most of the practical queries of interest and can be evaluated in
polynomial time. We now define one such category.

Definition 3.1 [Monotonic Min-max CTL:]

A function f(x) is said to be monotonically increasing iff f(a) > f(b) whenever a > b. The
function is said to be monotonically decreasing iff f(a) < f(b) whenever a > b. Also a
function f(z,y) is said to be monotonically increasing (decreasing) with respect to x, iff for
each constant k, the function f(z,k) is monotonically increasing (decreasing). A Min-max
CTL formula is said to be monotonic iff its cost function C(g,h) (or C(g)) is monotonically
increasing or decreasing with respect to g, and each of it’s subformulas are monotonic. Mono-
tonic Min-maxz CTL is the language consisting of monotonic Min-max CTL formulas only.
O

Many temporal queries of practical interest can be expressed in Monotonic Min-max CTL.
For example, all the queries shown in Example 2.1 are Monotonic Min-max CTL queries. We
shall now show that Monotonic Min-max CTL can be evaluated in polytime. Throughout this
paper, we assume that the cost functions specified in the Monotonic Min-max CTL formulas
can be computed in constant time. Therefore they do not contribute significantly to the
complexity of the algorithm.

Definition 3.2 [f-path and f-cycle: |

A path, m, starting at a state s and going through a state s' is called a “f-path from s through
s'” iff the state formula f holds in all states preceding s’ in w. A f-cycle through a state t is
a f-path from t through t. O

A shortest length f-path from a state s through a state s’ is one where s’ occurs as early as
in any other f-path from s through s’. The longest length f-path from s through s’ is defined

11

similarly, where s’ occurs at least as late as any other f-path from s through s’. Obviously,
a shortest length f-path will have no f-cycles. Hence shortest length f-paths can be found
using any standard shortest path algorithms on the state transition graph in polynomial time.

If any f-path from s through s’ contains an intermediate state which is in a f-cycle, then
it is possible to have f-paths of infinite length from s through s’, and hence the length of the
longest f-path from s through s’ is co. Determining the set of states which belong to f-cycles
can be done in polynomial time. Finding whether there exists any f-path from s through s
via any of these states can also be done in polynomial time. If no such f-path exists, then
by dropping all states where f is false, we are left with finding a longest length path from s
through s’ in an acyclic graph, which is also solvable in polynomial time.

The algorithm which we describe is a labeling algorithm. A state, s, in the timed model
is labeled by a sub-formula, f, iff its CTL restriction is true in that state. Further, if the
sub-formula is a Min-max CTL formula, then the evaluation algorithm augments the label
with the value EvalS(f,s).

Algorithm Evaluate(f,s)

1. Use CTL model checking techniques to label the states of the model
with the sub-formulas of the CTL restriction of f. During this step,
we ignore the delays on the transitions of the timed model.

2. The evaluation at a state, s, of a Min-max CTL formula, f = QEc(fiUg f2),
where) and Q' are min or max quantifiers, is done as follows. The procedure
for evaluating formulas of the form f = QAc(fiUq f2) is ezactly similar.

2.1 Recursively evaluate all Min-max CTL subformulas of f at
all states of the model.

2.2 If Q' is max then define ¢ = f; else define p = f1 A = fs.

2.3 Let H denote the set of states labeled fo, which are
reachable from s along ¢-paths.

2.4 If Q' is max then:
2.4.1 Remove each state n from H such that:
(a) n does not belong to any ¢-cycle, and
(b) For each successor n' of n, n' = A(f1U f2).
2.4.2 Label a state n from H with the symbol oo if:
(a) n belongs to a ¢-cycle, and
(b) For each successor n’ of n, n' = A(f1U f2).

2.5 For each state t € H do:

2.5.1 If ¢ is labeled oo then set g = oo and
compute W(t) = C(g,h), where h = EvalS(fs,t).

2.5.2 Else Consult Table 1 to determine the required path
type from s to ¢, determine the length g of that path, and
compute W(t) = C(g,h), where h = EvalS(fa,t).

2.6 If @ is min, set EvalS(f,s) = min{W (t)|t € H}
else set EvalS(f,s) = max{W(t)|t € H}.

12

C-Type Q-Type @Q'-Type Best path type from s to ¢

Increasing min min Shortest length (fi A —f2)-path
Increasing min max Shortest length fi-path
Increasing max min Longest length (fi A = f2)-path
Increasing max max Longest length fi-path
Decreasing min min Longest length (f1 A —f2)-path
Decreasing min max Longest length fi-path
Decreasing max min Shortest length (fi; A = f2)-path
Decreasing max max Shortest length fi-path

Table 1: Best path types for f = QEc(fiUg f2)

We prove the correctness of the algorithm with respect to Monotonic Min-max CTL
formulas. We establish the correctness of evaluation for the formula f = QE¢(fiUgq f2). The
correctness of evaluation for A formulas follows from the fact that the evaluation procedure
for F formulas and A formulas are essentially the same.

Lemma 3.1 If Q' is min, then a state, t, which cannot be reached from s by a (f1 A—f2)-path
is not a closing state of any path in BestP(f,s).

Proof: If ¢ cannot be reached from s by a fi-path, then by definition (semantics of Min-
max CTL), ¢ cannot be a closing state. If ¢ can be reached from s by fi-paths, but not by
f1 A —fa-paths, then every fi-path from s through ¢ has an intermediate state where fo is
true. Since @' is min, that intermediate state is the closing state. O

Lemma 3.2 If Q' is max, then a state, t, which cannot be reached from s by a fi-path is not
a closing state of any path in BestP(f,s).

Proof: If ¢t cannot be reached from s by a fi-path, then by definition (semantics of Min-max
CTL), t cannot be a closing state. O

Lemma 3.3 If Q' is max and t is a state which does not belong to any fi-cycle, and for
each successor t' of t, we have t' = A(f1U f2), then t is not a closing state of any path in
BestP(f,s).

Proof: Since for each successor t' of t, t' | A(f1Ufs), it follows that any fi-path from s
through ¢ in BestP(f,s) will also be an fi-path from s through some state s’ where f2 holds,
and t occurs earlier than s'. Since ¢ does not belong to any fi-cycle, s’ # t. Since Q' is max,
t cannot be a closing state. O

Lemma 3.4 If Q' is max and t is a state such that there exists a fi-path from s through t,
t = fa, t belongs to a fi-cycle, and for each successor t' of t, we have t' |= A(f1U f2), then
t cannot be a closing state in any path having finite g-value, and there exists a path from s
through t having g-value as oco.

Proof: Consider a path, 7, having finite g-value. Then there exists a state s’ which is the
closing state of 7. Clearly s’ # t, since for each successor ¢’ of ¢, ' = A(f1U f2) and therefore
every instance of t' is followed by some other candidate closing state.

13

Counsider a fi-path from s through ¢ which repeatedly goes around in the fi-cycle through
t. In this path f; holds on all states and ¢ occurs infinitely often. By definition, the g-value
of such a path is co. O

Lemma 3.5 If C-type is increasing, and Q-type is min, then any p-path, P, from s through
t which is longer than the shortest length p-path, P*, from s through t does not belong to
BestP(f,s).

Proof: Since C-type is increasing, the path cost of P* is less than that of P. Since, Q-type
is min, P* is better than P and hence P cannot belong to BestP(f,s). O

Lemma 3.6 If C-type is increasing, and Q-type is max, then any p-path, P, from s through
t which is shorter than the longest length p-path, P*, from s through t does not belong to
BestP(f,s).

Proof: Since C-type is increasing, the path cost of P* is greater than that of P. Since,
Q-type is max, P* is better than P and hence P cannot belong to BestP(f,s). O

Lemma 3.7 If C-type is decreasing, and Q-type is min, then any @-path, P, from s through
t which is shorter than the longest length p-path, P*, from s through t does not belong to
BestP(f,s).

Proof: Since C-type is decreasing, the path cost of P* is less than that of P. Since, Q-type
is min, P* is better than P and hence P cannot belong to BestP(f,s). O

Lemma 3.8 If C-type is decreasing, and Q-type is max, then any p-path, P, from s through
t which is longer than the shortest length p-path, P*, from s through t does not belong to
BestP(f,s).

Proof: Since C-type is decreasing, the path cost of P* is greater than that of P. Since,
Q-type is max, P* is better than P and hence P cannot belong to BestP(f,s). O

Theorem 3.2 Algorithm FEwvaluate correctly evaluates a Monotonic Min-maz CTL formula
at a state of a timed model.

Proof: We establish the correctness of the algorithm for evaluating a Min-max CTL formula,
f=QEc(fiUg f2), at a state, s, under the induction hypothesis that the algorithm correctly
evaluates the subformulas f; and f, at all states of the model. Since evaluation for A formulas
is exactly similar, the same proof applies to A formulas as well.

The algorithm determines the set of candidate closing states, and then proceeds to deter-
mine the g-value of the p-path of appropriate type (longest or shortest) through the candidate
closing states.

By Lemma 3.1 and Lemma 3.2, we have shown that a state can be a closing state only if it
is reachable from s by a ¢-path (where ¢ is defined in Step 2.2 of the algorithm). Therefore,
in Step 2.3, we consider the set of states reachable from s by @-paths.

By Lemma, 3.3, we have shown that if Q' is max and ¢ is a state which does not belong
to any fi-cycle, and for each successor t’ of ¢, t' = A(f1U f2), then t is not a closing state of
any path in BestP(f,s). In Step 2.4.1 of the algorithm, we remove all such states from H.

By Lemma, 3.4, we have shown that if Q' is max and ¢ is a state which belongs to a fi-
cycle, and for each successor t' of t, t' = A(f1U f2), then for every path (shortest or longest)
through ¢, either the g-value of the path is oo, or there is some other closing state. Further
we have shown that there exists at least one path through such states with g-value as oo.

14

Therefore, in Step 2.4.2 of the algorithm, we label such states as oo, and in Step 2.5.1 we
treat the g-values of paths through these states as oc.

Lemma 3.5, Lemma, 3.6, Lemma 3.7 and Lemma, 3.8 establishes that only one path through
each state in the set H needs to be considered for evaluation, and the path types are as shown
in Table 1. In Step 2.5, for each state in H, the algorithm evaluates the cost W (t) of the
best path through ¢. Since these are the only candidate paths (by Lemmas 3.5-3.8), the cost
of the best path among these is the desired value of EvalS(f,s). In Step 2.6, the algorithm
assigns the cost of the best path to EvalS(f,s). O

Lemma 3.9 The complexity of finding the length of a shortest f-path or a longest f-path
from a state s to a state t in a timed model is O(|R| + |S|log|S|), where |S| is the number of
states in the model and |R| is the size of the transition relation R.

Proof: Each f-path from s to ¢ includes only states which are labeled f, and the state t. We
first remove from the transition graph those states (except ¢) which are not labeled f and the
set of transitions to and from these states. This can be done in O(|R| + |S]) time. All paths
in the reduced transition graph are f-paths.

Finding the shortest path between a pair of nodes in a graph with non-negative edge costs
requires O(|R| + |S|log|S|) time where |R| denotes the number of edges in the graph[10].

For determining the longest path length, we require to consider the cycles in the graph.
If we find a path from s to ¢ through a state j which is self-reachable (that is, j belongs to a
f-cycle), then the longest path length from s to ¢ is co. Otherwise, we use the algorithm for
acyclic graphs. This can be achieved in O(|R| + |S|) time. O

Theorem 3.3 Algorithm Evaluate requires O(|f|.|S|?.(|R| + |S|log|S]|)) time to evaluate a
Monotonic Min-mazx CTL formula f of length |f| on a timed model J = (AP, S, R, s¢, L)
Proof: Step 2.3 can be done by a single depth-first traversal in O(|R| + |S|) time. Step 2.4
requires us to determine whether states in H belong to any ¢-cycle. Since the worst case
number of states in H is |S|, this step can be completed in O(|S|.(|R| + |S|)) time. By
virtue of Lemma 3.9, the complexity of Step 2.5.2 is O(|R| + |S|log|S|). Therefore, the
total complexity of Step 2.2 to Step 2.6 is O(|S|.(|R| + |S|log|S])). This is the complexity
of evaluating the formula at one state when the Min-max values for the subformulas are
given. The complexity of evaluating the formula at every state is given by O(|S|?.(|R| +
|S|log |S]|)). By induction on the length of the formula, the complexity of Algorithm Evaluate
is O(If]-1SI*.(IR| + |S]1log |S])). O

4 Examples

This section illustrates three problems of practical interest where Min-max CTL is useful to
evaluate extremal timing properties. The first example relates to path planning, the second
relates to reasoning about the controller of a motor, and the third relates to packet routing
in a network of LANs. We present the models for each of these problems, and enumerate
several Min-max properties of interest. We have a working prototype for a Min-max CTL
evaluator, which has been used to present experimental results for larger instances of these
problems showing the runtimes and memory requirements.

15

4.1 Travel planning

We are given the air maps, rail maps and road maps of a country. Each map shows the
connections between the cities, as well as the time required on each connection. It is easy
to see that the information may be represented by a three layered graph, where the layers
correspond to the air, rail and road graphs respectively.

©P1 ©Y2
No. of Time Mem. Time Mem.

Cities (Sec) (MB) | (Sec) (MB)
100 0.46 0.10 0.29 0.09
1000 0.97 0.34 0.19 0.33
2000 220 0.69 0.56 0.66
3000 4.12 1.03 1.06 0.99
5000 8.58 1.72 2.73 1.66
7000 14.51 2.41 5.44 2.33
8000 17.98 2.76 6.86 2.66
10000 26.20 3.45 | 10.10 3.33
12000 35.73 4.14 | 15.00 3.99
15000 51.63 5.17 | 22.99 4.99
20000 79.32 6.90 | 38.59 6.66
25000 | 120.79 8.62 | 59.69 8.32
30000 | 160.16 10.35 | 84.23 9.99
40000 | 283.00 13.80 | 152.14 13.32
50000 | 421.83 17.25 | 232.67 16.65
75000 | 886.86 25.87 | 519.34 24.97
85000 | 111541 29.32 | 664.34 28.30
100000 | 1515.78 34.50 | 915.68 33.30

Table 2: Min-max Evaluator Results of Travel planner example

We can express several interesting Min-max queries for planning the mode of travel. We
illustrate a few of them:

1. What is the minimum time to travel from city s to city z, when we travel by rail or
road? We check the following query at s.

f =min Ey((rail V road) Unin 2)

2. What is the minimum total time to travel from city s to city z, when we travel as far
as possible by air, and then go by rail or road? We evaluate the following query at s.

where f is the first query.

3. Suppose the cost of air travel for time t is ca(t) and the cost of rail travel for time t is
cr(t). Then the minimum total cost to travel from city s to city z, when we travel as
far as possible by air, and then go by rail is evaluated by:

min Eq(g) 1 (air Unax [min B, gy (rail Upin 2)])

16

Note that in this case the cost function C(g,h) computes the travel cost as a function
of time.

We ran our prototype Min-max evaluator on randomly generated maps over a large number
of cities. The cities are numbered randomly. The following queries were evaluated on these
models with the city ¢; chosen randomly:

p1 = minEp (air Upin Tail A min Egin) (rail Umpin road A min Ej(road Umnin ¢;)))
w2 = minFE p)(air Unax rail A —air A min Ep(rail Uninc;)))

Table 2 shows the results of evaluating these formulas at every state of the models. The
Min-max evaluator was executed on a 550 Mhz Pentium-IIT machine with 64 MB RAM and
Linux operating system.

4.2 Motor controller

Consider the controller of a motor which can operate in three different speeds. The motor
can move from one operating speed to another by accelerating (or braking). The motor can
also shift gears in one of its operating speeds, before accelerating or braking.

Figure 7: Transition Diagram of the Motor

The state transition diagram of the motor is shown in Fig 7. The states S0, S1, §2 and
S3 are the four operating states of the motor. The motor is at rest in the state S0, and runs
at rpms of 33, 75 and 125 respectively in the states S1, S2 and S3. The states §4, S5, and
S6 are states at which the motor begins to accelerate to a higher operating speed, and the
states S7, S8 and S9 are states at which the motor begins to decelerate to a lower operating
speed. To shift gears, the motor must be brought to one of the operating speeds. Thus the
path S0,54,51,S5,S3 denotes a sequence where the motor accelerates to the operating speed
of 33 rpm (at state S1), shifts gears, and again accelerates to the operating speed of 125
rpm (at S3). The path S0,54,S3 denotes a sequence where the motor accelerates directly to
the operating speed of 125 rpm (without shifting gears). The edge delays indicate the time
required for acceleration or deceleration. The time required to shift gears is 1 unit of time
(shown beside the vertical edges).

We define the following atomic propositions on the states of the system.

p: the motor is at rest.
q: the motor is running.

17

oY+

the motor is running at a rpm of 33 or more.
the motor is running at a rpm of 75 or more.
the motor is running at a rpm of 125.
the motor is accelerating.
the motor is decelerating (braking).

In Fig 7, the states are labeled by these atomic propositions. We assume that the states
S50-59 are the observable states of the motor, and our reasoning is based on the observable

states only. We now enumerate several Min-max CTL queries on this model.

1. What is the quickest time by which the motor running at 75 rpm can be stopped? The

following query may be evaluated at node S2.

min Eg(Fin p)

. What is the quickest time by which the motor can be raised to a speed of 75 rpm or
more and then brought to a stop? The following query may be evaluated at node S0.

min By p(Fnin (5 A min Ey(Fin p)))

. What is the slowest time to raise the motor to a speed of 125 rpm (assuming that it
does not brake in between)? To ensure that it does not brake, we pose the following
Min-max CTL query at SO.

max Eg(—b Unin 1)

. What is the quickest time to raise the motor to a speed of 125 rpm if we shift gears at
the operating speed of 33 rpm? We evaluate the following query at node SO0.

min By p(Fmin ((r A =8 A =b A =a) A min Eg(Fin t)))

. In order to bring the motor to a stop from a speed of 125 rpm, what is the latest time
when a brake may have to be applied (assuming that the motor does not accelerate in
between). We evaluate the following query at state S3.

max Fg(—aUmaxb)
$1 P2 Y3 P4 s
Number of | Time Mem. Time Mem. Time Mem. Time Mem. Time Mem.

Speed Levels | (Sec.) (MB) | (Sec.) (MB) | (Sec.) (MB) | (Sec.) (MB) | (Sec.) (MB)

100 0.01 0.03 0.16 0.04 0.16 0.04 0.16 0.04 0.17 0.04
500 0.03 0.19 4.92 0.23 4.11 0.47 4.80 0.23 4.84 0.23
1000 0.09 0.38 | 19.94 0.47 | 16.54 1.50 | 20.60 0.47 | 20.85 0.47
1500 0.16 0.57 | 48.61 0.71 | 38.18 3.10 | 49.63 0.71 | 49.79 0.71
2000 0.26 0.76 | 90.35 0.95 | 74.46 5.26 | 95.99 0.95 | 91.93 0.95
2500 0.39 0.95 | 144.67 1.19 | 110.62 7.98 | 144.41 1.19 | 150.48 1.19

Table 3: Min-max Evaluator Results of the Motor example

We scaled up the model for the motor by increasing the number of speed levels. In
practice, the discrete-time model of a motor controller can have a large number of speed levels

18

depending on the accuracy with which it has to monitor the motor speed. We evaluated the
following properties on the scaled up models. In these properties, mazspeed is an atomic
proposition which labels the state having the maximum speed, and middlespeed is an atomic
proposition which labels the state having half the maximum speed.

w1 = max Ey(—b Unpin mazspeed)

w2 = minEg,p(Fnin middlespeed A min Eg(Fpin p))

w3 = max Ey(—a Unax b)

w4 = minEy(Fyin p)

w5 = minEgp(Fnin middlespeed A max Ey(Fyin mazspeed))

Table 3 shows the performance of the Min-max verifier for evaluating each of these queries
at every state of the models. The first column shows the number of speed levels. The other
columns show the runtimes and memory requirements for evaluating the above formulas on
the models. The experimentation was done on a 550 Mhz Pentium-III machine with 64 MB
RAM and Linux operating system.

4.3 Routing through a network of LANs

Fig 8 shows a network of three clusters (LANs), A, B, and C. Each cluster is represented
by three switches. The hosts belonging to a given cluster (not shown in Fig 8) are connected
to one of the switches in the cluster. For example, the hosts belonging to the cluster A are
connected to either of the three switches A1, A2, or A3. Packet delays between the switches
is also shown on the edges.

Figure 8: A Network of Clusters

The routing of packets through a network can be modeled by a non-deterministic state
transition system as follows. Consider a packet with a destination d at a host a of the
network. The routing tables of host ¢ may have one or more next hosts to which packets with
destination d may be forwarded. Table 4 shows the routing tables for host A3 and host C1
of the network? shown in Fig 8. In Table 4, DH denotes destination host and NH denotes
the next host in the route path to this destination.

It may be noted that the routing tables at a host may have a single entry for all hosts at a different cluster.

19

- ———————

Figure 9: Transition system for packet switching

20

Routes at A3 || Routes at C1
DH NH DH NH

Al Al c2 C2

Al A2 c3 C3

A2 A2 c3 C2

A2 Al A C3

C Al B B3

C A2

B Al

B A2

Table 4: Routing tables for hosts A3 and C'1

The global transition relation which models the packet switching across the entire network
is a collection of tuples (PH, DH, NH, 1), where PH denotes the present host, DH denotes
the destination host of the packet, NH denotes the next host, and T denotes the packet delay
in the link from PH to N H. The tuple indicates that a packet with destination DH arriving
at host PH may be forwarded to host NH at a delay of 7. Typically for a given destination,
d, the transition relation will be acyclic, otherwise a packet with destination d may fall into
this cycle and never reach the host d.

Fig 9 shows the transition graph of the packet switching network of Fig 8. Each node
is represented by a pair (z,y), where z is the present host/cluster and y is the destination
host/cluster. The source nodes of the transition graph are represented by (z,y) pairs (where
z,y € {4, B,C}), which indicate the originating and destination cluster of a packet. Sink
nodes are nodes of the type (y,y), (where y € {Al, A2, A3, B1, B2, B3,C1,C2,C3}) that is,
when a packet reaches its destination, it sinks into it. Dashed edges have zero delay®. A solid
edge from a node (z,d) to a node (y,d) has a delay equal to the delay on the edge (z,y) in
Fig 8.

A node (z,y) in the transition system has the label z. Further, a node (z,y) has the label
In(A) if z is a host in the cluster A of Fig 8. The node also has the label Sink(A) if x =y
and (z,z) is a sink node in the cluster A. Labels for nodes in the clusters B and C' are defined
similarly.

We list several interesting Min-max CTL queries on this system.
1. What is the minimum delay to route a packet from host B2 to host C3 ? This query

may be expressed in Min-max CTL as the following formula to be evaluated at node
(B2,C) of the transition system.

min Ey(Fpin C3)

2. What is the worst case delay that a packet from a host in cluster A with a destination

host in cluster C' may face? To answer this query we evaluate the following Min-max
CTL formula at the node (A4, C) in Fig 9.

max Eg(Fpin Sink(C))

31t is easy to model zero delay by a symbolic value e while computing longest and shortest paths in such
acyclic graphs, which can be dropped after computation.

21

3. What is the worst case time required for a broadcast from host A2 to hosts in the cluster
C 7?7 This is similar to the previous query except that we require to verify that all paths
from the node (A2,C) lead to sink nodes in the cluster C. We evaluate the following
formula at node (A2, C).

max Ag(Fpin Sink(C))

4. If we use shortest path routing within cluster C, then what is the worst case delay that
a packet from a host in cluster A with a destination host in cluster C' may face? The
following query is evaluated at node (A4, C).

max Egip(Fmin min Ey(C Upin Sink(C)))

5. What is the earliest delay by which a packet from host A3 can reach the host B1 if the
packet is routed through cluster C? The following query is evaluated at node (A3, B).

min Eg j (Fmin (C A min Eg(Fyin B1)))

We scaled up the network model to different network sizes. The network structure consists
of multiple clusters of hosts, and a backbone network which connects the clusters. The con-
nectivity within the clusters and the connectivity between clusters were randomly generated.
Table 5 shows the results. The first two columns show the number of clusters and the number
of hosts per cluster respectively. The third column shows the number of reachable states
in the transition graph for packet routing (such as the one shown in Fig 9). The Min-max
evaluator runs on this transition graph.

All states corresponding to the i** cluster are labeled with cl;. All states corresponding
to the k** host in a cluster are labeled with ndy. Since the numbering of clusters and the
numbering of hosts within a cluster are done randomly, there is no loss of generality when we
test for the reachability of states labeled cl; or nd; for any given j. In the following properties,
without loss of generality, we have chosen i = n/4, j = n/2, and k = m/3, where n is the
number of clusters and m is the number of hosts per cluster.

o1 = minEy(Funin (cl; A ndy))
w2 = max Ey(Fpin Sink(cl3))
w3 = max Egp(Fnin minE(cl; Unpin Sink(cl;)))
w4 = max Egyp(Fmin (cli Amin Ey(Fnin (clj Andy))))
Table 5 shows the runtime and memory requirements for evaluating the above formulas at

every state of the transition graph. The experimentation was carried out on a 550 Mhz
Pentium-IIT machine with 64 MB RAM and Linux operating system.

5 Extensions

It is possible to extend Min-max CTL in several directions without sacrificing the compu-
tational efficiency of Min-max CTL evaluation. In this section, we describe two interesting
extensions.

Adding on Conjunction and Disjunction: In Min-max CTL, we have not allowed the
conjunction and disjunction of Min-max CTL state formulas. It is easy to extend Min-

max CTL to allow conjunction and disjunction of Min-max CTL state formulas by

22

Network parameters 1 P2 ©3 P4

No. of | Nodes/ | Reachable | Time Mem | Time Mem | Time Mem | Time Mem
Clusters | Cluster States (Sec.) (MB) | (Sec.) (MB) | (Sec.) (MB) | (Sec.) (MB)
5 5 275 0.03 0.02 | 0.02 0.02 0.06 0.03 | 0.01 0.02
5 10 775 0.18 0.06 | 0.08 0.08 0.38 0.12 | 0.03 0.06
5 15 1525 0.85 0.12 0.19 0.17 1.19 0.28 0.08 0.12
5 20 2525 123 021 | 037 030 2.76 054 | 018 0.20
5 25 3775 242 031 | 0.69 049 5.42 093 | 035 031
5 30 5275 432 044 | 113 0.74 9.25 146 | 0.61 0.44
10 5 850 0.02 0.05 | 0.08 0.09 0.24 0.10 | 0.02 0.06
10 10 2100 0.07 0.15 | 047 0.32 1.53 035 | 012 0.17
10 15 3850 0.17 0.28 | 1.55 0.85 5.25 092 | 033 031
10 20 6100 037 045 | 3.85 1.87 | 13.53 198 | 0.73 0.50
10 25 8850 073 066 | 814 3.63 | 29.28 3.82 | 144 0.74
10 30 12100 1.25 0.91 | 15.00 6.45 58.04 6.72 2.53 1.02
15 5 1725 0.04 0.12 0.22 0.20 0.70 0.22 0.08 0.13
15 10 3975 016 029 | 1.14 0.69 3.76 0.75 | 032 0.32
15 15 6975 047 0.51 | 3.51 1.75 | 12.08 1.8 | 090 0.58
15 20 10725 098 080 | 814 3.70 | 29.80 3.90 | 1.90 0.90
15 25 15225 1.89 1.15 | 16.49 6.99 64.43 7.30 3.68 1.29
15 30 20475 3.35 156 | 29.563 12.10 | 122.53 12.55 | 6.48 1.75
20 5 2900 0.09 0.20 | 048 0.37 1.49 040 | 017 0.23
20 10 6400 036 047 | 226 1.25 7.84 1.34 | 069 0.53
20 15 10900 098 082 | 6.63 3.07 | 23.88 324 | 1.88 0.92
20 20 16400 2.05 1.25 | 1495 6.32 56.23 6.62 4.14 1.40
20 25 22900 3.88 1.76 | 28.42 11.64 | 115.71 1210 | 7.52 1.97
20 30 30400 6.75 236 | 49.94 19.75 | 209.09 20.41 | 13.06 2.64

Table 5: Min-max Evaluator Results for Network Example

appropriately defining the semantics of evaluation. For example, given two Min-max
CTL formulas, fi and fo, we can define the syntax of evaluation of f = fi A fo, with
respect to a specified cost function C” as:

EvalS(f,s) = C" (EvalS(fi1,s), EvalS(fs,s))

If f = f1V f2, we can define EvalS(f,s) in a similar way. However, in the second case,
it is possible that s |= fi but s [~ fa. Since s = f1V fa, EvalS(f, s) must return a value
even though EvalS(fs,s) returns null. We believe that this difficulty can be overcome
by defining appropriate semantics for evaluation with possibly null return values.

Min-max CTL U Min-max CTL: In Min-max CTL, we have allowed only CTL formulas
for f1 in every f1U f, formula, (that is, we have allowed only f, to be Min-max CTL).
It is possible to extend Min-max CTL to allow f; to be Min-max CTL as well. In
that case, we require to appropriately define the evaluation syntax over the set of states
where fi; holds until fo holds. This may require different interpretations of the same
Min-max CTL sub-formula, f;, depending on whether the given formula involves f1U fo
or foU fi. We have not attempted to define any such semantics for simplicity. However
there can be interesting properties which can be expressed in the extended language.

23

6 Conclusion

Model checking with temporal logics such as TCTL, TLTL and RTCTL which explicitly
reason about timing properties of transition systems is known to be more complex than
reasoning about untimed temporal logics such as CTL. Specifically, CTL is attractive because
it can be checked in time polynomial in the size of the transition system. In this paper we have
shown that quantitative reasoning about timing properties can often be done in polynomial
time, specifically when we are interested in the extremal timing properties of the system. We
have shown that the proposed logic, Min-max CTL, can be used to express interesting queries
about the best case and worst case temporal behaviors of timed models. We have also shown
that for many useful cost functions, Min-max CTL can be evaluated in polynomial time.

Acknowledgments

The authors thank the reviewers for their constructive comments which helped improve the
presentation of the paper. Dr. Pallab Dasgupta acknowledges the support of the Indian Na-
tional Science Academy for partial support of this work. Dr. P.P. Chakrabarti acknowledges
the Dept. of Science & Technology, Govt. of India for partial support of this work.

References

[1] Alur, R., and Henzinger, T., Real time logics: Complexity and Expressiveness. Information and
Computation, 104, 1, 35-77, 1993.

[2] Alur, R., Courcoubetis, C., and Dill, D., Model checking in dense real-time. Information and
Computation, 104, 1, 2-34, 1993.

[3] Alur, R., and Henzinger, T.A., A really temporal logic. JACM, 41, 1, 181-204, 1994.
[4] Alur, R., Timed Automata. Manuscript: www.cis.upenn.edu/~alur/Nato97.ps.gz, 1998.

[5] Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., and Dill, D.L., Symbolic model checking
for sequential circuit verification. IEEE Trans. on Computer Aided Design, 13, 4, 401-424, 1994.

[6] Campos, S., and Clarke, E.M., Real-time symbolic model checking for discrete time models. In
Theories and experiences for real-time system development, AMAST series in computing, 1994.

[7] Campos, S.V., Clarke, E.M., Marrero, W., and Minea, M., Verus: A tool for quantitative analysis
of finite-state real-time systems. In Workshop on Languages, Compilers and Tools for Real-Time
Systems, 1995.

[8] Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. on Program. Lang. € Systems, 8, 2,
244-263, 1986.

[9] Clarke, E.M., and Kurshan, R.P., Computer aided verification. IEEE Spectrum, 33, 6, 61-67,
1996.

[10] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to Algorithms. The MIT Press,
Cambridge and McGraw-Hill, 1990.

[11] Emerson, E.A., Mok, A.K., Sistla, A.P. and Srinivasan, J., Quantitative temporal reasoning, In
First Annual Workshop on Computer-Aided Verification, France, 1989.

[12] Kropf, T., and Ruf, J., Using MTBDDs for discrete timed symbolic model checking. In Proc. of
EDETC, 182-187, 1997.

[13] Papadimitriou, C.H., Computational Complezity, Addison-Wesley, 1994.

24

