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M. H. SToNE has developed systematically the ideal-theory of the distributive
lattice. Macneille in his fundamental work on partially ordered sets has
casually suggested a definition of an “ideal ’ in a partially ordered set. This
paper has for its object the formulation of three concepts, namely semi-
complete ideal (which corresponds to Macneille’s suggestion), complete ideal,
and comprincipal ideal, necessary for the ideal-theory of an ordered set. It
is the last concept of comprincipal ideal which leads to the full clarification

of the idea of ‘ cuts” which is used in Macneille’s paper without an explicit
recognition of its bearings.

1. An abstract set P of any sort of elements is a “partially ordered set’,
if it is the field of a binary, reflexive, transitive relation ¢ < *, with the pro-
perty, a < b and b << @ imply @ = b. An element a of P such that a < x
for every x in P, is called O (zero) if it exists. Similarly an element b such
that x < b for every xin P is called 1 (one) if it exists. 0 and 1 are necessarily
unique if they exist. The converse relation of ¢ <’ is written ¢ > °.

The sum (or lattice-sum) s and the product (or lattice-product) p of

any subset = of P are defined to be elements of P satisfying the following
conditions :

(1) x < s for every x in =, and for all z, x < z for every x in = implies
s <z,

- @) p < xforevery xin =, and for all z, z < x for every x in = implies
< p.

The elements s, p maiy not exist, but if they exist they are necessarily

unique. The sum s = 2Zx and the product p = IIx are said to be distributive,
X emw Xemw

if for every element a of P, the equalities

a-Xx =2ax
X e Xemw

a +II'x =11 (a + x}

X e7r Xem

hold whenever either side exists.
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The ordered set P is said to be a lattice if all finite sums and prod L?Cts
exist, and a distributive lattice if the finite sums and products are distributive.
It is said to be a complete lartice if all sums and products exist, and a cori-
pletely distributive complete lattice, if all the sums and products are distribu-
tive. A complete lattice necessarily cqntains the units O, 1.

THEOREM 1.—Jf the ordered set P contains 1 and if every product ¢xisls
in P, then every sum also exists and P is a complete lattice.

For if = is any subset of P, then the set IT of elements > every x in 7 is
not null since it contains 1. The product of the elements of IT exists in virtue
of our hypothesis, and is easily seen to be the sum, as defined, of the
elements of =. '

Cor. Dually if P contains 0, and every sum exists in P, then P 1s a
complete lattice.

1I. C-ideals and S-ideals of the ordered set P.
A subset L of P, which has the property:
aisin L and x < ¢ imply xis in L,

is called a complete ideal or C-ideal of P if it contains every existing sum of
its elements, and a semi-complete ideal or S-ideal of P, if it contains every
existing distributive sum of its elements.

It is clear from the definition that every C-ideal is an S-ideal. These
definitions refer to the ordering relation <, and may be called definitions of
lower C- and S-ideals, or in the terminology of M. H. Stone, of S,- and C,,-
ideals. Dual definitions may be given of upper C- and S-ideals, or of S,- and
Cq-1deals ; namely—

A subset L of P, with the property that “a is in L and x > a’ implics
“x is in L’ is called an upper C-ideal or Cy-ideal if it contains every existing
product of its elements, and an upper S-ideal or S,-ideal if it contains every
existing distributive product of its elements.

We shall adopt the convention that the terms C-ideal and S-ideal used
without any qualification refer to lower or p-ideals, and that where upper or
a-ideals are meant there shall be a specific mention to that effect.

A special class of C-ideals are the principal ideals which are defined by

any element g of the ordered set. The principal ideal P (a) is defined to be
" the set of elements x < a. This is evidently a lower C-ideal or C,-ideal,
conformably with our convention. Similarly the upper principal ideal P, (a)
defined by a is the set of elements x > g. This is an upper C-ideal or Cy-ideal.
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Remarks on the above definitions :

The conception of complete ideal appears to be new, and is precisely
the conception necessary for the elucidation of Macneille’s Theory of ‘ cuts’
in the next paragraph.

The conception of Semi-complete ideal is advanced in Macneille’s paper
where it is called simply, © ideal . T have aveided this name for the obvious
reason that it will cause confusion when we come to the distributive lattice.
It is of course possible to define © ideal ’ in an ordered set on the analogy
of the distributive lattice, namely—

A subset L of the ordered set P is a (lower) ideal if, ‘aisinL and x < a’
implies ‘x is in L’ and if L contains every existing finite sum of its elements.
But this concept is not very significant for the theory of the ordered set, and -
I shall avoid it, at any rate in this paper.

IIX. Properties of C-ideals and S-ideals.

It is clear that the S-ideals of the ordered set P form a partially ordered
set S, under the ordering relation of set-inclusion. Since any C-ideal is an
S-ideal, the C-ideals form a subset C, of the ordered set S,. Since the whole
set P is an S-ideal (and C-ideal) which contains every other S-ideal, it
follows that S, has a unit 1 which is also an element of C,. We shall
assume that P has a zero ; then since O by itself constitutes a C-ideal, it
follows that S, as well as C, has a zero—namely the C-ideal constituted

by the element 6. We next shew that S,, C, are not only ordered sets, but
complete lattices. :

The intersection or set-product of any number of S-ideals is not null,
since O is an element of every S-ideal, and is obviously an S-ideal. Thus
the set-product of any family of S-ideals satisfies the definition of the lattice-
product of the family. Thus S, i1s an ordered set with 0, 1, in which every
product exists and is therefore by theorem I a complete lattice.

Similar reasoning shews that the intersection of any family of C-ideals
is not null, and is a C-ideal. Therefore in C, all products exist; since C,
contains O, 1, it follows by theorem I that C, is also a complete lattice.
Further since the lattice-product both in C, and in S, is identical with the
set product, it follows that the lattice-product in C, is the same as that in
S, ; in other words, C, is a multiplicative sub-system of S,. But the lattice-
sums in C, and in S, are not the same. The lattice addition in S, and C,
must be elucidated by the concept of the S-ideal or C-ideal generated by a
set of elements of P.
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If 7 is any subset of P, the S-ideal generated by = is defined as the set of
all elements x such that x < o for some distributive sum o of elements chosen
from=. For, it is easy to see that this set is an S-ideal. ~ Further it is clear
that any S-ideal which contains = must contain this set. This justifies the
definition.  Similarly the C-ideal generated by = is the set of all elements
x of P, such that x < o for some sum o of elements chosen from ». It is
clear that the C-ideal generated by = contains the S-ideal generated by the
same set .

We may now identify the lattice-sum in S, of any family (S,, S,,...) of
S-ideals, as the S-ideal generated by the set-sum of (S,, S,,...); for, this S-ideal
contains S;, S,...and is contained in any S-ideal containing them. If (S,, S.,...)
are all C-ideals, then their lattice-sum in the lattice C,, is the C-ideal generated
by the set-sum of (S, S,,...). Since the C-ideal generated by a set = is in
general different from the S-ideal generated by the same set, it follows that
the lattice-sum in C,, of a set of elements in C, is not the same as their lattice-
sum in S,, while their lattice-product in C, is the same as in S,.

We now proceed to study the relations between principal ideals and
complete or C-ideals. It is obvious in the first place that any principal ideal
is complete; for the lattice-sum of any set of elements < ¢ must, if it exists,
be < a. Further it has been shewn that the product of any family of
complete ideals is complete ; therefore the intersection of any family of
principal ideals is complete. The converse, viz., that any complete ideal
is the intersection of some family of principal ideals, is not in general true.
We have therefore to introduce the concept of comprincipal ideal or T-ideal
to denote the inter-section of an family of principal ideals. It isclear that
the C-ideals form a sub-set C, of the complete lattice C,. Furtherit is a
consequence of our definition that the intersection of any family of com-
principal ideals is comprincipal; hence €, is closed for unrestricted multi-
plication. Further P (which has been assumed to possess the unit 1), as a
principal ideal is comprincipal and therefore belongs to and is the unit of C,, .
Hence by Theorem I C, is a complete lattice, though it is not a sublattice
of C, (but only a multiplicative sub-system) since addition in C,, differs from
thatin C,. The fundamental property of the C-ideal may be stated as :

THEOREM 1I.—A complete or semi-complete ideal L is comprincipal if,
and only if, L is the intersection of all principal ideals containing it.

The first part follows from the definition. To prove the second part
we have only to observe that if L is comprincipal, and therefore the inter-
section of a family (F) of principal ideals, and if L’ is the intersection of all
principal ideals containing L, then L’ < L, and L’ > L.
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III. Macneille’s Theory of Cuts.

According to Macneille, a cut of an ordered set P with 0, 1, is a pair of
subsets (A, B) of P, satisfying the following conditions :

(1) every element of A < every element of B,
(2) x < every element of B implies x is in A.
(3) y > every element of A implies y is in B.

It follows from these conditions that A is the intersection of principal ideals
determined by the elements of B, and therefore comprincipal. Similarly
B is the intersection of the principal upper ideals determined by the elements
of A, and therefore a comprincipal upper ideal. Thus the two elements of
any cut are comprincipal ideals standing in a certain relation to each other
which we shall call ¢ cut-complementarity’.

If = 15 any subset of P, we define the ¢ upper cut-complement * of = to be
the set of all elements > every element of #. Similarly ihe lower cut-comple-
ment of = is the set of all elements << every element of 7. It follows that the
lower and upper cut-complements of = are lower and upper comprincipal
ideals, since they are defined as intersections of principal ideals. The key-
theorem which is mnecessary to elucidate the theory of cuts, may be
stated thus:

THEOREM 1Il.—Let 7 be any subset of P, m, the upper cut-complement of
7, and my the lower cut complement of w,. Then ==, if and only if = is a
comprincipal ideal. -

For it 1s clear that m, is a comprincipal ideal containing =. Further, m,
as the lower cut-complement of =, is the intersection of all principal ideals
determined by elements of =,. But these latter principal ideals are precisely
the principal ideals containing =. Thus =, as the intersection of all principal
ideals containing = is the comprincipal envelope of . 1t is clear that a set =
can be identical with its comprincipal envelope if and only if it is itself a
comprincipal ideal.

It is obvious that the theorem dual to Theorem III holds, by inter-
changing ¢ upper * and * lower * ideals. -

Trporem IV.—If {C} is any family of comprincipal ideals, whose upper
cut-complements are {C’}, then (1) the upper cut-complement of the product
IIC; is the comprincipal envelope of {C'}, {in other words, the lattice-sum.
2C'; in the complete lattice C';} and (2) the upper cut-complement of the

comprincipal envelope of {C} (i.e., the lattice-sum XC; in the complete
lattice C,) is the product IIC';.

b
}
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For it follows from Theorem III that the upper cut-complement
of anyv set K 1s the same as the upper cut-complement of the comprincipal
envelope of K. Therefore, the upper cut-complement of the comprincipal
envelope of {C,} is the same as the cut-complement of the set-sum of the C;’s
which is clearly the product ITC,’s. This proves the second part of the
theorem. We shew in the same manner that the lower cut-complement of

the comprincipal envelope of {C’;} is the product I1C;. The first part of
the theorem follows from this, by using Theorem III.

The result of these two theorems is (1) the correspondence in structure
between the cuts of the ordered set P, and the comprincipal (lower or upper)
ideals which are elements of the cuts and (2) the dual isomorphism in respect
of all sums and products effected by cut-complementation between the two
complete lattices {C,, Cqo}. Hence the canonical extension of the partially
ordered set P to a complete lattice which Macneille reaches by the theory of
cuts is abstractly identical with the complete lattice {C,} (or dually the same
as {C,}.

The mutual relations between semicomplete, complete and comprincipal
ideals in a distributive lattice is a problem which awaits research.
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