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Introduction

1. The work the results of which are embodied in this paper was carried

out during the period from August, 1927, to October, 1928, when the paper

was sent for publication in these Transactions. In October, 1927, I con-

tributed a note On the inversion of multiplicative arithmetic functions to the

Journal of the Indian Mathematical Society, pointing out the fact (which I

then believed to be new) that every multiplicative function of a single argu-

ment possesses an inverse, which is also a multiplicative function. In this

note, certain of the ideas of the earlier part of this paper are presented in an

undeveloped form ; in particular, there occur the term "linear function" and

the notion of "rational integral function." This note called forth, a year

later, a paper entitled An outline of a theory of arithmetic functions, by E. T.

Bell (Journal of the Indian Mathematical Society, October, 1928), wherein

he pointed out that he had established the existence of the inverse function,

for a wider class of functions than the multiplicative, and gave a general

survey, with full references, of his own work on numerical functions. Such of

the literature indicated by this extremely useful paper of Dr. Bell as was then

available to me, showed that the particular types of problems, for which I

was interested in finding a solution, had not been considered previously.

When, two or three months after the paper had left my hands, his memoir

An arithmetical theory of certain numerical functions (University of Washing-

ton Publications in Mathematical and Physical Sciences, vol. 1, No. 1, 1915)

became available for reference, it became apparent that some of his ideas

were in close relation with the part of this paper (namely, the first three sec-

tions) which deals specifically with functions of a single argument. (A precise

account of the relation is given in §4 of this Introduction.)

Some of my main results were communicated early in 1928 to the Inter-

national Congress of Mathematics, Bologna, but the abstract published in

the Acts of the Congress is imperfect, and does not cover the whole ground

of this paper.

* Presented to the Society, April 3, 1931; received by the editors in November, 1928, and

revised, with new introduction, in December, 1930.
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In revising the paper, some explanatory passages and further references

have been inserted, but little new matter has been added to the text.

2. The arithmetical functions/(A7) which have the property thatfiMN)

=fiM)fiN) when M, N are mutually prime, are well known, and are of para-

mount importance in arithmetic; the functions of r arguments which possess

the corresponding property

fiMxNx, M2N2, ■■■ , MrNr) = /(Mi, M2, ■ - • , Mr)fiNu N2, ■ ■ ■ , Nr),

when the two products MxM2 ■ ■ ■ MT, NxN2 ■ ■ ■ Nr are relatively prime, are

less widely known.* The functions with this property have received several

names, and are here called "multiplicative."f Though some of the processes

and results of this paper could be stated for a wider class of arithmetic func-

tions, it has been thought desirable to confine it strictly to the functions with

this property, so that "function" used here without any qualification, means

always "multiplicative arithmetic function."

Though multiplicative functions of a single argument are widely known

and used, they have not been studied, as such, by any writer before Bell;

this indeed may be inferred from the fact that there is no recognized name for

the fundamental process relating to them, here called "composition." Bell

has termed this process "ideal multiplication," referring, for distinction,

to the ordinary product of two functions, as their "algebraic" or "absolute"

product.% The process of convolution of arguments, which is the logical basis

of composition, does not appear to be known at all, though I have seen it

used in a solitary instance, for a function of two arguments by Ramanujan.§

In Section I fundamental concepts are defined, and certain elementary

functions are introduced; the method of generating series is explained, and

the independence of the elements of a multiplicative function is affirmed.

Section II studies the five fundamental processes of the calculus, multi-

plication, convolution, composition, inversion and compounding, the last

of these being new.||   Composition is really a particular case, though a most

* I am not aware of any writer other than Bell who has treated these functions: see E. T. Bell,

A ray of numerical functions of r arguments, Bulletin of the American Mathematical Society, vol. 32

(1926), p. 341.
f Bell uses "factorable," and refers (Journal of the Indian Mathematical Society, October, 1928)

to the German and French equivalents "zerlegbar" and "régulière," which I have not seen. I have

adopted "multiplicative" from Pólya and Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. II,

p. 126, where it is used in this sense.

X An arithmetical theory of numerical functions (loc. cit.) and An outline etc. (loc. cit.).

§ Collected Papers of Srinivasa Ramanujan, Cambridge, 1927, p. 180.

|| Bell was led, in 1915, in a purely symbolic manner, to the compounding operation, by working

with "generators," without being aware of its arithmetical significance. He called it "ideal addition."

The names "ideal multiplication" and "ideal addition" appear to have been chosen under the mis-

taken impression that the latter distributes the former; see Introduction (4).
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important one, of convolution, which is logically prior to it; this is not how-

ever usually recognized, owing to the fact that in order to explain composition

in terms of convolution (as is done here), one must work from the start with

functions of several arguments. The theory of inversion in its widest form is

due to Bell*

Section III studies rational functions of a single argument, proves the

result that multiplication and compounding are rational processes, and gives

various applications.

Sections IV and V, though both of independent interest as treating of

important special types of multiplicative functions of several arguments, are

intended to be preparatory to Section VI, which investigates a general form

of identical relation, which is satisfied by every multiplicative function. The

special functions are also determined, for which this relation reduces to a

"Busche-Ramanujan identity," namely, an identity which, for functions/of

a single argument, is of the form

f(MN)= Z/(y)/(y)iW,

summed for all common divisors ô of M, N. The function <ra{N), representing

the sum of the ath powers of the divisors of N, is the known instance of a

function admitting an identity of this type. On the other hand, the (/»-function

of Euler also satisfies an identity of the same form, namely

<t>(MN) =   2>(—W—)

summed for common divisors ô of M, N, provided the values of M, N, are so

restricted as not to contain any common prime factor to the same power.f

All functions of a single argument which admit a "restricted Busche-Rama-

nujan identity" of this kind are also determined.

The seventh and last section finds the general form of a multiplicative

function, which can constitute the general element of a determinant capable

of evaluation by the same method as Smith's determinant. Two new forms

of such determinants are added here to those already known, namely, the

determinants whose general element am„ is equal to (1) von Sterneck's func-

* On a certain inversion in the theory of numbers, Tôhoku Mathematical Journal, vol. 17 (1920),

p. 221; Extension of Dirichlel multiplication and Dedekind inversion, Bulletin of the American Mathe-

matical Society, vol. 28 (1922), p. 111.

t This property of the ^-function was discovered by Mr. S. Sivasankaranarayana Pillai, while a

research scholar of the Madras University; it suggested to the author the concept of "restricted

identity."
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tion/(w, n), (2) any "integral quadratic function" of the product mn, e.g.,

the sum of the divisors of mn or the number of representations of mn as a

sum of two squares.

3. It may perhaps help the reader to follow the paper with greater under-

standing, if I explain the exact manner in which it arose. The paper is mainly

an attempt to understand the well known identity

(A) oaimn) = X>a ( — J «r» Í — ) «"/*(*)

summed for common divisors b of m, n, and to answer the converse problem sug-

gested by it, of finding the most general function admitting an identity of this

form.

It is also, to a lesser extent, a study of two other particular results:

-   ca(n)chin)      Us)ï(s - a)Ç(s - b)Us - a - b) .
(B) 2^ -=-   (Ramanujan).

n-i »* f (2î - a — b)

(C) The determinant |ar,|(r, 5 = 1, 2, • ■ • , N), where ar» is the least

common multiple of r and s, has the value IX'-i#Ü')II(/)> where p is Euler's

function and H(/) is the product of the negatives of the prime factors of /

(Cesàro).

At a fairly early stage in the work, I succeeded in proving that the most

general multiplicative function f(N) admitting an identity of the form (A)

must be an "integral quadratic function." Thus, it is not possible to answer

the converse question in (A), without the concepts of "linear" and "rational

integral" functions. At the same time I had grasped the fact that the identity

(A) could not be properly understood, unless aaiMN) was treated explicitly

as a multiplicative function of the two arguments M, N, and its right side,

as the composite of two functions, each of two arguments; from this point

of view E(5) = ô"ju(S) can only be described as "the function of one argument

equivalent to a 'principal' function of two arguments." The more difficult

question of the form of the corresponding identity for the general function

/(A/) was solved much later, giving the concepts "cardinal function," and

"conjugate function," so that it became possible to describe the specialization

which occurred when / became integral-quadratic, as the specialization of a

cardinal function into a principal function. Also, I had previously been led

to the compounding process, in working at problems involving the l.c.m. and

g.c.d. of divisors of a number, but had felt doubtful whether it should be

taken seriously; the occurrence of the "conjugate function" in this context con-

vinced me that the compounding process should be given as fundamental a place

as composition. In the last stage the whole theory was generalized and stated
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for functions of r arguments, thereby necessitating the concepts "cardinal

and principal functions of a matrix-set of arguments." Thus in all (A) has

been responsible for (1) acceptance and systematic treatment of multiplica-

tive functions of more than one argument; (2) the concept of rational func-

tion; (3) the theory of cardinal and principal functions; (4) the systematic

study of the compounding operation. The secondary line of thought indicated

by the restricted Busche-Ramanujan identity joins on with (A); it had its

genesis in the attempt to understand the property of the ¡p-iunction (already

mentioned), which Mr. S. S. Pillai communicated to me in answer to the

problem which I proposed to him for solution, namely, either to explain in a

satisfactory manner why Euler's function does not satisfy an identity of the

type (A), or to find some altered form of the identity which it does satisfy.

After the concept "rational function" had been fully formed, the result

(B) was recognized as giving "the expression in rational form, of the product

of the two integral quadratic functions <r0 and a&." This suggested the result

that the product of two rational functions is rational and raised the question

of expressing it in rational form. In regard to this question, it was easily

proved that the "integral component" of the product-function was capable

of immediate derivation from the integral components of the factors; but no

result, more general than the theorem of III §4, was obtained in spite of pro-

longed effort, for the specification of the inverse component. The immediate

extension of (B) to the product of two general integral quadratic functions

was proved both from the general theory, and by arithmetical methods

utilizing the compounding operation (Example 9 and III §6 (b)). The theory

of simplex functions (II §5(d)) has also been suggested by (B).

The result (C) has necessitated the close study of functions of the g.c.d.

and l.c.m., the former joining on with the theory of principal functions, while

the latter gives rise to the new concept of "semiprincipal function." In

Smith's original statement of his determinant-theorem, any multiplicative

function of the g.c.d. of m, n can serve as the general element amn of his de-

terminant,* whereas in Cesàro's extension,! it is only the linear function of

the l.c.m. of m, n which can so serve. This difference in character between

the l.c.m. and the g.c.d. is explained by the fact that the "semiprincipal"

function assumes a special form suitable for the production of a "Smith

function," only when its equivalent function is an "enumerative totient" (cf.

Example 2, VII).

A. The relation between the first three sections and Bell's memoir .4«

arithmetical theory of certain numerical functions.  This memoir studies com-

* Dickson, History of the Theory of Numbers, vol. 1, pp. 122, 123.

t Dickson, ibid., p. 128.
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position under the name "ideal multiplication." Its main object appears to

be the selection of a suitable subclass of multiplicative functions/(A/), ad-

mitting a theorem of unique (compositional) factorization into primes, and

the associated arithmetical theory, and the illustration therefrom of general

principles relating to arithmetical structure. The "generator" of a multipli-

cative function f{N) is a function f{x, z) of two arguments, such that, for

every prime p,

f(P, 2)  = f(j>)* + fW +■■•  -

The "generating function" F{x, z) of f{N) is defined by

F(x, z) = 1 + f(x, z).

The functions/^), whose generating functions F{x, z) are finite polynomials

in both x and z, are called "primitive" functions, and also "positive" functions;

if in addition F{x, z) is an irreducible polynomial in x, z, f{N) is called a

"prime primitive." The inverse of a positive function is called a "negative"

function, and the composite of a positive and a negative function is a "mixed

function." Thus the mixed functions are those whose generating functions

F{x, z) are rational functions of {x, z), and it is shown that they admit of a

unique factorization theorem, corresponding to the factorization of the

numerator and denominator of F{x, z) into'their irreducible polynomial fac-

tors. The mixed functions are special types of the rational functions of this

paper.* It is clear that, if there had been no insistence on the variable x in

the generating function, the theory reached would have been identical with

that of this paper; but in that case, the purpose of the memoir would not

have been fulfilled, since rational functions admit of (compositional) factor-

ization, in an unenumerably infinite number of ways (cf. I §3 and remarks on

Theorem II). The whole difference of outlook turns upon the difference in

procedure between defining f{N) by means of a single function F{x, z), "the

generating function," and defining it by means of an infinity of generating

series F{p, z), where p stands for each prime in turn. In actual application

there may not appear to be much difference between these, but theoretically

there is this profound distinction, that the latter definition affirms the indepen-

dence of the elements of the general function f, while the former denies it.

* The inversion in the nomenclature, indicative of the difference in view point, may be noted;

namely, the "negative" and the "positive" functions of Bell are, respectively, rational integral func-

tions and their inverses. From the view point of arithmetical structure, the functions/(A) whose

F(x, z) is a finite polynomial are fundamental, and are therefore called positive functions by Bell.

On the other hand, from the view point of the multiplicative property, the functions f(N) which

possess it unconditionally are the fundamental ones, and should be termed "linear integral," even

though their generating series to any base is the expansion of a fraction of the form 1/(1 — ar).
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Thus, the concept of rational function is present in the memoir, but does

not reach full clarity, as it is not freed from the admixture of elements ex-

traneous to the nature of the multiplicative function.

The memoir also defines the compounding operation, under the name

"ideal addition," in a purely symbolical manner, from the addition of genera-

tors, the author indeed appearing to believe that it does not possess any

simple arithmetical significance.* The ideal difference is also defined in the

same manner, without the concept of the conjugate function. It is stated

without proof on page 32, 5.34, and repeated on page 35, 6.26, that ideal ad-

dition distributes ideal multiplication; that this is erroneous is shown by

Theorem XIV of this paper, which proves that compounding is not distribu-

tive but only quasidistributive, in respect to composition.f

Section I.  Preliminary

1. Definition. An arithmetic function/(Mi, M2, ■ ■ ■ , Mr) is one which

is defined for all (non-zero) positive values of its arguments. The arithmetic

function fiMi, M2, ■ ■ ■ , Mr) is multiplicative, if

fiMxNx, M2N2, ■■■ , MrNr) = fiM i, M2, ■ ■ ■ , Mr)f(Nx, N2, ■ ■ ■ , Nr),

whenever the products MiM2 ■ ■ ■ MT, NiN2 ■ ■ • Nr are relatively prime.

With the convention that unity is both prime to and a factor of every num-

ber, we see that/(Mi, 1, •    -, 1) = 1 ; or

Theorem I. Every multiplicative function takes the value unity, for simul-

taneous unit values of the arguments.

2. The elements of a multiplicative function. Let the arguments

Mi, Mi, ■ ■ ■ , Mr of/(Mi, M2, • • • , Mr) be resolved into their prime factors,

so that

Mi = pTpTpT   ii = 1,2,- ■■ ,r;Pi< p2< p3< ■■ ■),

the aik being zero, or positive integers. Then it follows from the multiplicative

property, that

/(Mi, lit,---, Mr) =  ITfip?\ pT, ■■■, plXr) (X = 1, 2, - • ■ ).
X

We shall mean by the element of the multiplicative function/ to the base p\

the aggregate of values fip\h, p\h, ■ - • , p\'T), for all zero and positive integral

* "It is clear that in no quantitative sense is an ideal sum or difference a sum or difference; the

ideal sum expresses a relation between functions, which is only remotely connected with their argu-

ments"; p. 32, 5.33.

f Introduction dated November 2, 1930.
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values of tx, t2, ■ ■ ■ , tr. Thus the values of/ for arbitrary arguments can be

found by multiplication, if the elements of/ to every prime base are known.

In other words, the elements of a multiplicative function completely determine

the function.

3. The independence of the elements. The definition of the multiplica-

tive function / implies no necessary relation between its elements. In fact,

not only can the system of values which constitute an element be chosen in

an arbitrary manner, but also the oo ' elements can be chosen in entire in-

dependence of one another. It therefore appears that the general multipli-

cative function falls apart into a series of elements, which while unrelated to

one another, generate the function by multiplication.

This independence of the elements is the most characteristic property

of the multiplicative function, and our method of generating series is based

directly upon it. It introduces, however, an element of indefiniteness into the

multiplicative function, allowing it, as it were, an infinity of degrees of free-

dom. To illustrate, let/1,/2 be two function-types, both possessing a multi-

plicative property P (i.e., a property which is implied by a property of the

elements of the function only). Then each of the unenumerably infinite

number of functions /, whose elements with respect to certain prime bases

are the corresponding elements of fx, and with respect to the remaining bases,

the elements of/2, also possess the property P. Hence, when/i,/2 are solu-

tions of the problem of determining the functions with the property P, each

of the unenumerably infinite number of crosses f between fx, f2 is also a solu-

tion. Several examples of this will occur in this paper.

4. Generating series. With each element to a base p\ of the multipli-

cative function /(Mi, M2, • • • , Mr) we associate the power series

/<PX)(*1,   X2,  ■   ■   ■   ,  Xr)   =     2^f(Pl   , fa   ,  •   •  •   , fa   )Xl   Xi     ■   •   ■   Xr    .

We call this power series the generating series of / to the base p\.   From

Theorem I, it follows that the constant term in every generating series is unity.

If   the   generating   series  is   the   formal   expansion   of   a   function

f(p\)(xi, x2, ■ ■ ■ , xr) we call this latter the generating function of/to the base

TV
We shall generally use the generating series as the representative of the

corresponding element of the function. The variables Xi, x2, ■ • ■ ,xr are not

to be regarded as quantities, but purely as algebraic symbols, which are in

formal correspondence with the arguments, and exhibit the element in an

ordered shape; thus no questions of convergence of the generating series can

arise.
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5. Linear functions. The multiplicative function /(Mi, ■ • • , Mr) will be

called a linear function, if the equation

(1)     fiMiNi, M2Ni, ■■■ , MrNr) = fiM i, M2, ■ ■ ■ , MT)fiNu N2, ■ ■ ■ , Nr)

holds not merely when MiM2 • • • Mr is prime to NiN2 ■ • - Nr, but for all

values of M,-, 2V,(i = l, 2, • • • , r).
It is clear that a linear function of r arguments can be expressed as the

product of r linear functions, each of one of the arguments. Thus, from (1),

we have

fiMi, Mi,---, Mr) = fiMi, 1, • - -, 1)/(1, M2,1, • • ■, 1) ■ • .f{l, 1, • • •, 1, Mr);

and/(Mi, 1, • • -, 1) is a linear function of the argument Mi.

The generating function to the base p of a linear function/(M) is

fwix) = 1 + fiP)x + fip2)x2 + ■ ■ ■

= l+fip)x+ {/(¿)}V + • • •

1
= --,  iifip) = a.

1 — ax

Similarly the generating function to the base p of a linear function of r argu-

ments is of the form (1— axXx)"1^ — a2x2)~l ■ ■ ■ (1 — arxr)~l.

6. The elementary functions. These are of fundamental importance, and

may be divided into four groups:

(1) the £-functions,

(2) the X-functions,

(3) the /-functions,

(4) the power units irk, ek.

We shall first define these functions for a single argument.

EkiM) =k"; v = the number of different prime factors of M. For k a posi-

tive integer, EkiM) may also be defined as the number of decompositions of

M into k factors every two of which are mutually prime.

X)i(M) is defined to be the linear function, which takes the value k when

M is a prime; hence \kiM)=k'; v = total number of prime factors of M,

multiple prime factors being counted as often as their multiplicity.

The general linear function of M is obviously a cross between an infinity

of functions Xt.

IiciM) is the linear function Mh.

The power units irk, «* are defined (for positive integral values of k) as

follows :
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'OHM is divisible bv a £th power,
*k(M)

í1 i•00 - {

otherwise;

1 if M is a ¿th power,

otherwise.

The corresponding elementary functions of r arguments are defined by

Ek(Mx, Mt, ■ ■ ■ , Mr) - Ek(MxM2 ■ ■ ■ Mr);

= k

if Mi, M2, ■ ■ ■ , MT are all powers of a prime p;

\k(Mx, M2, • • • , Mr) = \k(MxM2 ■ ■ ■ Mr) = \k(Mx)\k(M2) ■ ■ ■ \k(Mr);

Ik(Mx, M2, ■ ■ ■ , Mr) = h(MxM2 ■ ■ ■ Mr) = Ik(Mx)Ik(M2) ■ ■ ■ Ik(Mr);

irk(Mx, M2, • • • , Mr) = mfc(Mi) • • • ick(Mr);

(k(Mx, ■ ■ ■ , Mr) = ek(Mx)tk(M2) ■ ■ ■ tk(Mr).

Among the F-functions, those which occur most frequently are £0, Ex, £_i,

E2. We shall write simply E for Ex. The function E0 vanishes for all values

of its arguments, excepting simultaneous unit values, for which it takes the

value 1 (Theorem I). The function E = EX takes the same value 1 for all

values of its arguments. Among the F-functions, E0 'and E are the only ones

which are linear.

Among the X-functions, the most important is X_i, which we shall write

simply as X.  It will be noticed that

7Ti = Xo = £o;  Xi = Él = lo = E.

The function Ii (which is equal to the product of its arguments) will be

written simply F

The generating series to the base p of these elementary functions are

easily obtained; they are

1 + (k - l)x
Fk{p)(x) = 1 + kx + kx2 + ■ • ■ =-;

1 — X

k
EHp)(xi, x2, ■ ■ ■ , xT) =-—- - (k - 1);

(1  -  Xi)(l  -   X2)  •  •  • (1  -  Xr)

Eo(p)(xi, x2, ■ ■ ■ , xT) = 1;

1
F(p)(Xl, x2, • • • , Xr)  =

Xi(j>)(*l,  X2,  ■   ■   ■   ,   XT)   =      II    .,
i      1   —   kXi

(1   -   XX)(1   —  Xi)  •   ■  •  (1  —   Xr)

1
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X(„)(*l,  X2,  ■ ■   ■   ,  Xr)

Ik(p)iXx, X2, ■ ■  ■  , Xr)

(k(p)ixx, X2, ■ ■  ■  , Xr)

■¡Tk(p)iXx, X2, ■ ■  ■  ,  Xr)

Section II. The processes of the calculus

The calculus of multiplicative functions consists of certain processes,

which while applicable to arithmetic functions in general, have the character-

istic property of yielding only multiplicative functions, when performed on

multiplicative functions.  These processes are the following :

(1) Multiplication (including division) of functions;

(2) Convolution of arguments;

(3) Composition of functions (including inversion) ;

(4) Compounding of functions.

We shall consider these in turn.

1. Multiplication of functions. If/(Mi, M2, • ■ • , Mr),piMx, M2, • • • , Mr)

be multiplicative functions of the same r arguments, their product

/(Mi, Mt,---, Mr)PiMx, ■■■ , Mr),

which we shall denote by (/X$)(Mi, M2, • •• , Mr), is also a multiplicative

function of Mi, M2, • • • , Mr.

If the generating series of/, p to the base p are

. ^-v m,   m, ntr

J(p)(Xl,   X2,   ■   ■   ■   ,   Xr)   =     2^am,.m,,---.mrXl    X2      •   ■   ■   Xr   ,

^-^ m,   m, mr

<t>(p)\Xx,  X2,  ■   ■   ■   ,  Xr)   =     ¿_0m¡,„,,... ¡n,rXx   X2     ■   ■   ■   Xr   ,

then the generating series of their product/X</> is given by

ifXP)(p)iXi,  X2,  ■   •   ■   ,  Xr)   =     2-ia'ni.'n,,---,mrbm1,m,,---,mrXx   X2     ■   •   •   XT    .

Also, if p does not vanish for finite values of its arguments, we can define its

reciprocal function 1/p by

1 (Mi, Mt,---, Mr) = ——-—;
4> d>(Mx,   ■   ■   ■   ,   Mr)

i 1 + Xi'

= n ,   1 k ;i 1  - pkXi

t 1  —  Xi
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then
/   I \ ^—, I m,    m, mr

I - 1      (Xl,  X2,  •  •   •   ,  Xr)   =     2-,--XX   X2     ■   ■   ■   Xr    .
\4>/(p) bm,,m,,...,mr

By taking the product of/ and the reciprocal function of <j>, we have the case

of division.

We have defined the symbol/X<A only for the case in which/ and <f> are

functions of the same r arguments. We can extend the scope of the symbol

by a device which will be generally useful. If/is a function of Mx, M2, ■ ■ ■ ,MT

while 0 is a function of Mx, M2, ■ ■ ■ , Mi only {i <r), we regard </> as a function

of Mi, M2, • ■ • , MT which vanishes unless Mi+x = Mi+2 = ■ ■ ■ =Mr = 1, and

is then equal to <b{Mx, M2, • • • , M/) ; that is, we consider <¡>{Mi, M2, ■ ■ ■ , M/)

to be the function <j>{Mi, M2, ■ ■ ■ , M/)Eo{Mi+x, • ■ ■ , Mr). The justification

for considering these to be identical is that the generating series are the same

for the two functions (since the generating series of F0 to any base is simply 1).

With this convention, then, fX4> is seen to be a function of Mi, M2, ■ ■ ■ , Mr,

which vanishes unless Mi+i = Mi+2= ■ ■ ■ =MT-1, that is, for all practical

purposes, a function of the common arguments only, of / and <£. In following

this convention, it should not be forgotten that we are making a distinction

between the functional multiplication in fX<t>, and the multiplication of

quantities; thus, if f{M), <j>{N) are functions of different arguments,

(/X<^>) {M, N) should be the same as E0{M, N) according to our interpretation,

but/(M) X<t>{N) is not Ea{M, N), the multiplication in the former case being

functional, and in the latter, quantitative. The distinction between the two

senses of multiplication will be generally evident from the fact that the

arguments will appear explicitly in algebraic multiplication, while they will

usually be dropped in functional multiplication.

If we take for <f> the elementary function Ek{Mx, M2, • • • , Mr) (Section I),

we have
«     ^ HI I      tttj Wtf

(JX  Ek)(p)(xX,  X2,  •   •   •  ,  Xr)   =   1   +    2^kaml,m„---,mrXX   X2     •   •   •   Xr    ,

where the summation on the right is for all zero and positive integral values

of mx, m2, • •■ , mr, with the exception of simultaneous zero values. In par-

ticular,
/ X E = /,

fXEo = Eo.

Thus the functions E, E0 behave like unity and zero, with respect to func-

tional multiplication.

The linear functions have a special property with respect to multiplica-

tion, namely:
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Theorem II.  The product of linear functions is also a linear function.

For, if

K(p)ixx, x2,---, xr) =   n(l - <*i*i)~l,
i

L{p)ixi, x2,---, Xr) =    LIU - ßiXi)'1,
i

then it is clear that

iK X L)(p)(xi, x2,---, xr) =    LT(1 - OCißiXi)-1.

In particular, the multiplicative powers of L, namely LxL, LXLXL, etc.,

are all linear functions. Conversely, we may expect the existence of linear

root-functions Li} L2, ■ ■ ■ , such that

Li X Li = L; L2 X L2 X L2 =  L; • • • .

Supposing, for simplicity, that L is a linear function of a single argument, we

can take

L(p)ix) = 1 + ax + a2x2 + • • • .

Then, since Lx is to be linear, we must have

(either 1 + all2x + (a1/2)2x2 + • • • = (1 - a1'2*)"1,

Lx(p)ix) = <
lor        1 - al'2x + i- a1'2)2*2 + • • • - (1 + a1'»*)"1.

Thus each element of the root-function Lx has two determinations, and there-

fore by choosing one of the two admissible elements for each prime base

(which we are at liberty to do, from the independence of the elements of a

multiplicative function), we can construct the root-function Lx in an un-

enumerably infinite number of ways. This shows that the concept "root-

function" is an unprofitable one. We shall however see later on, that we can

construct a unique function called the "root-composite" from the elements

of the root-function.

2. Convolution of arguments. Let /(Mi, M2, • • • , Mr) be a multiplica-

tive function of r(>l) arguments. The process of convolving Mi, M2 in/

consists in forming the function

4>iM, M,, • • • , Mr) =     £   /(M„ Mi, M„ • • • , Mr).

From the multiplicative property of / it is easy to show that p is a multi-

plicative function of its r — 1 arguments.

If the generating series of / to the base p be
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^—v m,    m, mr

J(.p)\XX,   X2,  •   •   •   ,   XT)   —     ¿fl»,,»,,...,»,!!   X2     "   "   "   XT   ,

then

<¡>(p)(x,   X3,  ■   ■   ■   ,  Xr)   =     22 \        22        »■„.„•",., ) X    X33  •   •   ■   Xr'.

Thus the generating series 4><.p){x, x3, ■ ■ -, xr) is obtained by putting xx = x2 = x

in /(p) {xi, x2, ■ ■ ■ , xr).  Therefore,

Theorem III. Convolution of arguments is equivalent to identifying the cor-

responding variables in the generating series.

The process of convolution is evidently applicable to any number s of

arguments, and is equivalent to the identification of the s corresponding

variables in the generating series. Hence in convolving several arguments,

it is immaterial whether we convolve them all together, or in stages.

The functions obtained by convolving sets of arguments in all possible

ways in/(Mi, M2, ■ • ■ , Mr) may be called convolutes of/. Among these con-

volutes, there is one which is a function of a single argument only, namely,

that in which all the arguments have been convolved together. This par-

ticular convolute may be termed "the convolute off."

We shall also use the term convolute in another special sense. If ^{M) is

a multiplicative function of a single argument, we can define a multiplicative

function yp'{Mx, M2, ■ ■ ■ , Mr) oí r arguments by

rp' {M, M, • • • , M) - UM),

\¡/'{Mx, M2, ■ ■ ■ , M/) =0, if two of the arguments are unequal.

The function \f/' is termed the principal function of r arguments equivalent

to \J/{M). The convolute ipr{M) of ip'{M¡, M2, ■ ■ ■ , Mr) will be referred to as

the rth convolute of\f/{M).

Theorem IV.   The rth convolute ^r{M) of ip{M) is the function defined by

(\f/(Ml,r), if M is an rth power,
MM) - <

1.0, otherwise.

For, by the definition,

UM) =   2>'(MI; if,,---, Mr),

where yV is the principal function of r arguments equivalent to \p{M), and the

summation on the right is for all values of Mx, M2, • -.- , Mr such that

MXM2 ■ ■ ■ Mr = M. Since if/' vanishes whenever two of its arguments are

unequal, it follows that the right side vanishes when M is not an rth power,

and is equal to \p'{N, N, ■ ■ ■ , N) =\f/{N), if M = NT.  As an illustration, the
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elementary function tk is the &th convolute of E. It is obvious that the

generating series of the rth convolute of piM) is obtained by substituting xr

for x, in the corresponding generating series of p.

To avoid misunderstanding, we shall use the phrase rth convolute of p

with the second meaning of convolute, only for functions p of a single argu-

ment. The great utility of this concept will be seen from the applications

in II §5 (c).

3. Composition of functions. Let/i(Mi, M2, ■ ■ ■ ,M,),/s(2Vi, N2, ■ ■ ■ ,Nr)

be two multiplicative functions of r arguments. Then /i(Mi, M2, • • • , M,)

XfiiNx, N2, ■ ■ • , Nr) is a multiplicative function of 2r arguments. The re-

sult of convolving the r pairs of corresponding arguments (M¿, N{) in this

product is therefore a multiplicative function/ of r arguments. We call/ the

composite of fx,f2, and denote it by the functional symbol (/1/2).

From the arithmetical significance of convolution, it follows that the

composite can be defined arithmetically by

^ /Mi    M2 M
/(Mi, Mt, ■ ■ ■ , Mr) =  E/A, h, ■ ■ ■ , 8r)f2( — > —,...,—

\ Ol 02 Or

summed for all divisors 5¿ of M, (f — 1, 2, • ■ • , r).

There is a simple relation between the generating series oifx,f2 and their

composite/. If /kP)(*i, x2, ■ - • , xr),/2(p)(yi, y2, • • • , yr) are the generating

series of /i,/2 to the base p, the generating series of /¡(Mi, M2, ■ • ■ , Mr)

Xf2iNx, N2, ■ • • , Nr) to the same base is evidently fx^ixx, x2, ■ ■ ■ , xT)

Xf2(P)iyx, y2, ■ ■ ■ ,yr). Since convolution of arguments is equivalent to identi-

fication of corresponding variables in the generating series (Theorem III),

it follows that the generating series of the composite is given by

/(p)(Zl, Z2,  •   •   •   , Zr)   = /l(p)(Zl, Z2,  •   •   •   , Zr)   X /2(p)(Zl, Z2,  ■   ■   ■   , Zr).

Thus,

Theorem V. Composition of functions of r arguments is equivalent to the

multiplication of their generating series to each base, after identifying correspond-

ing variables.

Hence composition of several functions of r arguments is associative and

commutative.

The process of composition of/i,/2 implies a correspondence between their

arguments. A convenient way of expressing this fact would be to say that

/(Mi, M2, • • • , Mr) is the composite of the functions/1,/2 of the same r argu-

ments Mi, M2, • ■ ■ , Mr. With this understanding we can interpret the com-

posite of functions of different arguments in the same way as was done in the
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case of multiplication. Thus the composite of piMx) and/(Mi, M2, • •■ , MT)

is to be interpreted to mean the composite of ^(Mi)£0(M2, • • • , Mr) and

/(Mi, M2, ■ • • , Mr), which are functions of the same r arguments. In the

same way, the composite of functions /i(Mi, M2, • • • ,Mr),f2iNx,N2, ■ ■ ■ ,Nr)

without common arguments is to be interpreted as the composite of

/i(Mi, Mi,--- , Mr)EoiNx, Nt, ■ ■ ■ , Nr)

and E0(Mi, M2, • • • , Mr)/2(iVi, N2, ■ ■ ■ , Nr), and is easily seen to reduce to

the product/i(Mi, M2, ■ ■ ■ , Mr)X/2(iVi, iV2, ■ • • , Nr). Theorem V is easily

seen to hold when composition is extended in this manner.*

The composites of/(Mi, M2, ■ ■ • , Mr) with itself will be indicated by ex-

ponents. Thus//=/2;///=/3; etc. To avoid confusion, products like/X/

will not be denoted by exponents, but will be written out in full.

The composite of/(Mi, M2, • • ■ , Mr) and E(Mi, M2, • • • , Mr) is given by

if-E)iMx, Mi,--- , Mr) =   £/(0l, 52, • • • , 5r)

* The object in introducing the extended sense of composition as well as functional multiplica-

tion in addition to quantitative multiplication may be explained here. Composition in the unextended

sense has two defects; namely

(1) The symbol/i -/2 is not completely defined by/i and/2, but requires in addition a knowledge

of the correspondence between the arguments in/i,/,.

(2) Since composition has been defined only for functions of the same number of arguments,

we cannot speak of an expression like^Z^W/XAf/S, N) summed for divisors 5 of M, as a composite.

Both these defects are removed if we adopt the following conventions:

(1) Corresponding arguments in the composition fx •_/•> shall be thought of as identical, so that

composition becomes a process which is defined (in the first instance) only for two functions of the

same r arguments.

(2) If /,,/, are not functions of the same arguments, they are converted into functions F,, F2 of

the same arguments, by multiplication by Et, (as explained in the text), and/i /2 is defined to be

Fi-.Fi.
If we accept these conventions, it follows that between any two functional symbols/,,/2 there

exists a relation, which is expressed by one of the three statements "/i and /2 are functions of the

same arguments, or/i and/2 have some or no common arguments." Does this relation between

ft, ft, which, by our accepting the conventions, has become implicit in the functional symbols them-

selves, affect the product/! X/2? The answer is: /1X/2 must be interpreted as the functional product,

and this is the only possible answer if we wish Theorem VII (namely 0X(/r/2) = (0X/i) • (0X/2),

when 6 is linear) to be unconditionally true. For example 8{M)X(fi(M) -/¡(iV)) is equal to

B(M)X(f¡(M)f2(N)) (by the use of the extended definition of composition), which cannot be equal

to (B{M)Xf\(M)) ■ (d(M)Xf(N)), unless we interpret X as functional multiplication, in which case

we should have

i(M) X <JÁM)MN)) = 9(M)MM)E0(N),
6(M)XAN) =£„(M,iV),

{B(M) X/,(M))-(9(M) X/W) = [6{M)fl{M)Ea{N)\ -EeW.N) = B{M)fAM)E*{N).
Even without this example, functional multiplication and extended composition may be justified by

using generating series, as the reader may easily verify for himself.

The reader may note the elegant application of extended composition, made in the proof of

Theorem X below.
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summed for all divisors 5, of M, {i = 1, 2, • • ■ , r). We call/£ the numeri-

cal integral or simply the integral of /. The function E2 is the integral of E,

and is given by

E2(M) ■= number of divisors of M,

E2(MX, M,,--, Mr) = E2(MX)E2(M2) ■■■ E2(Mr).

The function Ek{M), where k is a positive integer, is equal, from the definition

of composition, to the number of ways of expressing If as a product of r

factors, attention being paid to the order of the factors.

The composite of /i,/2 has been defined as the result of convolving the r

pairs Mi, Ni in the product fx{Mx, M2, ■ • • , M,) Xfi{Nx, N2, ■ ■ ■ , Nr). Now,

we have seen that the result of a series of convolutions is independent of the

order in which they are performed. Hence the result of performing any con-

volution on the composite oifx,f2 is the same as that of first performing this

convolution on fx and f2, and then taking their composite. Hence

Theorem VI. Convolution is distributed by composition; or, explicitly,

ß(/i/2) = (fi/i)- (fl/2), where fx,f2 are functions of r arguments, and Ü represents

any convolution of the arguments.

In particular the rth convolute of the composite of f{M), 4>{M) is the com-

posite of their rth convolutes.

We have already observed that, given a linear function L, we can always

find a linear function L', such that L'xL'X ■ ■ ■ (to r factors) =L, and that

each element of L' has r determinations. Therefore we can find r linear func-

tions Li{i = 1, 2, • • • , r) no two of which have any elements in common, such

that

Li X Li X ■ • • (r factors) = L, i = 1, 2, • • • , r.

It is clear that the elements of F, to any base p are the r determinations of

the elements of L' to the same base. Hence, even though the functions F,

can be chosen in an unenumerably infinite number of ways, yet their con-

tinued composite LXL2L3 ■ ■ ■ Lr is the same function/ in every case; we

call/ the rth root-composite of the linear function L. An important property

of the linear function is

Theorem VI(a). The rth root-composite of a linear function is also its rth

convolute.

For, if

1
F<j>>(*) =-'

1 — ax

then
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1 1

f(p)(X)   - — al/rx^x  _ wal/r¡ej  ...(!_ „r-l^l/rj.)   "   1- axr'

w being a primitive rth root of unity. But 1/(1 —ax') is clearly the generating

series, to the base p, of the rth convolute of L ; hence the theorem.

The function £0 plays a special rôle in composition. For, since its generat-

ing series to any base is 1, we must have

f-E0=f;  Eo* = E0.

It was observed that E0 behaves like zero with respect to functional multi-

plication. Accepting the analogy, the fact that/£0=/ suggests that com-

position must be considered analogous to addition. Like addition, composi-

tion is associative and commutative, but unlike addition it does not distribute

(functional) multiplication. It has however a restricted distributive property

given by

Theorem VII. The compositional operation distributes multiplication,

whenever the multiplier is a linear function.

For, let 9{Mi, M2, ■ ■ ■ , Mr) be a linear function multiplying the com-

posite (/•</>) {Mi, M2, ■ ■ • , Mr). We have

{(9Xf)(9X<t>)](Mi,M2,- ■ ■ ,Mr)

^ w/ ,  (Mi    M2 Mr\    /Mx MA
= 22o(Si,s2, ■ ■ -,5r)/(oi,á2, •. • ,«,)«( — , —>•••, —)<M— - ■■■ > —)

\ Oi Oi Or /      \  Öl dr /

(Ml MA
= 2-fl{Mi, Mi, ■ ■ ■ , Mr)f(hi, • • • , or)4>[-, • ■ • ,-), since 9 is linear,

\ 5i 5r /

= {9X (f<t>)}(Mi,M2,--,Mr).

It is easy to see that the same result will hold even if some of the arguments

in 9 are different from those in the composite.

4. Inversion. From each generating series f<p) {xh x2, ■ ■ • , xT) of a multi-

plicative function/(Mi, M2, • • • , Mr), we can determine uniquely a second

power series f{P){xi, x2, ■ ■ ■ , xT) such that, on term-by-term multiplication,

we get

/(p)(Xi, X2, •  •  •  , Xr)  X fCp\{Xl, X2, ■  ■  ■  , Xr)   =   1

(apart from any questions of convergence which are irrelevant). The series

/¿) have all the constant term unity, and are therefore the generating series

of a determinate multiplicative function/-1, which we call the inverse off.

The relation between the functions /, f~x is clearly symmetrical, each being

the inverse of the other.
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Since every generating series of £0(Mi, M2, • • • , Mr) is 1, the composite

of / and its inverse function /_1 is E0. This property may be taken as the

definition of the inverse function. It also follows from this that in a com-

positional equation we can transpose any term from one side to the other,

provided we replace it by its inverse. Thus from

fxfi = 4>i'<t>t,
we have

<t>rlfl-fi   —  P^'Pl'Pt   =   Eo<r>2   =   02-

The only function identical with its inverse is the function E0. Since EiM)

has the generating function 1/(1 —x) to any base, the generating function of

E~liM) to any base is 1 —x; hence E~liM) is the same as Mertens' function

m(M) which is equal to zero if M has a squared factor, and to ( — 1)' if M is

the product of v different primes. The function E_1(Mi, M2, • • • , Mr) is

equal to E~liMx)E~1iM2) ■ ■ ■ E^iMT).

Theorem VIII. Inversion is permutable with convolution.

For the equationf(p)ixl} x2, ■ ■ ■ , xT) Xffpjixx, x2, ■ ■ ■ , xr) = 1 continues to

be true if we put Xx = x2 = x. Hence if ß represents any convolution or series

of convolutions of the arguments, ß(/_1) must be identical with (ß/)-1. It

also follows from this theorem, that the inverse of the rth convolute of/(M)

is the rth convolute of its inverse.

Theorem IX. Inversion is distributed by composition; that is, the inverse

of the composite of any number of functions is identical with the composite of

their inverses.

For, the generating series to base p of the inverse of the composite of/,/' is

{/<p)(*l,  X2,  -   •   -   ,  Xr)   X fíp.iXl,  Xi,  ■   ■   ■   ,  Xr)]'1,

while the generating series to the same base of the composite of their inverses

is

{/(p)(*l,  Xi, •  •  ■  ,  Xr)-1  X }<!p)iXx,  Xi,  ■   ■   ■   ,  Xr)'1} .

Since these series are the same, the theorem follows.

Corollary. It follows from this theorem that (/_1)r = (/r)_1- We may ac-

cordingly denote each of these byf~T, so that

s- = (rr = (it1,

yn. = f'.f'^ for positive or negative integers r, s;

f° = E„.
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It was already observed that the product of two functions

fi(Mi,M2,---,Mr),f2(Ni,N2,---,Nr)

without common arguments is the composite of the two functions

/,(Mi, M2, ■ ■ ■ , Mr)E0{Ni, Ni, ■ ■ ■ , Nr) and £0(Mi, M2, • • • , Mr)f2{Nx,

N2, ■ ■ ■ , Nr). Now, it is easily seen that the inverse of fx{Mx, M2, ■ ■ ■ ,

MT)Eo{Nx, - ■ ■ ,Nr) is/rKMi, M2, • • • , Mr)Eo{Nx, • • • , Nr). Hence, from

Theorem IX we have

Theorem X. The inverse of the product of functions without common argu-

ments is the product of their inverses.

An important property of the linear functions with respect to inversion

is given by

Theorem XL  If 9 is a linear, and f an arbitrary, function, the inverse of

9Xfis9Xf~\

For

(9Xf)-(9X Z"1) = 9 X (f-t1) (Theorem VII)

= 9 X £o

= £„.

Corollary. Since 9 = 9xE,the inverse of 9 is 9X £_1.

5. Some applications to functions of a single argument, (a) Examples.

The following functions of the argument N are of frequent occurrence:

(1) t{N) = number of divisors of N = E2{N) ; <r{N) = sum of the divisors of

N = {I-E) {N) ; <rk{N) = sum of the ¿thpowers of the divisorsof N = (/*• £) (A7) ;

u{N) = E~1{N).

(2) <t>{N) = Euler's function representing the number of numbers less than

and prime to N = {I-E~l){N); <t>k{N) = Jordan's function* representing the

number of sets of k numbers not greater than N, whose greatest common

divisor is prime to N, = (/* • £"') (TV) ; rk{N) =t{N") = {Ek ■ E) (TV).

(3) Ir,a{N) = Nr, if N is an 5th power, and =0, otherwise; in other

words Ir.t is the 5th convolute of Ir.

To prove the statements in (2), we note that the number of numbers not

greater than N which have the greatest common divisor ô with it, is <j>{N/5).

Hence

* See Dickson's History of the Theory of Numbers, vol. 1, p. 147. This book will be hereafter

quoted by the author's name.
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or p ■ E = I, so that p = IE~l. An exactly similar type of grouping shows that

pk = Ik-E~l, and also proves Cesàro's general result*

T.fidù = if<t>)iN),
j-i

where d,- denotes the greatest common divisor of/ and N.

To prove that Tk = EkE, we note that EkiN) is equal to the number of

divisors of Nk which do not divide S*, where 5(<A0 is any divisor of N. For,

if N = p? lp$* ■ ■ ■ p",', the divisors in question are the terms of the product

<a,-X)k+X. (a,-X)k+i o,t        (o,-l)t+l a,*

ipx + px + ■ ■ ■ + P     )iPi + ■ ■ ■ + Pi   ),

and are hence k" in number. Now to each divisor D of Nk we can make cor-

respond a unique divisor 5 of N, such that D divides 5*, but does not divide

the ¿th power of any other divisor of 8. Hence iEk-E)iN) enumerates all

the divisors of Nk, or rk = EkE.

As applications of Theorem VII, we have

Example 1. If L is a linear function, Lk = LxEk, where k is a positive or

negative integer.  For

Lk = L L L- ■■ - iLXE)iLXE) ■■•

= LXiEE- ■ ■)   (Theorem VII)    = LX Ek.

For the case of a negative integer, —k,

(L X £*)■(/. X £-*) = LX (£*•£-*) (Theorem VII)

= L X Eo = Et.
Hence

£-* = (Z,*)-1 = (Z, X E*)-1 = LX E-k (Theorem XI).

As an example,

«to- = IE-IE = (/ X £2)E2,

or, explicitly,

2>(0>(-)=  2>(«)t(—) (Liouville)t.
»/2V \ 5 / S/N \ S /

Example 2.

Z^-V^K+J— ) =   X^'ff^W^+xf-) (Liouville)i.
J/iV \ 5 / S/Y \ 0 /

* Dickson, p. 127, Note 57.

f Dickson, p. 285, 25.

X Dickson, p. 286, 30.
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For the left side

=    \la-,X   (I,+^E)]-Ia+„-E

= 7M+X -Ia-y-Iu+.-E (Theorem VII),

and the symmetry of this in X, p proves the result.

(b) Relations between the elementary functions. The following relations

between the elementary functions are fundamental:

(1) fk*k = E;

(2) £i_* = E\¡rl;

in particular,

(3) E2\ = E;

(A) E\ = e2;

(5) £2-e2 = E2;

(6) £2 X X = .Ef1.

These relations are immediately evident from the generating series and are

also capable of direct arithmetical proof. For instance the truth of (1) follows

from the fact that a number can be expressed in only one way as the product

of two factors, the first of which is an exact ¿th power, and the second is not

divisible by any ¿th power. To prove (3), we observe that E-\~1{N) enumer-

ates all the divisors of N which possess no squared factor, and is therefore

equal to E2{N). The relation (4) expresses the fact that the second convolute

e2 of £ is also its second root-composite (Theorem VI (a)) ; for, the linear

functions £, X have no common elements, and each of them yields £ on

multiplication with itself, and therefore the second root-composite of £ is

£ X. To prove (5), we note that the number of divisor-pairs 5, N/h of N

with a given greatest common divisor hx is zero if ôi2 does not divide N, and

Ei{N/ôx2) otherwise. Hence (£2-e2)(/V) is equal to the total number of

divisors of N. The relation (6) is a consequence of (3) ; for, by (3),

£2 = £X->,

therefore

£2 X X = X X (FX-1) = X- (X X X-1) (Theorem VII)

= X-E-« = E2l (Theorem IX).

Example 3. £2 £2 = £2 X£2. For (£2 X£2) (A7) is the number of divisor-

pairs of N. Let hi, h2 be two divisors of N, I their least common multiple, and

t their greatest common divisor. Group the divisor-pairs in such a way that,

for each group, l/t is a fixed divisor S of N. It is clear that, for each group, t
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is an arbitrary divisor of N/5, while Si, S2 must be of the form th, tl2, where

lx, l2 are relatively prime, and lxl2 = 5. Thus the number of divisor-pairs in the

group specified by S is t(V/5)E2(5).  Thus E2E2 = E2XE2.

As an alternative proof, the number of divisor-pairs of N, which have 5

for their greatest common divisor, and N for their least common multiple, is

EiiN/Si). Hence (E2-£)(iV) is the number of factor-pairs which have N for

their least common multiple. Hence E2-E-£= (£2-£2)(A0 is equal to the

total number of factor-pairs of N, that is, to (E2XE2)(V).

The following results bear on this and previous theorems:

(1) (t X t)-(E2 X X) = (E2 X E2)E^ = £2, or

£{*(*)^(7)^(7) = tW (Liouville)*;

(2) (X X Ti)-a„ = (X X £2)X£iM (Theorem VII)

= E2~l\EI» = XXJ„ = (X X E2)-Iß; or

T,M5)tÍo2)oJ—\ =   I>(«)r(S)(—Y (Liouville)t;

(3) T2-X = £2£X = £2, or

Y.t^MN/o) = t(N) (LiouviUe).}

Example 4. ^tÍ8x)tÍ82) summed for all pairs of numbers Si, 52 with the

least common multiple N is equal to {t(V) }3.

To prove this, let us introduce the term "block-factor of JV" to denote a

factor 5 in which each prime factor has the same exponent as in N, that is, a

factor 8 which is relatively prime to N/h. Two factors Si, S2 which have N for

their least common multiple, can be evidently put into the form

Sx = PQr,

ô2 = PRq,

where P, Q, R are block-factors such that PQR = N, and q, r are respectively

factors of Q, R, having no common block-factors with them. Hence

r(Si)r(52) = r(E)r(0r(r)r(/»)r(E)r(?)

= r(A0r(P)r(g)r(r).

Thus ]Ct(Si)t(52) is of the form tÍN)^tÍo), where each 8 occurs as many

times as N/b can be expressed as the product of relatively prime factors.

That is,5>(5iM52)=TX(r-£2)=£2X£2XE2 (Example 3).

* Dickson, p. 285, 27.

t Dickson, p. 286, 29.
î Dickson, p. 285, 27.



602 R. VAIDYANATHASWAMY [April

If we make N vary over the factors of a given number M, and sum each

side of this result, we obtain Liouville's theorem:*

{    I>(8)} =  Z{r(o)}3, or E3 X E3 = (F2 X £2 X £2)£.

(c) Applications of Theorem VI. The following results due to Liouville

and Gegenbauer serve as applications of the theorem that the rth convolute

of a composite is the composite of the rth convolutes:

(i) 2>W'Q= 5»*Q;t

(2) ZE2(D)r(£) =    22r(D2)E2Q;

(3) 22MD)r(^=22E2^}

where the summations extend over the square divisors D2 and the biquadrate

divisors e4 of N.

Writing conv/ and convr/ for the second and the rth convolutes of/, we

have

(1) conv <t>■ t = conv /• conv Fr1 ■ r

= conv I ■ e2_1 ■ E2

= conv I ■ E2,

which proves (1) ;

(2) conv E2t = conv E2 ■ e2 ■ E2

= conv £2 • conv E ■ E2

= conv (£2 •£)■£!

= conv t2 ■ £2, which proves (2) ;

(3) convX£2 = convX-e2-£2

= conv (E ■ X) • £2 = conv e2 • £2 = e4 • £2, which proves (3).

In what follows, d< denotes a divisor of N such that N/dt is a tth power, d

denotes an arbitrary divisor of N, pk.t{N) =]C¿i*, and tne summation is for

integers m, n such that N = mnp.

(A) £ff*(i»)po,2(»)  =   22po.2t(d)pktt{ — J-Î

* Dickson, p. 286, 28.

t These results are taken from Dickson, p. 28S, 27.

Î Results 4-12 are taken from Dickson, p. 298, 72, and p. 299, 73.
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For the right side is E•««•/*•««, while the left side is 7¡r£-conv( (E-«2)

= Ik-E-if tu.

(5) 5>m(»)*i*(») = Nkpv-k,tiN).
m ,n

For 7,-ej-conv, (/,4-£_1) = /„ • e( • e<_1 • convt 7iit = /,•(/* X ««) = Ik X (/,_*•«,)

=  Ik  X pv-k,t'

(6) J^cy-kim)TÍn)mk =   J^Pk,tid)p,,tiN/d).

For (7* X o-,-*) • conv, (E2) = /,/*•«,«« = P»,rPk,t-

(7) £p*.«MM«) = Pk.itiN).

For

Jfirconvi (X) = .¿Vconvi (£X) = /^convi t2 = 7* €2*.

In the following, A is put for iN/d2)112.

(8) Em2W =  !>(*).

For

e4 = conv e2 = conv (E • X) = e2 ■ conv X.

Hence e4X_1 = X_Ie2convX = EconvX.

(9) Y,Mh)p2id2) =   2>(*)-

For

X_1conv£2 = X_1conv (£X_1) = X-1 • €2 ■ conv X-1 = EconvX-1.

(10) T,rih2)p2id2) =  !>,(*).

To prove this, note that the &th convolute of E(A7) =/(iV*) is/Xe*.  Hence

conv (£2 ■ £) = conv t2 = £2 X e2.

Therefore

(E2 X e2)X_1 = conv (£2£)X_1 = conv £2e2-X_1 = £conv£2.

(11) T,ridt)ßih)=EiiN).

For £2- conv E~l = £2e2_1 = £2.

(i2) 2>w*(-) = XXvm.

For
X-!-04 = X-i-JB-1-/» = conv E-1-7*.
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(d) Zeta-series and simplex functions.  When the necessary conditions of

convergence are satisfied, we obtain by Dirichlet multiplication

A  (f-F)(N)

N' -i^ira.
JV-l

ri(N) _ j   f(N)\-i
N-       ' \ N' ]

Hence

(i) 22e»(n)/n>= {f(5)}*,

(2) 22*k(N)/N' = f(*s),

(3) 22h(N)/N> = {(s - k).

More generally, if F,< is the ith convolute of /„ we have

1
22l'AN)/N' = l;(ts-r);   X^M/tf* =

t(ts - r)

We shall refer to the functions £.,<, I~tl (where r is unrestricted, and t is a

positive integer) as the elementary simplex functions. A composite of a func-

tions of the type Ir,t and ß functions of the type I// will be called a simplex

function of structure {a, ß).

Theorem. The composite of simplex functions, and the inverse of a sim-

plex function, are simplex. Also, every convolute of a simplex function f is a

simplex function with the same structure as f.

Iff is a simplex function, 22f(N)/N', supposed convergent, can be evaluated

as a product of quantities of the form Ç{ts + k)±l, where k is arbitrary and t is a

positive integer; and conversely.

The first part follows from the definition. To prove the second part of

the theorem, we observe that the Mh convolute of a simplex function must

be the composite of the ¿th convolutes of elementary simplex functions

(Theorem VI). Since the pth convolute of the qth convolute of / is its pqth

convolute, we have

conv*/r,( = Ir.kt', conv*/r,, = /r,*».

Thus any convolute of a simplex function f{N) is a composite of elementary

simplex functions of the same type as the components of/, and so is a simplex

function of the same structure as /.

The generating series of a simplex function / to any base must clearly be

of the form
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(1 - />r'xs')(l - pr'x") ■ ■ ■

f(p)(x) = -•
(1 - p*x"){l - p»x**) ■ ■ ■

Since Io = E, it follows that, among the elementary functions, the I-

functions, as well as the functions £ and £± *, are simplex. The power units

ek, being convolutes of £, are simplex, while the power units irk are simplex

because irk ek = E. Also, since X = e2-£~1, it follows that X is simplex; and

lastly, £2 is simplex, since £2 = £ ■ X-1. It is easy to verify that no others from

among the elementary functions are simplex.

The values of the zeta-series determined by irk, £2, X are

(i) Z'kW/N- = fW/r(»»),

(2) TMN)/N* = U2s)/Us),

(3) 22e2(N)/N' = (f(5))2/f(25).

The product of simplex functions is not in general simplex. Ramanujan's

result that

o-a(N)<rb(N) = f (s)ffr - a)t(s - b)(js - a - b) +

N' f (25 - a - b)

shows that the product of the simplex functions aa, ab is also simplex. It does

not appear to be easy to obtain any general theorem to cover such exceptional

cases.  The following results in this direction seem to be worthy of notice :

(1) The product of two elementary simplex functions is either an ele-

mentary simplex function, or a simplex function of structure (1, 1).

For

(a) Ir.tXlr',f=Ip,T, where r is the least common multiple of t, t', and

p = {rr/t+r'r/t').

(b) Ir,tXl^} = Ikr+r',f oi £0, according as t' = kt, or is not a multiple of t.

(c) Ir/Xl¿} = I2(r+r>),u-lr+\',t or £0 according as t is or is not equal to /'.

(2) More generally, the product of two simplex functions of structure

(1, 1) is also a simplex function of the same structure.

It follows from this, that/XX is a simplex function when/ is simplex. For,

X being linear, multiplication by it can be distributed to the simplex com-

ponents of / (Theorem VII) ; and since X is a simplex function of structure

(1, 1), its product with an elementary simplex function must be simplex, by

the present result.

(3) If/is any simplex function of structure (2,0) or (l,l),/Xe2 is simplex,

and therefore/(A72) is simplex.

* Collected Papers, p. 135, =Messenger of Mathematics, 1916, p. 83.
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For example o-„(iV2) and pkiN2) are simplex functions of N.

(e) Crosses between elementary functions. Some of the most important

functions of arithmetic are crosses between elementary functions. We men-

tion a few such below.

(1) The function TiN) — ( — l)^-1 is easily verified to be a multiplicative

function of N. For the base 2 it has the same element as £_i, and for the

remaining bases it has the same elements as E. We may conveniently repre-

sent it by the notation

(2   £_i )

rW = {   *    £     \{N)-

Hence, if p is Euler's function,

(  2    p-E-i )

(*-W) = {*   t-E     }
iN).

Now p E = I and 0-E_i = 7£-1£_i = 7X2-1; but X2-1(2*") =/-1(2m), and so

(0-E_i)(2 m) =£o(2 m).  Hence, we have the result of Liouville*

X)(— iy-l4>[ — 1 = 0 or N, according as N is even or odd.

(2) Let E(iV) denote the number of representations of N as the sum of

two squares, all representations being counted twice, with the exception of

those of the form 02+M2, M2+M2, which are counted only once. It is known

that RiN) is equal to the excess of the number of divisors of N, of the form

4k +1, over the number of those of the form 4k -1. Thus E (N) = (£ ■ g) (V),

where (g(7V) is the cross between £, X, £0, given by

£o

'  4k + 1    E
'«-1    X   )

(2        Eo\

\  4k + \    R   \.(S = <  4k + 1    £

6. Compounding of functions of a single argument. We confine ourselves

in this subsection to functions of a single argument; the compounding of func-

tions of several arguments is treated in Section V.

By a block-factor 5 of M we shall mean a factor 5 which is relatively prime

to M/S. If 5 is a block-factor, the complementary factor M/S is also a block-

factor. We have to consider 1 and M also as complementary block-factors of

M.  If/(M), FiM) are given multiplicative functions, the sum

_ E/(«)E(M/i)
* Dickson, p. 121, 29.
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extended to all the block-factors S of M, is easily seen to be a multiplicative

function 4» of M. We call $ the compound of/ and E, and denote it by the

symbol/©E.

If the generating series of /, E are

f(p)ix) = 1 + axx + a2x2 + - - ■ ,

F(p)ix) = 1 + bxx + b2x2 H-,

it follows immediately that the generating series of their compound is given

by

if 8 E) („,(*) = 1 + iax + bx)x + (a, + b2)x2 + ■■■ .

The constant term here is not 2, but 1, as must be the case with every multi-

plicative function. Similarly the generating series of the compound of r

functions is obtained by adding the corresponding generating series of the

functions, and replacing the constant term r by 1, in the sum. If we say that

two power series in the same variables are equivalent (symbol ~), when they

differ only in their constant terms, we have

Theorem XII.   The generating series of a compound is equivalent to the

sum of the generating series, to the same base, of the functions compounded.

Hence compounding is associative and commutative.

Theorem XIII.  The compounding operation distributes multiplication.

For, let the functions fx,f2,f have the generating series

/kp>(*) = 1 + oix + a2x2 + • • - ,

fup)ix) = 1 + bxx + b2x2 + ■ - • ,

ft.p)ix) = 1 + cxx + c2x2 + ■ ■ ■ .

Then

{fXifx® ft)}w(x) = 1 + ciiai + bi)x + c2ia2 + b2)x2 -\-,

while

{(/ X fx) 0 if X ft) ] (p)(x) = 1 + iaoi + cxbx)x + ic2a2 + c2b2)x2 -\-,

which establishes the distributive property.

Theorem XIV. Compounding is quasidistributive with respect to composi-

tion.

For, consider the composite of/with the compound of/i,/2, • • • ,/r. We

have
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\f-(fi®f2@ ■■■ e/,)}(„>(*)

= f(P){x) X \fup)(x) + f2ip)(x) + • • ■ +/,(,>(*) + 1 - r}    {Theorem XII}

=   22f(P){x)fup)(x) + (1 - r)flp)(x)

=   22{f-fi)(P){x) + {Bu* X /)(p)(x) - r
t

~    22(f-fi)(p){x)   +   {Ex-r  X/)(p,(x).
t

Hence

/•  (fi  S f, ©   •  •  •   @ fr)   =     Z(f-fi)   ®   (El-r  X f) .
i

This formula is fundamental. The term "quasidistributive" in the enuncia-

tion refers to the occurrence of the additional term © (£i_r X/), which marks

the failure of the distributive property.

The compound of two linear functions is capable of simple expression as

a composite.

Theorem XV. The compound of two linear functions Lx, L2 is the composite

of Lx, L2 and the inverse of the second convolute {or root-composite) of

Lx2 — (LXXL2).

More generally, the compound of the rth convolute of Lx and the sth convolute

of L2, is their continued composite with the {r+s)th convolute of L\2 .

For let

1 1
Fi(p)(x) =-, F2(p)(x)

1 — ax 1 — ßx

so that

1
(convrFi2)(p)(*) =

1 - aßx"

Then
1                1 1 - aßx2

(Li © L2)w(x) =-+- - 1 =
1 - ax      1 - ßx (I - ax)(l - ßx)

-is

= (Fri2-convZ,12)(p)(x);

1                1 1 - aßxr+'
(convrFi © conv,F2)(p)(x) =-1-1 =

l-axr      1—ßx' (1 - ax-)(l — ßx')

=  (conv, Lx ■ conv, L2 ■ convr+J LX2 )(P>(x).

As a corollary from this theorem it follows that the compound of simplex

linear functions is also simplex. For instance, if
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Sa.b  —   la ®  I b   —  Ia'Ibla+b.l,

Sá = 70 0 X = 7„-X-conv (/„ X X)"1 = 7„X-J«,2-77„l,4,

then Sa,b, Sá are simplex functions, and

Sa.biN)       M - a)f(/ - b)
E
.V N' r(2* - a - i)

5.'(tf)       f(2i)f(* - a)f(2/ - a)

#< r(0f(4< - 2a)

We note also that £2 is a particular case of Sa,b, namely, S0. o-

The conjugate of/(M) is the function conj/ defined by

/ © conj / = £0.

If the generating series of/ to any base is 1 +^m=iamx m, the generating series

of conj/ to the same base is evidently 1 — ̂m=xamxm. Hence an alternative

definition of conj / is

conj/ = / X £-i.

The conjugate function has evidently the properties

conj conj / = /;  conj ifX 4>) = conj / X </> = / X conj <¿>;

conjugate of a compound = compound of the conjugates.

The E-functions play an important part in relation to the compounding

operation. In fact, their algebra under compounding and functional multi-

plication is isomorphic with the algebra of ordinary numbers under addition

and multiplication, so that any identity between ordinary numbers can be

translated into a relation between E-functions.  Thus

Er © E, = £r+s;  £r X Es = £rs;  conj £r = £_r;

/©/©••• (to r terms) = f X Er.

We give below several results involving the E-functions.

Example 5. f-(ErXp)=f-(p®P® ■ ■ ■)={(/• P) X Er }© (£,_r Xf) (Theo-
rem XIV). As particular cases, we have

(1) conj (/ -P) = {/conj <*>} © (£_2 X/)       [r=-l};

(2) f-Er   ={(/■£)   X   Er]    ©   £l_rX/       { </>   =   E | !

(3) /-(ErX/-1)   =£l-rX/ {*   =/-'|;

(4) /-conj/"' = £2X/ {<A=/"1;r= - l}.
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Example 6.

(Er X /)•(£. X /-1) ={/©/©•••}• j/-1 © /-1 © ••• }

= {£,„_., X/} © {£,<!_,) X/-1}.

Putting r = s= —1, we have conj/-conj/_1 = £_2X(/ffi/-1)-

Example 7.

(1) £'•£, = (£r+1X £.) © (£'X£i-,).

In particular, putting r = 1, E2 X Es = (£,•£) © £,_i.

(2) Er1 X Er-l = X,_r X ET.

For, since £rXi_r = £ (II §5 (b)),

X,_rX£r = (Erl-E) X Er

= (Er1-Er) © (£_i X Er1) (Example 5) = Er1 X Er-X.

In particular, £jl =£2XX, as has been already proved.

Example 8.

(1) £r-£»   =   T„  ©   £(l_r)(,_u;

(2) r2r£ = TXrr.

For

£r£. = {(£,-£) X £.} © (£i_. X ET)

= (£2 X Er X £,) © (£i-r X £.) © (£i_. X Er)

= (£2 X Er.) © £r+._2r.

= (£„£) © £r-i © £r+.-2r, (Example 5,(2))

=  Tr, © £(i_r) (,_!>;

and

t X rr = £2 X (E-Er) = £2 X {(£2 X Er) © £i_r}   (Example 5)

= (£2 X £2 X Er) © (£2 X £i-r)

= {(£2£2) X Er] © (F2 X Fi_r) (Example 3)

= £2- (£2 © £2 © ■ • • to r terms) (Theorem XIV)

=   £2-£2r   =   Tir-E.*

* The results in Examples 5-8 are proved here only for the case in which r, s are positive integers;

they may be easily proved for arbitrary values of r, s, by considering the generating series. It is

also possible to deduce their truth for arbitrary values of r, s, from their truth when r, s are integers,

by purely logical considerations.
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Example 9.

(a) ~51fi(dx)f2id2) ■ ■ ■ fkidk) summed for all sets of divisors dx, d2, ■ ■ ■ , dk

of N, such that every two are relatively prime, is equal to {(Jx®f2® - - -

®fk)-E}iN).
(b) Ylfi(dx)f2id2) ■ ■ ■ fkidk) summed for all sets of divisors dx,d2, ■ ■ -, dk of

N, with the least common multiple N, is equal to [{ifi-E)xif2E)X • • ■

Xifk-E)}E-*]iN).

The first part is obvious. To prove (b), we observe that if the required

sum be FiN), then (E-£)(iV) is equal to ^,fx(dx)ftidt) ■ ■ ■ /*(¿*) summed for

all sets of divisors dx, d2, ■ ■ ■ , dk of N; that is, to {(/i-£)x(/V£) ■ ■ ■

Xifk-E)}iN).
Putting & = 2, we can deduce an important result from these two theorems.

Let dx, d2 be divisors having the least common multiple N. If their greatest

common divisor is 5, we can write dx = Sti; d2 = U2, where tx, t2 are relatively

prime, and txt2 = N/S. Hence, if Lx, L2 are linear functions.

Y,Lx(dx)L2id2) =   T,LxiS)L2iô)Lxitx)L2it2)

=   ^Lx2iô)Lxitx)L2it2), where Z,i2 = Ei X L2,

= \LifiLi®Lt)}(N) = {Ei2-ErE2-convE721}W

(Theorem XV).

But the left side is, by the present theorem, equal to {(Ei • E) X iL2 ■ E) ] ■ E~l.

Hence, if Lx, L2 be linear functions,

(Ei-E) X iLi-E) = Lii-Li-Lt-EconvLTt.

In particular, iIa-E)xiIb-E)=Ia+b-Ia-Ib-E-I~+ha, which proves Rama-

nujan's result (II §5(d)) that

o-aiN)<TbjN) _ t(s)t(s - a)t(s - b)tjs - a - b)

n N* Çi2s-'a-b)

Section III.  Rational functions of one argument

1. The concept of rational function. A function of iV which is the com-

posite of r linear functions will be called a rational integral function of degree

r*.  lifiN) be such a function,
1

f(.p)(x) =-;
(1 — «ix)(l — a2x) ■ ■ ■ (1 — aTx)

f(p)ix) = (1 — axx)(l — a2x) ■ • • (1 — arx),

* The notion, though not the actual expression "rational integral function," as well as Theorem

XVI, occur in the last part of my note On the inversion of multiplicative arithmetic functions, Journal

of the Indian Mathematical Society, October, 1927.
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so that/_1(¿>") =0, if n>r.  Hence

Theorem XVI. The condition that f{N) be a rational integral function of

degree r is the vanishing of f~1{N) for all values of N divisible by an {r+l)th

power.

The composite of a rational integral function Pr of degree r, and the in-

verse of a rational integral Q, of degree 5, will be called a rational function of

degree (r, s) ; Pr will be called the integral component, and Q~l, the inverse com-

ponent, of the rational function. The linear components of Pr and Q, will also

be called, respectively, the linear and the inverse-linear components of the

rational function Pr ■ Q5~ . Also,a rational function will be said to be expressed

in rational form, when its integral and inverse components are put in explicit

evidence.

It follows from the above that the generating series f(p) {x) of a rational

function / of degree (r, s) is the expansion of a rational function of x, whose

denominator and numerator are of degrees r, s respectively ; /<P) {x) is thus a

recurring series of order r according to the usual definition.

Rational functions of degree (1, 1) will be called totients.

The fundamental theorem in the theory of rational functions may be

stated as follows:

Theorem XVII. All the processes of our calculus, excepting division* are

rational processes, in the sense that, when performed on rational functions, they

yield only rational functions.

The truth of this theorem is obvious from the definition, so far as com-

position and inversion are concerned. For, the inverse of the rational function

Pr ■ Qï' of degree (r, s) is the rational function Q, • P~ ' of degree {s,r); and the

composite of the rational functions {Pr-Qï1), (FVQ"1) is the rational func-

tion {Pr-Pp)- {Q,-Q,)~l, which is in general of degree {r+p,s+o). It remains,

therefore, to prove the fundamental theorem for multiplication and com-

pounding.

We shall prove in a general manner that the product of two rational func-

tions is a rational function. Let/, (p be two rational functions, whose integral

components are of degree r, p, respectively.  Then the generating series

/(P)(x) = 1 + aix + a2x2 + • • • ,

0(p)(#) — 1 + ocxx + a2x2 + • • •

* That division is not a rational process may be seen from an example. The series ¿_,nxn is a

recurring series, but the series ¿~^x"/n is not a recurring series. Thus the quotient of two rational

functions need not be rational. (Cf. the form of the generating series of a quotient obtained in II §1.)
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are recurring series of orders r, p, respectively. To prove that (JXp) is a

rational function, we have to show that the series

if X P)(P)ix) = 1 + axaxx + a2a2x2 + ■ ■ ■

is also a recurring series (in fact, of order rp, as we shall see). To prove this,

observe that when m is sufficiently large, the two sets of quantities

am,  ûm—1, ,  Orn—t,

Oim, Oirn— X,      '   '   , &m—t

are connected respectively by t — r + 1 and t—p + 1 linear equations. On

multiplying each of the linear equations between the a's by each a, and each

of the equations between the a's by each a, we obtain (¿ + 1)(22 — r—p+2)

linear equations connecting the (/+1)2 quantities a^a,. Of these, if,— r + 1)

■it—p + l) equations are redundant, since we obtain this number on multi-

plication of each of the / — r + 1 equations between the a's with each of the

t—p+1 equations between the a's. The remaining (< + l)2 — rp equations be-

tween the products a„a„ are in general linearly independent; if the (¿ + 1)2

— (i+1) products a^a.ip^v) are to be just capable of elimination from these,

we must have

it + l)2 -rp = it + iy - it + 1) + 1,

or
t = rp.

Hence the series l + aiai.r+a2a2£2 + • • • is a recurring series of order rp, as

was to be proved.

This result may be looked upon as a particular case of Hadamard's theo-

rem on the multiplication of singularities,* according to which, the singulari-

ties of the analytic function represented by the power series ^arbrxT are in-

cluded among the products axßß(K, p- 1, 2,.- • • ), the a's and ß's being the

singularities of the analytic functions represented by the respective series

^2arx' and ^brX'; for, if ~J2,arxT and ^2,brxr are both rational functions, then

the a's and ß's, as well as their products, must be finite in number, so that

^r,arbrxr has only a finite number of isolated singularities and is therefore a

rational function. This theorem shows also that the integral components of

the product-function fXp may be specified in terms of the integral com-

ponents of/ and p. We shall indicate below a second proof of this theorem,

which has the advantage of specifying the integral component of the product-

function.

* Bieberbach, Encyklopädie, Band II, Teil 3, erste Hälfte, p. 464.
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The behavior of inverses of integral functions under multiplication, com-

position and compounding is noteworthy; we have

Theorem XVIII. The product, composite, or compound of inverses of in-

tegral functions is also the inverse of an integral function.

To prove this, we have only to observe that the generating series of in-

verses of integral functions to the base p, are all finite polynomials 1 +22amX m,

l+22bmxm, etc. Hence each of the power series l+22°"nbmxm, {l+22a^xm)

■ {l+22bmXm) and l+2Z(am+¿»m)xm is a finite polynomial.

We may also note that the composite of two rational integral functions is

a rational integral function. Thus, composition is not only a rational, but

also an integral, process. It will appear that it is the only one of our pro-

cesses which is integral.

2. Properties of totients. Totients being rational functions of degree

(1, 1), are functions of the form Li-Lfl, where Lx, L2 are linear. Two special

types of totients are of great importance. The totients of the form Fi£_1

(including Euler's and Jordan's functions as special cases) will be called

enumerative totients. It follows from this definition, that the integral of an

enumerative totient is a linear function.

The inverse of an enumerative totient T = LxE~l is of the form

T~l = ELr1, and will be called a level totient. The property of the level

totient which gives it its name is T~1{p) = T-l(p2) = • • ■ = T~1(pn), where p

is any prime. The level totient is consequently the integral ( = composite

with £, II §3) of the inverse of a linear function. Since Ek{p)=Ek{p2)= ■ • •

it follows that the elementary functions Ek are level totients, though of a

special type, since the value of Ek{p) is independent of the prime p. Hence,

also, the general level totient may be regarded as a cross between (in general,

an infinite number of) £-functions. Consequently, from the independence of

the elements of a multiplicative function, we can deduce properties of level

totients from known theorems on £-functions.  For example

Example 10. The product and compound of level totients are level to-

tients.

To deduce the truth of this for level totients, from its truth for £-func-

tions, we observe that

Ek = Xi_j¿-£; Ek X Eki = Ekk> = \x_kk'E;

>~-kk' = x7i* © x7-*< © (x7_* x \~i-k').
Hence

Q~-kE) X (\~X-k--E) = {X7_* © \¿k' © (\¿k X \¿k.)\-E.
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Now, if Tx = Lrl-E, T2 = L21E are two given level totients, and if Tx, T2

have the same elements as Ek, Ev, for the base p, then for the same base,

Lx, L2 should have the same elements as Xi_fc, Xi_*-. Hence the two functions

iLx-E) X iLt-E),

\Lx~X® U   ® iLx   X L2)]-E

have identical elements for every base, and are therefore identical. Since the

part within braces is the inverse of a linear function (Theorem XVIII), this

expresses the product of the level totients in rational form as a level totient.

In the same way, since

Er  ©  £,   =   £r+i   =  \x-r-.E   =   (Xw  © \x-l ©  X"') • £,

it follows that the compound of the level totients Lr1E, L2lE is the level

totient given by

(¿71 ©¿71 © x_1)£.

Example 11.   It was proved that

if-P) X Er = /•(<*> X Er) ® (£r-i X /) (Example 5).

Hence, if T is a level totient,

if-P) X E=/(0X T) ® \fX (E ©£_,)}.

It follows from this, that if / is a rational function, fxT is also a rational

function, with the same integral component as/. For, if f=PQ~1, where

P, Q are rational integral functions, then

E-»-(/X T) = \iP-l-f) Xi)® {P-1 X (conj T ® £)}

= {Q-1 X T] © {P-1 X (conj T ® £)}.

Since the expression on the right is the inverse of an integral function, this

expresses/X T in rational form.

The enumerative totients do not form, like the level totients, a closed

system under multiplication, or compounding, but they possess this property

for a different process of combination. It was proved that the function/(iV)

defined by

f(N) =  Tlh(dx)Md2) ■ ■ ■ fkidk),

where the summation is for all sets of divisors dxd2 ■ ■ ■ dk having the least

common multiple N, is equal to [{(Jx-E)x(J2-E)x ■ ■ -X(/*•£)} -E-*]iN)

(Example 9). The function/ may be called the combinant of fx, f2, ••-,/*•

From the expression for the combinant, we immediately have
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Theorem XIX. The combinant f of any number of enumerative totients

fi> ftt ' ' ' tfkis also an enumerative totient; the linear component of fis the prod-

uct of the linear components of fx, f2, •••,/*.

As an example, the Jordan function <pk is the combinant of k functions

each identical with the Euler totient </>.*

The general totient may be investigated by means of a canonical form,

which expresses it as the product of a level totient and a linear function.

Theorem XX. The totient LXL2~1 = T is the product of its integral com-

ponent Lx by the level totient LE~l, where L is the linear function defined by

L{N)=L2{N)/Li{N).

For, let

1 1
Fi(p)(x) =-,    F2(p)(x) =-— ;

1 — ax 1 — ßx

then

1 - ßx a- ß a - ß
F(p,(x) = - = 1 +-ax +-<*2x2 + • • • = (LXX FO(p)(x)

1 — ax a a

where

ß
■ 1-x

Kip)(x) = 1 + -—(1 + x + x2 + • • • ) = = (£-*• E)(p)(x),
a 1 — X

where

1 L2(N)
L(p)(x) =-; or L(N) = -•

ß LX(N)
1-x

a

The theorem will however become invalid if Fi vanishes for finite values

of its argument, that is, if Li has common elements with £0.

We may call the totient K = LE~1 the associated level totient of F. We

also observe that the general totient can be obtained by multiplication of the

general level totient and the general linear function.

We shall use this expression for the totient to prove

Theorem XXI. The product of the totients Tx, T2 is a totient T, whose linear

component is the product of the linear components of Tx, T2.

For, let Kx, K2 be the associated level totients of Tx, F2, and let

* This property of the Jordan function is due to von Sterneck; see Dickson, p. 151, 215.
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Ti — Li-Pi ; T2 — L2P2 .

Then

T = Tx X T2 = Lx X L2 X Kx X K2 = L X K,

where L = LiXL2, and K is the level totient which is the product of the level

totients Kx, K2. Thus the product is a totient whose linear component is

LXXL2 = L. The inverse-linear component of F may be easily shown to be

(Lx X Pt) © (L2 X pT) © (F71 X Pi1).

This proof will, however, become invalid, if Lx or L2 has the same element as

£o for certain prime bases p. For such prime bases, however, either Fi or F2

or both must reduce to the inverse of a linear function, and therefore, also,

their product. Since the inverse of a linear function may be considered as a

degenerate case of the totient, the theorem is always true.

As a special case of the theorem, we may note that the conjugate V of a

totient F, being equal to the product Fx£-i, is also a totient. By Example

11, the linear components of F, T' are the same.

3. Compound of rational functions. Let F=A-B~1, 4> = CZ>-1; A, B,

C, D being rational integral functions. Also let L be the least common com-

posite of A, C, that is, the integral function of least degree, which is of each

of the forms A Lx, CL2, where Lx, L2 are rational and integral. Then

F ® * = (A-B~l) © (C-D~l)

= {(A-Li)(BLi)-y\ © [(C-Li)-(D-Li)-1}

= L- {D-iB-Li)-1 © (D-L2)~l\ © L

= L-{(BLx)~l © (D-L2)~l\ © (£, XL)® (E_x X L).

Now

E2X L = Z. conj L~l (Example 5(4)).

Hence

F ®<î> = L-{(B-LX)-1® (D-L2)-l@ conjZ,-1}.

This shows that the compound of the rational functions F, 4> is a rational

function, and (since the expression within the braces is the inverse of an in-

tegral function) also expresses it in rational form.

4. Product of compositional powers of linear functions. The following

theorem which expresses the product L[XLS2, where LX, L2 are linear func-

tions, in rational form, is of fundamental importance.
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Theorem XXII. If Lx, L2 are linear functions, and LX2 — LXXL2,

Lx X L2 = E12     • (Ei        X L2       ),

r and s being positive integers.

To prove this, let
1 1

Lx(,p)ix) =->    Li(v)ix) =
1 — ax 1 — ßx

Also, let r„ denote the coefficient of x" in (1— x)~T, and (»), the usual bi-

nomial coefficient. Then

(LIXL!,)(P)W=   J^r"-Sniaß)"xn,
n

and

Í rr+i_1   /r_(r_1) xy   r_(,_1\l       I   \
\Lx2     -(Ei X L2       )j <,>(*)

'(i-L^I^CñXñV""}-
(1  -  aßx)

We have therefore to show that

h   h     (r + s - 1\ h     h (r - l\(s - 1\
Fir, s,n) = r„-sn — [ )rn-xs„-x' + - • • = I 11 1.

To prove this, we note that when n>r+s — 1, E(r, 5, n) is a polynomial in n

of degree r+s — 2, and represents A¡,+s~'(r^-.sf), where the operator A„ is de-

fined by

A»/(«) -/(«) -/(»- 1).

Hence it follows that

E(r, s, ») = 0, if » ^ r + s — 1,

since r^jf is a polynomial of degree r+s —2 in n. Also, when n<r+s — 1,

r+«-l    h    »
0 = A„      (r„ • s„ )

l h    h   /r + 5-l\        h    h   (r + s-l\ \

Now rf * = 0 unless & 2: r ; hence the part within the braces will contain no signif-

icant terms if r+s — 1— n<r, or if r+s — 1— n<s. Hence Fir, s, »)=0if «is

greater than either r —1 or s —1. Also when n<r+s — 1, Fir, s, n) is a poly-

nomial in r, and also in s, oí degree n, and we have just proved that it vanishes
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for the « values r—1=0,  1, 2, • • •   , n — 1,  and also for the n values

j —1=0,1, •••,« — 1.   Hence we must have, identically.

F(r,s,n) =*(n)(^ ^   ^ ^   ).

By putting r = 5 = 0, we immediately find that \{/{n) = 1. The theorem is thus

established.

We may note that the relation E2XE2 = E2E2 (Example 3) is a very

special case of this theorem.

5. Regular rational functions. By an elementary rational function, we

shall mean a function which is either the inverse of a rational integral func-

tion, or is of the form TxLr, where F is a level totient, and L a linear

function (r being a positive integer).

A rational function will be said to be regular, if no two of its distinct

linear components have any common elements.

Theorem XXIII. A regular rational function can be expressed as the com-

pound of elementary rational functions.

For, let the integral component of the rational function/ be L\' ■ L? • • • L'¡,

L\, L2, ■ ■ ■ , Li being the distinct linear components of /.  Also let

,    . . *(*)f(p)(x)   =
(1 - axx)r'(l - a2x)r» ■••(!- a¡x)'

where <p{x) is a polynomial. Now, if the function/ is regular, then no two of

the linear functions Lx, L2, ■■ ■ , Li have common elements, and therefore the

quantities ai, a2, • • • , a< will be unequal for every prime p. Hence for every

prime p, we can express/(p)(x) in partial fractions in the form

A        bu Jï,        bu .2, bu
/<„(*) = *i(x) + 22 -- + E t.-t. + ■■■+ 22

t-i (1 — aix)'       ,_!  (1 — a2x)' ¡-i  (1 — atx)'

<pi{x) being a certain polynomial. That is to say, the function / can be ex-

pressed as the compound of the inverse of an integral function, and functions

of the type FxF', where F is a level totient, j = 1, 2, ■ ■ ■ , i, and t = l,

2, • • • , r¡.

If, however, two of the functions L, say Lx, L2, have identical elements

for the base q (so that q is an irregular base of the function /), then /(i) {x) is

not of the above form, the quantities Z»i,, L2l{s = l, 2, • ■ ■ , rx; t = l, 2, ■ ■ ■ , r2)

now becoming infinite with certain mutual relations. We may however deal

with this as a limiting case when a2—>ai.   The limiting process will show
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generally that results proved for regular functions may be interpreted as

true for irregular functions as well.

Theorem XXIV. The product of regular rational functions is a rational

function.

For, a regular function is the compound of elementary rational functions.

Hence the product of two regular rational functions can be expressed as a

compound of products of pairs of elementary rational functions. Now, the

product of the inverse of an integral function by any other function is also the

inverse of an integral function. And the product of the elementary functions

EiXEi, T2XLS2 is TxXTiXf, where/' is the rational function L'it"1 ■ (if *-»

XE^'-1') (Theorem XXII). Also Ei and T2 being level totients, their prod-

uct TXXT2 is also a level totient, and TxXT2Xf' is a rational function with

the integral component L\Ís_1 (Example 11). Thus the product-function

can be expressed as a compound of rational functions with known integral

components, and is therefore a rational function.

To specify the integral component of the product-function, let the in-

tegral components of the regular functions Fx, F2 be

L,x    J--2   • • • L.i ,

A i ■ A 2   • • • A ,-,

respectively, the E's and E^'s being distinct linear functions. By what has

preceded, FxXF2 is the compound of rational functions, whose integral

components are of the form

-£-^+"'~1' p" ̂  ri" "' 2* s'> L*> "" L» x K'   (t *= 1, 2, • ■ • , i; v -* 1, 2, • • ■ , j).

The integral component of FxXF2 is therefore the least common composite

of these (III §3) ; but this latter is evidently identical with the least common

composite of the ij functions Lj^"1"*" . This least common composite will co-

incide with the continued composite, if the ij linear functions L„, are all

distinct.

If «i, «2, n are the degrees of the integral components of Ei, E2 and EiXE2,

so that

nx = rx + r2 + ■ ■ ■ + rh

»Î — Ji + Si + ■ ■ - + Sj,

it is easy to see that

n = jtix + in2 — ij.
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These results will hold generally, even when the functions are irregular,

provided we consider that the product function has a certain number of

elements in common with E0 for the irregular bases.

6. Some special cases, (a) The rational form of fXLT, where E is linear,

and/ is rational.   We can immediately find/XE, where E is linear; for

if X E)(„)(*) = f(p)ilx), where L,p) = I.

Since L' = LxEr, it follows that it is sufficient to evaluate/XE'. If

f(,p)ix) = 1 + axx + a2x2 + • • • ,
then

H H
if X £r)(p)(x) = 1 + ax-rx x + a2r2 x2 + ■ ■ ■

1 d^1
= -;-:-ix^fipÁx)).

(r- 1)! dur-1

When / is rational, this can be evaluated in finite terms.  For example,

£2 X £2 = £2-£2 (Example 3).

Hence

(£2X£2)(p,(*)=-f±4--(1 - x)3

Therefore

d Ixil + x)\       1+4* + x2

p x » x *%,(.) - -{^.} - -lr-F ■

so that

£2 X £2 X £2 = £4- (£-2 X £"2) = £-'• (£3 X £3) (Theorem XXII).

This gives a second proof of Liouville's theorem (Example 4) :

Z{rid)}3=  \Zrid)}2.
d/N

(b) Product of integral quadratic functions. If the E's are linear func-

tions, Lij=LiXLj, and Ei234=EiXE2XE3XE4, then

(Ei-E2) X iL3-Li) = Ei3-Ei4-E23-E24-convEiü34.

This may be proved directly from the generating series, or by the method

of grouping factors according to their greatest common divisor and least

common multiple, employed in Example 9. Let the function fiN) be defined

by

fiN) =  EEi(di)E/—y,(d,)i/—Y
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where the summation is for all pairs of numbers dx, d2 having the least com-

mon multiple N. We shall evaluate f{N) in two different ways. First group

the terms in the sum according to the greatest common divisor h of dx, d2.

Writing
di = Sli; d2 — ôt2,

so that

N = 5/i/j,
we have

f(N) =  22Li{di)L2(~Y3(d2)Li(jj =   22Li{à)Li(ti)L2(t2)L3(S)L3(t2)Li(ti)

=  22L^)Lii(ti)Li3(h)

=    \LX3(LXi®Li3)\(N)

= {LX3-LXi-L23conv LX23i\(N)

(Theorem XV).

Secondly, let us evaluate/F24.  We have

f(o)L2i{^) =   TMÙLi^^^^

=   22Lx(h)L2(^L3(b2)Li(-\,

the summation extending to all pairs of numbers 5i, h2 having the least com-

mon multiple 5. Summing both sides of this over all divisors h of N, we see

that (J-L2i){N) is equal to

22^i{Si)L2(—\ 3(ô2)lI—\,

summed for every pair of divisors hx,h2oi N, that is, to {{Lx ■ L2) X {L3 Li)} {N).

Combining the two relations, we have immediately

(Lx-L2) X (L3Li) = LX3 ■ Lu ■ L23 L2i- conv ¿1234.

As a special case of this, we have the result already proved (Example 9) :

0~a  X  0~b   —   E- I a-1 bl a+f I a+b.i-

As another special case:
2

(Lx-L2) X (Lx-Li) = Lu-L22 Lx2 conv (Fi2 X F12)-1

= LxxL22Li2- (F12 X X-1).
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Section IV. The cardinal, principal, and semi-principal functions

1. Derivates of a function of r arguments. The derívate of the multi-

plicative function /(Mi, M2, •• • , Mr) with respect to any subset Mi,

M2, ■ ■ ■ , Mi of its arguments, is defined to be the function of the remaining

r—i arguments, obtained on putting MX = M2 = ■ ■ ■ =Mf = l in /(Mi,

M2, ■ ■ ■ , Mr). This derívate is clearly a multiplicative function, and may

be denoted by the symbol DmiM2 ■ ■ -tidf)-

If f(P)ixx, x2, ■ ■ ■ , xr) is the generating series of / to the base p, the gener-

ating series of DMim2. ■ -M¡if) to the same base is clearly /(P)(0, 0, • • • ,

xi+x, xi+2, ■ ■ ■ , xT). From this we immediately deduce

Theorem XXV. Iff, p be two multiplicative functions of Mi, M2, ■ ■ ■, MT,

then

(a) DM,M,---Miif) X Dm,m,---m,ÍP) — DüiMf-iifJ X P),

(b) E,M1M!-..M,-(/)-7)Aí1Af,...Afi(<r>)   =  D M\M,... M;(/" P),

(c) E>A,1M1...Mi(/"1) = \Du,u,...uiif))-i.

Or briefly, the product or compound of dérivâtes is the derívate of the product or

compound, and the derívate of the inverse is the inverse of the derívate.

It will be seen in the next section, that the dérivâtes also possess a similar

property with respect to the compounding operation.

Theorem XXVI. The necessary and sufficient condition that a multiplica-

five function f of the r arguments Mi, M2, - - • , MT, be also a multiplicative

tunction of a subset M x, M 2, ■ • • , M i ofits arguments, is

DM,M,-Miif) = EiMi+x, Mi+2, ■ • •, MT).

The condition is obviously necessary, since a multiplicative function of

Mi, M2, ■ ■ ■ , Mi must be equal to 1, when Mi = M2= ■ • • =Mi = l.

To prove that it is sufficient, we observe that, when Dmxm2- ■ •«,-(/)

= £(M<+i, • • ■ , Mr), the value of/(Mi, M2, • ■ • , Mr) is not affected either

by introducing into, or removing from, the last r—i arguments, such factors

as are relatively prime to MiM2 • • • Mi. For, if phe any prime which does

not divide MXM2 ■ ■ ■ Mr,

/(M,, • • • , Mi, Mi+xP", Mi+2f, ■■■)

= fiMx,M2, ■ ■ ■ , Mr) X /(1,1, • - • , r,p, ■■-)

= /(Mi,M2, - • • , Mr) = /(M,, Mt,--, Mi, Mi+xp-', Mi+2f', ■■■).

Hence, writing
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M/+i = Mi+Xpa;    M'i+i = Mi+2pß;  etc.,

a' - a = a; ß' - ß = b;   etc.,

we have

/(Mi, M2, ■ ■ ■ , Mi, MÍ+1, ■ ■ ■ , Mr) = /(Mi, • • • , Mi, M'i+Xp", M'i+2p , • ■ ■  ),

where p is any prime not occurring in Mi, M2, ■ ■ ■ , Mt. This proves our

statement.

To  prove  that /(Mi, M2, • • • , Mr)   is  a   multiplicative   function  of

Mi, M2, ■ ■ ■ , Mi, that is, that, whenever MXM2 ■■■ Mi is relatively prime

to NXN2 - ■ ■ Ni,

f(MlNi, M2N2, ■■■ , MiNi, Mi+X, ■ ■ ■ , Mr)

= f(Mx, Mi,--- , Mr) X f(Nx, ••• ,Nit Mi+l, ■•■ , Mr),

suppose that Mi+k, M'i'+k are the maximum factors of Mi+k, which contain

only prime factors occurring in MiM2 • • • M¡, TYiA^ ■ • • Ni, respectively. It

follows that M/+i, M'i'+k are relatively prime, and therefore Mi+k =

Mi+kM'i'+kTi+k, where Ti+k is relatively prime to MXM2 ■ ■ ■ MiNiN2 ■ ■ ■ Ni.

Now, since Mi+k,M'/+ ¡tare respectively prime to NXN2 ■ ■ ■ NitMxM2 ■ ■ -Mi,

it follows that

f(Mx, Mi, ■ - • , Mr) = /(Mi, Mi,--, Mi, M'i+i, M'i+2, ■ ■ ■ , M'T),

f(Ni, N2, ■ ■ ■, Ni, Mi+i, • • •, Mr) = f(Ni, Ni,---, Ni, M¡+\, M'/+2, ■■ ■ , M'/).

Now, however, MiM2 • • • MiM,'+i • • • Mr' is relatively prime to NXN2 • • ■

Ni M'i'+i ■ ■ ■ Mr'. Hence, since f{Mx, M2, ■ ■ ■ , Mr) is a multiplicative func-

tion of its r arguments, it follows that the product of the left sides is equal to

f(MxNx, M2N2, ■■■ , MiNi; M'i+iM'U, • • ■ , M'rM'/).

Here, the factors Ti+k, which are relatively prime to the first i arguments of

this function, may be introduced into the last r — i arguments, without af-

fecting the value.  Thus

f(Mx, ■ ■ ■ , Mi, Mi+X, • • • , Mr)f(Nx, ■•■ ,Ni, Mi+i, ■ ■ ■ , Mr)

= f(MxNu ■ ■ ■ ,Mi Ni, Ti+iM'i+iM'iU, ■ ■ ■)

= f(MiNi, ■ • • , MiNi, Mi+X, ■ - • , Mr),

establishing the multiplicative property in respect to Mi, M2, ■ ■ ■ , M¿.
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As an illustration of the theorem, any multiplicative function fig) of the

greatest common divisor g of Mi, M2, ■ ■ ■ , Mr is seen to be a multiplicative

function, not only of Mi, M2, • • • , Mr, but of any subset of them as well;

for when any of the arguments Mi, M2, • • • , MT becomes equal to unity, g

and therefore also fig) take the value unity.

2. Cardinal functions of r arguments. A cardinal function of Mi, M2, • • -,

Mr is defined to be a function/, all of whose dérivâtes are identical with £0;

it is clearly necessary and sufficient for this that the r dérivâtes DMiif)

(i = 1, 2, • • • , r) be identical with E0. This implies that the generating series

ifP) ixx, x2, ■ ■ • , xr) oí a cardinal function /, is of the form 1 +Xxx2 - ■ -xr

Fixx, x2, ■ ■ ■ , xr), where E(#i, x2, ■ ■ ■ , xr) is some power series. The arith-

metical property of the cardinal function/, implied by this, is evidently that

/(Mi, M2, • • • , Mr) =0, whenever M¡ admits a factor relatively prime to M,-,

or in other words, that/(Mi, M2, ■ ■ ■ , Mr) =0, unless each of the arguments

has the same distinct prime factors.

From Theorem XXIV, we now have, immediately,

Theorem XXVII. The product of a cardinal function and an arbitrary

function of the same arguments, is also a cardinal function. The composite of a

cardinal function and an arbitrary function f has all its dérivâtes identical with

the corresponding dérivâtes of f. Lastly, the inverse of a cardinal function is also

a cardinal function.

To prove the last statement, let E be a cardinal function.  Then,

DMiiF)-DMiiF~l) = DMi(F-F~l)

= Dmí(Eo) = £o-

But, since E is a cardinal function, Dm¡ÍP) =E0.   Hence DMiiF-1) = E0, or

E_1 is also a cardinal function.

The converse of this theorem is of great importance; it is as follows:

Theorem XXVIII. If pi, p2 are functions of Mi, M2, • • ■ , Mt, whose cor-

responding dérivâtes are identical, then each of them is the composite of the other

with a cardinal function; also, each is the product of the other and the integral of

a cardinal function.

For, if

P\ = Pff = PtX iF-E),

then
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ntf,(*i) = DMi(<t>2)-DMi(f) = DMi(4>2) X (DMi(F)-E) (sinceDMi(E) = E).

Since DMi{'i>i)=P>Mi{<i>2) by hypothesis, it follows that

DMi(f) = £o,

DMi(F)E = £, or ZWF) = £0.

Thus both / and F are cardinal functions.

Corollary 1. If<pi, <f>2 are functions of Mi, M2, • • ■ , MT which are known

to be equal to one another, whenever two of the arguments Mi, M2, ■ ■ ■ , Mr are

relatively prime, it is thereby implied that the functions are also equal when any

of the arguments is equal to unity. Thus <f>i, cp2 have identical dérivâtes, and the

theorem applies to them.

Corollary 2. The most general function f {Mi, M2, - - - , Mr) with the

property of being a multiplicative function of every subset of its arguments is

the integral (II §3) of an arbitrary cardinal function.

3. Cardinal functions of a matrix-set of arguments. A function / of the

matrix-set of rXs arguments | Mfl, Ml2, • • • , Mir\ (¿ = 1,2,---, 5), is said

to be a cardinal function, if the derívate of/with respect to the 5 arguments

of any column (or, briefly, if each column-derivate of /) is the function £0.

This reduces to our earlier definition for 5 = 1. It follows that a cardinal func-

tion of the matrix-set | Ma, Mi2, ■ ■ ■ , MiT\ {i = l, 2, ■ ■ ■ , s) vanishes if any

of the r column-products MijM2j ■ ■ ■ M„- (j = 1,2, • ■ ■ , r) contains a prime

factor not dividing one of the others. We have the following obvious analogue

of Theorem XXVIII:

Theorem XXIX. 7/ <pi, <p2 are two functions of the matrix set \ Mu,

Ma, ■ ■ ■ , Mir\ {i = l, 2, ■ ■ • , 5), which have identical column-derivates, then

each is the composite of the other with a cardinal function, and also the product

of the other with the integral of a cardinal function of the matrix-set.

The proof is on the same lines as the proof of Theorem XXVIII. As in

Corollary 1 of that theorem, this also applies to two functions of the matrix-

set, which are known to be equal to each other, whenever any two column-

products are relatively prime.

From the definition of the cardinal function of a matrix-set | M,-y|, it is

easy to specify the peculiarity of its generating series to any base. Let x^ be

the variable corresponding to the argument M¿,-. Since every column-derivate

of the cardinal function is £0, it follows that the generating series must re-

duce to 1, if we put the variables corresponding to any column equal to zero.

Thus the peculiarity of the generating series is that every non-vanishing
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term of it contains at least one representative from each column of the matrix

| Xij\, or in other words, the terms which involve none of the variables of a

column vanish.

4. Principal functions. These constitute a very important subclass of

cardinal functions. The function /(Mi, M2, ■ ■ ■ , Mr) is called a principal

function, if it vanishes whenever two of its arguments are unequal. The

function

PiM) = /(M, M,---,M)

is called the function of one argument equivalent to the principal function /.

It is clear that p determines/ completely; for, if

p(P)ix) = 1 + aix + a2x2 + ■ ■ • ,

then

fl.p)(Xx,  X2,  ■   ■   -   ,   XT)   =   1   +  OxiXxXi  ■   ■   ■   xr)

+ a2ixxXi - - - xTy + ■ ■ ■ .

This will be indicated by writing

/ = prinCr p if is the principal function of r arguments, equivalent to p).

More generally, a function/of the matrix-set |M<i, M<2, • ■ • , M,r| (* — 1,

2, • • • , s) will be called a principal function, if it vanishes whenever two

arguments in the same row are unequal. The function PiMx, Mi, ■ • ■ , M.)

to which/ reduces when M<i = M¡2= • • • = M<r = M< (• —1, 2, • • • , s), is

called the function of s arguments equivalent to the principal function f. It is

clear that p determines /, and that the generating series of / is obtained

from p(,P)ixx, x2, ■ ■ ■ , xa), by substituting Xixxi2 - - ■ xirior #<(* = 1, 2, ■ ■ ■, s).

We also call/ the principal function of rXs arguments equivalent to PiMi,

M2, ■ ■ ■ , M„), and denote it by princ, p.

Theorem XXX. Ifp, p' are functions of s arguments, and princp, princ^'

the equivalent principal functions ofrXs arguments, then

(a) princ p ■ princ p' = princ ip-p'),

(b) (princ p)~l = princ (^_1).

These relations follow immediately from the fact that the generating

series of princ p is obtained from the generating series of p by substituting

XixXa - • -xir for x¡(i = l, 2, • • • , s).

5. Functions of the greatest common divisor (g.c.d.). We prove the fol-

lowing theorem.
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Theorem XXXI. The necessary and sufficient condition that /(Mi,

M2, • • • , Mr) be a function \[/{g) of the greatest common divisor g of Mi,

M2, ■ • • , Mr, is thatf be the integral of the principal function of r arguments,

equivalent to {\{/-E~1){M).

The necessary and sufficient condition thatf{\Ma, Mi2, ■ • ■ , M,-r| ) (i = 1,

2, • • • , s) be afunctionip{gi, g2, ■ • ■ , g,) of theg.c.d.'s giof Ma, Mi2, ■ ■ ■ ,Mir,

is thatf be the integral of the principal function ofrXs arguments, equivalent to

{ir-E-i){Mi, M2, ■ ■ ■ , M.).

This theorem illustrates Theorem XXIX; for, if two column-products

are relatively prime, it is clear that gi, g2, - - - , g, all become unity, and so

/= 1 =£. Hence, by Theorem XXIX,/is the composite of £ and a cardinal

function. The present theorem identifies the cardinal function as a certain

principal function.

To prove the first part, let

ftp)(xi, x2, ■ ■ ■ , xT) =   22a(mu m2, ■ • ■ , mr)xi 'x2 ' •   •   ■   Xr

so that

(f-Er1)(p)(xi, x2, ■ ■ ■ , xr) =   22°{mu m2, ■ ■ ■ , mr)xi 'x2 ' ■ ■ ■ xT ,

where

b(mi, m2, - - ■ , »,) = a(mx, m2, ■ ■ ■ , mr) —   22a(mi ~ 1, m2, ■ ■ ■ , mr)

+   X)a(wi — l,m2 — l,m3, ■ ■ ■ ,mr)— ■ • • ,

terms with negative suffixes not appearing in the summations. Since / is

given to be a function of the g.c.d. of its arguments, a{mx, m2, • ■ ■ , mT)

must depend only on the least of its suffixes. Suppose that m is the least of

»i, m2, - - - , mr, and that

mx = m2 = ■ ■ ■ = m, = m; mi+x, mi+2,  • • - ,mr > m;

a(mi, m2, • • ■ , mT) = A(m).

Now group the expression for b{mi, m2, • • • , mT) in such a way that in each

group the values of the first i suffixes remain the same. If m = 0, then, since

negative suffixes are not permitted, there will be only one group, and the

value of b{mx, m2, ■ ■ ■ , mr) will be 1, or 0, according as all the m's do, or do

not, vanish. (This result might of course have been anticipated, since we

know that/-£_1 must be a cardinal function.) If m>0, then there are 2*

groups of terms, and we have

b(mu tm, ■ ■ ■ , ntr) = A(m)(l - 1)'- - )A(m - 1)(1 - 1)--(;>
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O+ í      lí(« - 1)(1 - I)'-4 - etc.

= {A{m) -Aim- 1)}(1 - l)-4.
This vanishes unless r = i, and is then equal to Aim) — Aim — 1).    Thus

¿>(»ii, m2, ■ ■ ■ , mr) vanishes unless all the m's are equal, and is equal to

Aim)— Aim — 1), if mi = m2= ■ ■ ■ = mr = m. Now the series

1 +  EUW - A(™ - l)}xm
m=X

is evidently the generating series to the base p, of the function p ■ E~l.  Thus

f-E~l is the principal function equivalent to the function (^-E-1)(M).

The same method will apply to the case of a matrix-set of arguments.

For convenience of writing we may take s = 2, so that

/ 1 Mu, Mi2, • • • , Mi, I \

\ I M2i, M22, ■ • • , M2r I /

Let

P(P)ix, y) =   Z)4(»». n)xmyn,

(xx, x2, ■ ■ ■ , xr\       „ (rrtx,m2, ■ ■ ■ ,mr\  », m, mr », n, nr

/(p)( ) =   2-«l )xi x2   ■ ■ • Xr yi y,   ■ ■ ■ yr ,
\yi, yi, ■ • • , y,i \nu n2, ■ ■ ■ , nTl

so that, as before,

( mx,m2,- ■ ■ ,mT\
a[ 1 = A(m, n),

\  »lf   »2, • • • , »r /

where m is the least of mi, m2, ■ ■ ■ , mr, and n, the least of nit n2, ■ ■ ■ ,nr. If

/  Xl, x2, ■ ■ ■ , xT \

if-Er*),J
\ yi, y-2, ■ ■ ■ , y, /

/   Mi, m-l,  ■   •   •  , «r\    »,    », mr    », »,

=   2X )xi *2   • • • xr yi  ■ ■ ■ yr,
\   »1,   «2 ,  •   ■   ■    , »r  /

then

/ Wi, w2, ■ • • , mr\ I mi, m2, ■ ■ ■ , mr\        „   / »i~ 1, w2, • • ■ , wr\

\ »i, »i, • • • , »r / \ ni, n2, ■ ■■ , nT / V »i, «2,    ■ - , «r /

/   «l   —   1,   W2   —    1,   W3,  •   •   •   , OTr \
+   Z.<M ) - etc->

\ »1, «2, »S,   ■   •   •   , »r   /
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where the &th summation sign indicates that every set of k suffixes from

among mx, m2, ■ ■ ■ , mr, Hi, • • • , nr are to be diminished by unity, terms

with negative suffixes being omitted.

As before, let

Mi = m2 = • • • = w¡ = m; nii+i, m^2, - - - , mr > m;

«i = «2 =••• = »;• = n;     nj+i, »J+2, • ••,«,>«.

Group the terms in the expression for

/ mi, ■ ■ ■ , mr \

V «i ,-■■ ,nr)

in such a way, that, in each group, the first i suffixes in the top row and the

first/ suffixes in the bottom row have the same values. Then it is easy to see

that, on evaluating each group separately, we obtain

/ mx, mi, ■ ■ ■ ,mr\ ( JL / i \
b[ ) = d-i)*'-'-^(»,»)+^(«-i,»)i:(-iW )

\   »1,   »2,  •   ■   •  ,  »r  / \ X-l \H/

+ A(m,n- 1)22{-1)(J)
r-l \ V /

+ A{m-l,n-l)22{-iy+{ *Y^)}

= (1 — iyr-t-'{A(m,n) - A(m - l,n) - A(m, n — 1)

+ A(m - 1, n - 1)\.

Thus
/ mi, mi, - - ■ , mr\

\   »1,   »2 ,-•,«, /

is equal to zero, if two of the m's or two of the «'s are unequal, and to

A{m, n)—A{m-l, n)—A{m, n — l)+A{m — l, n-1), if Wi = w2= • • • =mr

= m; «i = «2= • • -=«r = «.   Thus/-£_1 is the principal function equivalent

to^-jE-1.

Corollary 1. The generating function to the base p of the multiplicative

function of Mi, M2, ■ ■ ■ , Mr, which is equal to their g.c.d., must, by the present

theorem, be

1 — xxx2 ■ ■ ■ xT

(1   —   Xi)(l   —   Xi)  -  •  ■ (1  —   Xr)(l   —  pXXX2  ■   ■   ■ Xr)
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This may be easily verified by direct expansion.

Corollary 2. The composite of E(Mi, M2, • • ■ , Mr) and a principal

function can be expressed as the composite of F ■ E~l and a function Kig) of the

g.c.d. g of Mi, Mi, • - - , Mr.

For

Eprinc^ =E£-1-£princ(^E-£-1)

= F-E-1iP-E)ig).

As an illustration we may show that

where pk is the Jordan function, and the summation is extended to all divisors

Si of M, and 52 of N, bi2 being the g.c.d. of Si, 82, and g the g.c.d. of M, N. For,

if we write *4(M, N) =IkiM,N)-E~iiM, N), so that **(M,N) =pkiM)pkiN),

the left side is
$k-E2ig) = «IVE-princ iE2-E~1)

= Ik princ E

= MkNk y^,5~2k summed for common divisors &,

= MkNko-2kig)/g2k.

6. Semiprincipal functions and functions of the least common multiple

(l.c.m.). The semiprincipal functions are analogous to the principal func-

tions, in that they are determined by functions of a smaller number of argu-

ments; but they are not cardinal functions.

The function/(Mi, M2, • • • , Mr) is said to be the semiprincipal function

equivalent topiM), if, for any prime P,fiph, ph, • • • , p1') vanishes, whenever

any two non-zero exponents t are unequal, and is equal to i — l)r~ß+1PiPT), if

p of the exponents t are zero, and the remaining are equal to t. Otherwise

expressed, the semiprincipal function of Mi, M2, • • ■ , Mr, equivalent to

PiM), vanishes unless the g.c.d. g¿, of M¿, M,- is relatively prime both to

Mi/gij, and to Mj/ga ii,j = 1, 2, ■ ■ ■ , r), and is equal, when this condition

is satisfied, to

l(/)E_i(Mi)E-i(M2) ■ • • E-i(Mr)

E-iU)

where / is the least common multiple of Mi, M2, • • • , Mr.

It follows from this definition that if

Pip)ix) = 1 + aix + a2x2 + ■ ■ ■ ,
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then

/(p)(Xi, X2, • • • , Xr) = 1 + ûl{ 22X1  ~    22X1X2  + 22XlX2Xi —   - - ■   }

+ a2{ 22xi   -   22xïx$ +   22x*x*xi -■■■}+•••

= 22P{pAxí) - 22^(.P)(xixi) + jDhjo(*<*/**) - • ■ • •
i i, j i ,3 ,k

We may denote/by the symbol semiprinc^, or if we wish to put the number

of arguments in evidence, by semiprinc, yp. It will be noticed that the derí-

vate of semiprinCr if/ with respect to 5 of its arguments is simply semiprincr_, ip.

An analogous definition holds for the case of a matrix-set of arguments.

/(| M«, Mi2, • • ■ , Mir | ) (* = 1, 2, • • • , s) is called the semiprincipal function

of rXs arguments, equivalent to ${MX, M2, ■ ■ ■ , M,), if, for any prime p,

f{\p'il, pta, ■ ■ ■ , Ptir\) vanishes unless all the non-zero numbers among

tu, ta, ■ ■ ■ , tir are equal to each other (t = l, 2, • • • , s), and is equal to

(_l)n+»*+-- ■+'*i¡,{pTi)pTtj . . .tpr-), if all but (TiOf the exponents ta, U», • • -,

tir are zero, and these equal to t<(* = 1, 2, ■ ■ ■ , s). As an alternative defini-

tion, the semiprincipal function of rXs arguments Mi,, equivalent to ^(Mí,

M2, ■ • • , M,), vanishes whenever the g.c.d. g,,* of Mi,-, Mik is not relatively

prime to both Mu/gijk and Mik/gijk{j, k = 1, 2, • • ■ ,r; i = 1, 2, • • • , s), and

is otherwise equal to

Wi, h, ■ ■ ■ , h) UE-iiMii)
_ii_

ELi(h)E-i(li) ■ ■ ■ £_!(/.)

where h is the least common multiple of MiX, Mi2, ■ ■ ■ , Mir.

Theorem XXXII. The necessary and sufficient condition that /(Mi,

M2, ■ ■ ■ , MT) be a function \¡/{í) of the l.c.m. I of Mu M2, ■ ■ ■ , Mr, is thatf be

the integral of the semiprincipal function of r arguments equivalent to

(*.E-i)(M).
The necessary and sufficient condition thatf{\Mix, Mi2, • ■ ■ , Mir|)(i = l,

2, • • • , s) be a function \p{h, l2, ■ ■ ■ , I,) of the l.c.m.'s Z¡ of Ma, Mi2, • • • , Mir,

is thatf be the integral of the semiprincipal function of rXs arguments, equiva-

lent to {iP-E-l){Mi, Mi,--, M.).

The sufficiency of the conditions may be easily proved for each case. To

prove that the condition is necessary, let

*<*>(*) = 22A(™)xm't

f(p)(xi, x2, • • • , xT) =   22a{mu m2, ■ ■ ■ , mr)xi 'x2 ' ■ ■ ■ xr ,

(/■F-1)(p)(xi, X2, • • • , Xr) =   2~,°\mx, m2, ■ ■ ■ , m,)xx x2   ■ ■ ■ x, ,
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where

¿(f»i, m2, ■ ■ ■ , mr) = aimi, m2, ■ ■ ■ , mr)

—   *%2a(mi — 1, mt, • • • , i»r) + _2a(wi — 1, w2 — 1, w3, • • • , mT) — etc.

Since/(Mi, M2, • • ■ , Mr) is the function^ of the 1. cm. of Mi, M2, • • • , Mr,

a(i»i, m2, • • ■ , mr)=A(m), where m is the greatest of the suffixes mi,

m2, ■ ■ ■ , mr. As in the proof of Theorem XXXI, let

mi = m2 = • • • = Mi = m; mi+i, mi+2, • ■ ■ , mr < m.

Also, let t of the r — i numbers mi+i, mi+2, • ■ ■ , mr be equal to zero. Group-

ing the terms in the expression for b(mx, m2, • ■ ■ , mr) in such a way, that in

each group the values of the first i suffixes remain the same, and summing

each group, we obtain

bimi, m2, ■ ■ ■ , mr)

= (1 - !)*-*-*< Aim) - Aim)(    j+i(«i)       ]-■■■

-G-,)+ (-l)<-1(._    \Am+i- iyAim-l)\

= (- l)i+1(l - îy-'-^Aim) -Aim- 1)}.

Thus J(f»i, m2, ■ ■ ■ , mT) vanishes unless all the non-zero m's are equal, and

is equal to (— l)i+1(.<4(m)— A{m — 1)), if r — i of the m's vanish, and the re-

maining i are all equal to m. This proves that/-£_1 is the semiprincipal

function of r arguments, equivalent to ip-E~l)iM).

An exactly similar proof holds for the case of a matrix-set of arguments.

Example 12. The semiprincipal function of two arguments equivalent

to an enumerative totient.

Let p = E • E~l be the enumerative totient, and let T denote the totient

4>-'XL= LX iL~l-E) = L-iLX L)~K

Also, let the functional symbol pp denote the function piM)p{N) of two

arguments.   If
1 - x

4><.p)(x) =-'
1 — ax

1
L{P)(x)

1 — ax

then
1 - a2x

Twix) = {L-iLX X)-1  (p)(*) =-
1 — ax
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Now
. 1 — xl — y       1 — xy

{semiprincü (<t>) \ {p)(x, y) =-h-
1 — ax     1 — ay     1 — axy

(1 - a2xy)(l - x)(l - y)

(1 — ax)(l — ay)(l — axy)

Hence,

semiprinc <¡> = #<£• princ F.

As a consequence of this result, it follows that, if I is the l.c.m. of M, N, then

L(l) = £• semiprinc (F£_1)

= £• </><*> princ (L-(LX L)~l)

= IF-princ (L-(L X L)~l),

or

L(Z) princ (L X L) = LL princF.

In particular, it also follows that

1 - p2axy

{Ia(l)}w(x,y)
(1 — pax)(l — p"y)(l - paxy)

We add two illustrative results. On putting L = Ia, it follows, from the ex-

pression for the semiprincipal function, that

(A) Ia(l) princ I2a = /„princ/„.

Composing both sides of this with £, we obtain

Ia{I) ■ E■ princ (/,„ • £• F"1) - Ia■ E-princ (/„•£• E~l)

or

„C  (M    N\)a ^(MN\a

s{,(ir'Jf'-Wí"í'))-H75r)-<í(í"a,))-

Here, the summation extends over all divisors 5i of M, and 82 of N, and I and

g denote functions, whose values are respectively the l.c.m. and the g.c.d. of

their arguments.

Composing both sides of (A) with £• princ £_1, we have
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£-7a(0princ<íi2o = 7a-£-princ<r>a,

where the p's are Jordan functions; or

^Ki'S}'18*'«1*'-^)'1*"«1--

Section V.  Compounding of functions of several arguments

1. The formula for the compound.  We define the compound/©<£ of two

functions/(Mi, M2, ■ • • , Mr), 0(Mi, M2, • • • , Mr), by

, V- / Ml     Mi MA
{f®4>]iMi,M2,- •• ,Mr) =  £/(«,, 82,- ■ ■ ,ôr)4>[ — > -—,-■-,—)

\  Ox 02 5,  /

summed for all block-factors 5¿ of M¿(¿ = 1, 2, • • • , r).

It follows from this definition that the compounding operation performed

on several functions is both associative and commutative; also, if

flp)ixi, x2, ■ ■ ■ , Xr) =   "^airnx, m2, ■ ■ ■ , mT)xx' x2 ' ■ ■ ■ xt ,

<p(p)ixx, Xi, ■ ■ ■ , Xr) =   ^bimx, m2, ■ ■ ■ , mT)xx 'x2 '
mr

Xr   i

then

if ® <P)ip)ixx, x2, ■ ■ ■ , Xr) =   ¿_,cimx, m2, ■ ■ ■ , mT)Xx x2   ■ ■ ■ xT ,

where

c(mx, m2, ■ - ■ , mT) = fl(«i, m2, ■ ■ ■, mr) +  T^aiO, m2, ■ ■ ■ , mr)bimx, 0, 0, • • •, 0)

+ Z)a(°> 0, w3, • ■ ■ , mT)bimx, m2, 0, ■ ■ ■ , 0) + etc.

Here on the right, the non-zero suffixes among «i, m2, ■ ■ ■ , mr are par-

titioned in every possible way between a and Z», so that the expression for

c(w,i, m2, • • • , mr) contains 2i terms, when r = i of mx, m2, • ■ ■ , mT are zero.

The expression for c(wi, m2, • • ■ , mr) shows that

Theorem XXXIII.  The derívate of the compound of any number of func-

tions is the same as the compound of the corresponding dérivâtes of the functions.

Another expression may be given to the compound of/and p. Write

PoiXx, X2, ■  ■  ■ ,  Xr)   = f(p)ixx, X2, ■ ■  ■  , Xr)

+   Z)/(P)(°» Xi,'  ■  • , Xr)<t>(p)iXl, 0,  •   •  • , 0)

+ Jlfip)(0,0,x3, ■ ■ -,xr)<l>ip)ixx,Xi,0, ■ ■ -,0)+etc,
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^o(*i, Xi, - - ■ , Xi) = fiP)(xi, x2, • • • , Xi, 0, • • ■ , 0)

+ 22f(P){®tX2, • • -,Xi,0, • • ■ ,0)<bip)(xi,0, ■ ■ -,0)

+etc,

h(xi,  X2,  ■   •   ■   ,  Xr)   =     22^»(Xl,  X2,  ■   ■   ■   ,  Xi),

summed for every set of i of the variables.

Then
(/ ©  <t>)(p)(Xl, X2,  ■   ■   ■  ,Xr)   =  $0  -  tl + fc  -  lf-3  +   •   ■  •   .

For the coefficient of x^xp ■ ■ • zf* {mi, m2, ■ ■ ■ , mk>0) on the left is

Ck = a(mi, ■ ■ ■ , mk, 0, • • • , 0)

+   ]>>(0, mt, • • • , mk, 0, • • • , 0)b(mh 0,    - -, 0) +   22 etc.,

while its coefficient on the right is seen to be

ck (2-* - (r ~ W*-1 + •■•) = (2 - iy-kck = ck.

This formula for the generating series of the compound is more complicated

than the corresponding formula for functions of one argument. But it is

important to notice that the two formulas are of the same type, if either/ or

<t> is a cardinal function. For, if/ is a cardinal function, then every coefficient

a with a zero suffix vanishes, and the expression for c becomes simply

c(mu m2, - • ■ , mT) = a(mi, m2, ■ ■ ■ , mT) + b(mx, m2, ■ ■ ■ , mr).

The generating series of the compound of functions, all but one of which are

cardinal functions, is therefore obtained by adding the generating series of

all the functions, and replacing the constant term by unity.

It follows that, while the distributive and quasidistributive properties of

the compounding operation (Theorems XIII and XIV) do not hold in general

for functions of several arguments, the former continues to hold in the same

form, when all but one of the functions compounded are cardinal functions,

and the latter, when in addition, the function which enters into composition

with the compound is also a cardinal function. Thus if/ is a cardinal function,

and all but one of fx, /t, • • • ,/* are cardinal functions, then

/• (A © h © ••■©/*) = (/7i) © (/•/*) © • • • © ij-fk) © (£1-* x /),

where £i_t is the elementary function of r arguments, which takes the value

1 — k when the arguments are powers of the same prime. We notice that

£(Mi, Mi, ■ ■ ■ , Mr) compounded with itself k — 1 times does not give

£*(Mi, Mi, ■ ■ ■ , Mr) but Ek{Mi)Ek{Mi) ■ ■ ■ Ek{Mr).

From the fact that the derívate of the compound is the compound of the
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dérivâtes (Theorem XXXIII), it readily follows that theorems like XXVIII

and XXIX should hold with respect to compounding also ; namely

Theorem XXXIV. If two functions ofr arguments have identical dérivâtes,

each is the compound of the other with a cardinal function.

If two functions of a matrix-set of arguments have identical column-derivates

each is the compound of the other with a cardinal function of the matrix-set.

2. The conjugate function.   We define the conjugate function by

conj/ © / = £0.

We shall determine the conjugate of a given function, and thereby show that

it exists and is unique.  Let

/(p)(*i, x2, ■ ■ ■ , xr) =   E«(»i> m2, ■ ■ ■ , mr)xx x2   ■ ■ ■ xr ;

(conj /)(„)(*i, Xt, • • ■ , xr) =   X^(mi, m2, ■ ■ ■ , mr)xi lx2 * ■ ■ ■ xr .

Since the derívate of a compound is the compound of the corresponding déri-

vâtes, it follows from the definition of the conjugate function that any

derívate of conj / is the conjugate of the corresponding derívate of /. Hence

from the formula for the conjugate of a function of one argument (II §6), it

follows that

b(mu 0, 0, • • • , 0)-aimi, 0, •• • , 0) (»^0).

Similarly, by taking the derívate of conj /©/ with respect to r — 2 of the

arguments, we have

*(f»i, m2, o; • • •, 0) + biO, ntt, 0, • • • , 0)a(«i, 0, • ■ • , 0)

+ b(mi, 0, ■ ■ ■ , 0)a(0, m2, 0, • ■ ■ , 0) + a(«i, m2, 0, ■ • • , 0) =0    («i, m2 ¿¿ 0).

Therefore, using the previous result,

b(mu m2, 0, ■ • ■ , 0) = — a(wi, m2, 0, ■ ■ ■ , 0)

+ 2!o(w1> 0, • • ■ ,0)a(0, m2, 0, ■ ■ ■ ,0).

This process might be continued. We shall prove by induction that, generally,

(A) bimh m2, ■ ■ ■ , mr)

= Z)(— 1)'*' 11aimi, m2,0, ■ • • , 0)a(0, 0, m3, m4, mb, 0, ■ ■ ■ , 0)o( • ■ ■),
i

where, on the right, the suffixes of the a's constitute a partition of the non-

vanishing m's into i parts, and the second summation is for all such distinct

partitions.

Assume this formula to be true for conjugates of functions of r — 1 argu-

ments.  Then by taking dérivâtes of both sides of the relation
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conj /©/=£),

it follows that the formula is also true for functions of less than r — 1 argu-

ments. To establish its truth for the conjugate of a function/of r arguments,

we observe that it follows from the definition of the conjugate that

(B) 0 = b(mx, Mi, • • • , mr) +   X*(°, *»2, • ■ - , mr)a(mx, 0, • • • , 0)

+ - - - + a(mx, m2, ■ ■ ■ , mr).

If any of the m's is zero, then the expression for b follows from the proved

truth of formula (A) for functions of less than r — 1 arguments. We may

therefore take all the m's to be different from zero. Substituting on the

right of (B) for b's with zero suffixes, from formula (A), it becomes evident

that the expression for b{mx, m2, • • • , mr) is a sum of products of a's, whose

non-zero suffixes constitute a partition of mi, m2, • • • , mr, multiplied by

certain numerical coefficients. To find the numerical coefficients of any a-

product corresponding to an ¿-part partition, say a{mi, m2, 0, • • • , 0)a(0, 0,

m3, mi, m6, 0, • -, 0) • -, we observe that this product could have come

from exactly i terms on the right of (B), namely

a(mi, m2, 0, - - - , 0)6(0, 0, m3, ■ ■ ■ , mT),

a(0, 0, m3, mA, ms, 0, • • ■ , 0)b(mu m2, 0, 0, 0, w6, • • ■ , mr),

Substituting for the b's from (A), it follows that the product in question oc-

curs on the right of (B) with the coefficient F ( — l)i_1(¿ — 1)!. Hence it occurs

in the expression for b{mi, m2, • • • , mr) with the coefficient (—1)**!, proving

the truth of (A) for functions of r arguments. Since (A) has been proved to

be true for functions of 2 arguments, the induction is complete.

In particular, for the conjugate of a cardinal function /, we have the

result that if

/(p)(xl, Xi, ■ ■ ■ , xr) = 1 +  22a(mh m2, ■ ■ ■ , mT)xi 'x2 * • • • xr

(mx, m2, ■ ■ ■ , mr = 1, 2, • • ■ ),

then

(conj/)(„)(*!, Xi, • ■ • , xr) = 1 —   2^(wi, m2, ■ ■ ■ , mr)xx x2   ■ • ■ xT .

Thus the formula which gives the conjugate of a cardinal function is analo-

gous to the formula for conjugates of functions of a single argument.

3. The compounding of functions of a matrix-set. The two theories of

the compounding process, which have been stated for functions of one argu-

ment and of several arguments, respectively, have yielded formally dif-

ferent results, even though they have the same arithmetical basis. The reason
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for the difference lies in the fact that, while in if®p)iM) a term of the type

fil)PiM) occurs only once, there are in (/©0)(Mi, M2, ■ ■ ■ , Mr) (2r— 1)

terms of the type/(Si, 52, • • • , Sr) XpiMi/Sx, M2/82, • • • , Mr/5r), in which

one or more of the block-factors 5 are equal to unity. It is of course open to

us to develop a theory of the compound of functions of several arguments,

which is formally similar to that for a single argument; we could to this by

using the definition

_ (Ml    M2 M\
if®P)iMl,M2,  ■   ■   ■ ,Mr)   =    E/(«1,«I,  ■   ■   -,ár)4— >   -»   -   •   •   > -),

\ Ox Ô2 Ôr  /

where the summation is for all sets Si, 52, • • • , Sr of block-factors, which

have the property that no factor of any 5 is prime to any other S (in other

words, that the distinct prime factors of every 5 are the same), with a similar

property for the set Mi/hi. It is clear that the compound defined thus is a

multiplicative function, and indeed (as will be seen below) a cardinal func-

tion, of Mi, M2, • • • , Mr. We shall describe this definition of the compound,

by saying that, in it, the argument-group (Mi, M2, • • • , Mr) behaves like a

single argument. The possibility of this alternative definition suggests a

more general view of the compounding operation, which embraces the two

theories as aspects of itself.

Let a given set of arguments be divided into mutually exclusive groups

in any manner. The most general definition of the compound of two func-

tions of these arguments is then that the compound is formed in the usual way,

with the modification that each group of arguments behaves like a single argument,

in the sense defined above.

This generalized view of the compound will always be understood, when-

ever there is any indication of grouping in the arguments. For example, when

we talk of the compound of two functions of a matrix set of arguments, it

will be understood, by convention, that the arguments in each column of the

matrix have been grouped together, so as to behave like a single argument

in the above sense.

It is easy to see that the generating series, to any base, of the compound

of two functions/, p of the matrix \Mix, Mi2, • • • , Mir\ (* —1, 2, • ■ • , s),

need not be worked out ab initio, but may be seen at a glance, by a proper

interpretation of the formula (V §1) for the case of r arguments, viz.

c(f»i, m2, ■ ■ ■ , mT) = a(0, 0, ■ ■ ■ , 0)o(wi, • • • , mr)

+  Yla(mh 0, ■ ■ ■ , 0)6(0, m2, ■ ■ ■ , mT) + etc.

To do this, we consider that]T)a(rai, m2, ■ ■ ■ , Wr)*!"1 ■ ■ ■ sfand^K^i» • ' * >

mr)x?1 ■ ■ ■ xrnr still represent the generating series of the functions/, p of the
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matrix set, on the understanding that each xf' stands for x^'xty' ■ ■ ■ xTj"', and

each m,- in the coefficients stands for the group of indices mXj, m2¡, ■ ■ ■ , mtj.

If, further, we interpret the occurrence of a zero in place of m,- to mean

mx, = m2l= ■ • ■ =m,, = 0, then the above formula determines the generating

series of the compound. For, the expression for the compound of two func-

tions/, <p, when regarded as functions of the matrix | Mi,|, differs from the

corresponding expression when they are regarded as functions of the rXs

arguments M,-,-, in the suppression of all those terms f{hn)<j>{Ma/hi,), for

which the elements in any column of | hi,] or | Mi,-/Si,| do not all involve the

same prime factors; hence it follows that the expression for the general coef-

ficient c{ma) of the generating series of the compound in the former case,

differs from its expression in the latter in the suppression of those terms

a{mi¡), b{mij), in which some only of the elements of a column of | nti,] are

zero.

In particular, it follows from the expression for c{ma), that c(íWí,)=0,

when one element from each column of |«i<,-| is zero, without all the w's

vanishing simultaneously.

Definition. A function F of the matrix | MixMi2 ■ ■ -Mir\ (»-»1,2, ■ • ■ ,s)

will be called a transcardinal function, if its derívate with respect to every set

of r arguments, chosen one from each column, is the function E0.

The following points may be noted in connection with this definition and

the correlated definition of the cardinal function of a matrix:

(1) A transcardinal function of | Mi,| is necessarily a cardinal function of

the transposed matrix | M,-¡|, but the converse is not true.

(2) A transcardinal function of the "long matrix" |Mi, M2, • • • , Mr|is

any arbitrary function of Mx, M2, ■ ■ ■ , Mr; a transcardinal function of the

"deep matrix"

I Mil

is a cardinal function of Mi, M2, • ■ • , Mr.

(3) A cardinal function of the long matrix | Mi, • ■ • | is a cardinal func-

tion of Mi, M2, • • • , Mr, a cardinal function of the deep matrix | M,| is an

arbitrary function of Mi, M2, • • • , Mr.

Theorem XXIII(a). The compound of any two functions of a matrix \ Mi,]

is a transcardinal function of | M<,-|.

This may be seen directly from the definition of the compound, or thus.
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By definition, a transcardinal function vanishes when one argument in each

of the columns of | M¿,| is equal to 1, unless all the other arguments are also

equal to 1. Hence, the coefficient c(?w,-,) of the general term of its generating

series vanishes when one element from each column of |w<,-| is zero, unless

all the remaining m's are also zero. But this property was noted above to

hold for the compound of two functions of a matrix, hence the theorem.

From this theorem it follows that if/ is a function of the matrix which is

not transcardinal,/©E0 cannot be equal to/; as a matter of fact we see

directly that/©E0 is that transcardinal function of the matrix, which is

equal to / for all sets of values of the arguments, except those for which it

vanishes in virtue of being a transcardinal function. We shall write

/ © £o = tcrd /,

and call tcrd / the transcardinal part off.

Theorem XXIII (b). The compound of two functions f, p of a matrix de-

pends only on the transcardinal parts of f and p.

For, iif®p = p, then p is transcardinal by the previous theorem, so that

tcrd^=^.  Hence

/ © <b = p = tcrd p = p © £o

= /ffi<¿>©£o=/© tcrd <b.

The conjugate of the function/of the matrix | M,,| is defined to be another

function conj/of the same matrix, such that

/ © conj /=£(,.

Since the formula for the generating series of the conjugate function is simply

a consequence of that for a compound, it follows that we can deduce the

generating series of conj/ from that of/, from the result (V §2)

bimx, ntt, • ■ •, mr) =  £( — l)*t! J2a(mu ™2,0, • • • )o(0, 0,m3, ■■■)■■■,

by proceeding in the same manner as was done in the case of the compound.

In particular it follows that the conjugate of a cardinal function / of the

matrix is another cardinal function of the same matrix, whose generating

series to any base is obtained from that of/, by changing the sign of all the

terms except the constant term.

4. Rational functions of several arguments. (Cf. III.) The function

/(Mi, M2, • • • , Mr) is said to be a rational function, if
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F{p)(xX,   X2,  ■   ■   ■   ,   Xr)

J(p)(Xl,   X2,  ■   ■   ■   ,   Xr)   =--,
<t>(p)(Xi, x2, ■ ■ ■  , xr)

where Fip-, and 4>lP) are polynomials for every p, whose degrees p¡, ai in xt

have finite upper bounds as />—>co (» = 1, 2, • • • , r); the functions whose

generating series are <pip) and F(p) are, respectively, the integral and inverse

component of/.

Since polynomials in more than one variable are not necessarily factor-

able, a rational function can not in general be expressed as a composite of

functions of lower degrees.

The composite of rational functions fx, f2 is clearly a rational function,

whose integral and inverse components are, respectively, the composites of

the integral and inverse components of /i,/2. Thus composition is a rational

and integral process. It is easy to show that the compound oifx,f2 is a rational

function whose integral component is the composite of the integral compo-

nents of fi,fi, and of all products of complementary dérivâtes of /i,/2. The

product of rational functions is also a rational function. This may be proved

by a method similar to the one adopted for functions of a single argument.

It could be inferred directly, if Hadamard's multiplication theorem can be

extended to power series in several variables ; the extension appears however

to have been carried out so far only to two variables.*

We have to distinguish between a linear function of r arguments, and a

rational integral function of degree 1 ; the former is a product of linear func-

tions of single arguments, and is a particular case of the latter. We define a

totient as the composite of a linear function and the inverse of a linear func-

tion; thus the totient is, like the linear function, a separable function, being

the product of totients of single arguments (a function of r arguments is

separable, if it is the product of functions of fewer arguments). Thus a totient

of r arguments is not the most general rational function of degree (1, 1) in

each of the arguments.

Section VI.  The identical equation of the multiplicative function

1. The cardinal functions associated with a function of r arguments. The

multiplicative property of/(Mi, M2, • ■ • , Mr) implies that

f(MiNi, M2N2, • • • , MrNr) - f(Mi, M2, ■ ■ ■ , MT)f(Nx, N2, ■ ■ • , Nr),

whenever the products MXM2 ■ ■ ■ Mr, NXN2 ■ ■ ■ NT are relatively prime.

Now the functions on both sides of this equation are functions of the matrix-

* Cf. U. S. Haslam-Jones, An extension of Hadamard's multiplication theorem, Proceedings of the

London Mathematical Society, (2), vol. 27.
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set of 2Xr arguments | M„ ¿V,| (* —1, 2, • • • , r), and the equation asserts

the equality of the functions, whenever the column-products are relatively

prime.      Hence  it follows from Theorems XXIX,  and  XXXIV,  that

fiMxNx, M2N2, ■■ ■ , MrNr) is

(1) the composite of//and a cardinal function Cx of the matrix | M¿, N,\

(where we use ff as the functional symbol for /(Mi, M2, • • • , Mr)/(iVi,

Nt,  •   •  •   ,  Nr)),

(2) the product oiff and the integral of a cardinal function C2 of the same

matrix,

(3) and, lastly, the compound of ff and a cardinal function C3, of the same

matrix.

It will be convenient to refer to G, C2, C3, as the first, second, and third

cardinal functions associated with/(Mi, M2, • • • , Mr). Unlike the second

and third cardinal functions, the first cardinal function can be expressed in a

simple manner in terms of /, by means of the processes of the calculus.

Namely, when E is a function of a matrix-set of arguments, let us denote by

crd E ithe cardinal of F) that cardinal function of the matrix-set, which is

equal to E, except for those values of the arguments for which it vanishes in

virtue of being a cardinal function. It is easy to see that the generating series

of crd E is obtained from the corresponding generating series of E, by sup-

pressing all those terms, in which the variables corresponding to a column of

the matrix-set are entirely absent. With this notation, it will now be shown

that the first cardinal function of /(Mi, M2, • • • , Mr) is the conjugate* of

crdf-liM\Nx, M2N2, • • • , MTNr), where/-1 represents the inverse function

of r arguments, of/.

2. The expression for the first cardinal function. The first cardinal func-

tion G(| M,, Ni\ ) associated with/ is given by

f(MxNX,  M2N2,  ■   ■   ■   ,  MrNr)   = ffCx.

Now, the inverse of ff is/-1/-1 (Theorem X).   Hence

Ci = f(MxNi, • • • , MrAM-/-1/-1.

To show that this is equal to

conj crd f-^MxNx, M2N2, ■ ■ • , MrNr),

we shall, for convenience of writing, take r = 2, the method being the same

for any value of r.  Let

* Notice that this is the conjugate of a function of a matrix, and must therefore be understood

not in the sense of V §2, but in the generalized sense of V §3.
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/(p)(xi, Xi) =   22a{mumi)xi'x*\

/(p)(xi, x2) =   22°{mit m2)xi1x2\

so that

(A) 22b(mi — Mij »«2 — Pi)a(pi, pi) = 1 or 0,

according as mh m2 are, or are not, simultaneously zero (mi = 0, 1, • • • ,mi,

p2 = 0, 1, • • ■ , m2).  Then,

\f(MiNi, M2N2)\ (p)(xi, yi, x2, y2) = 2^a\mi + nx,m2 + n2)xx yx x2 y2 ;

{f~1(Mi,M2)f-l(Nx,N2)\ip)(xx,x2,yi,yi) = 22b(mu m2)b(nx, n2)xT yi Xt'yî'.

Hence, if

Ci(p)(x1, x2, yi, y2) =   22c(mu ™i, nu n2)xx 'x2 'yiy2 ,

we must have

c(mi, m¿, «i, n2) =   22a{pi + VU Pi + "2)b(mi — pu m2 — p2)b(ni — vx, n2 — v2)

(px = 0, 1, • • • , mx; tu = 0, 1, • • • , w2; vx = 0, 1, • • • , nx; v2 = 0, 1, • • • , n2)

=   22b(ni — vx,n2 — v2) 22a(pi + vn p2 + v2)b(mx — px, m2 — p2).

Since Ci is a cardinal function, c{mx, m2, n"x, n2) vanishes when mx, m2 (or

«i, w2) are simultaneously zero. We may therefore suppose that mi, m2 are

not both zero, so that mi + vx and m2+v2 are not simultaneously zero, for any

admissible values of vi, v2.  Hence, by (A) above,

¿2a(Pi + "it P2 + v2)b(mi — pi, m2 — p2)

= —   22a(vi — ki, v2 — k2)b(mi + ki, m2 + ki)

(ki = 0, 1, • • • , vi; ki = 0, 1, • • • , v2; kx and k2 not both zero).

Therefore,

c(mx, m2, nx, n2) =   22 ~ b(nx — vi, n2 — v2)a(vx— kx,v2— k2)b(mx + kx, m2+ k2)

=   22 — b(mx+ kx,m2+ k2) 22b(ni — vi,n2—v2)a(vx—kx,vi—ki)

(vx = kx, kx + 1, ■ ■ ■ , nx; vt =» kt, ki + 1, • ■ • , n2).

It is clear that here the value of the inner sum is zero, unless nx — kx, n2 — k2

are simultaneously zero, in which case it is 1. Now ¿i = «i, k2 = n2 is a set of

values within the range of kx, k2, only when «1, n2 are not both zero. We see,

therefore, that
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c(wi, m2, «i, n2) = 0, if either nix, m2, or »i, «2 are both zero,

= — b(mx + «i, «2 + w2), otherwise.

But the cardinal function, the generating series of which has — £>(jki+«i,

m2+n2) for the coefficient of xpxpy^yZ1, is obviously conj crd f~liMxNx,

M2N2).* The same method shows that, generally,

ex = conj crd/-'(MiiVi, M2N2, ■ ■ ■ , MrNr).

The equation

fiMxNx, M2N2, • • • , MrNr) = //conj crd f-^MxNx, M2N2, ■ ■ ■ , MrNr)

is thus identically satisfied by any multiplicative function /, and will be

referred to as the identical equation of f.

For functions of one argument, the identical equation takes the form

f(uv) — {/(«)/(»)} • {conj crd/_1(Mi))}.

3. The identical equation of a totient.   Let   T = LlL21  be  a   totient-

function of a single argument, so that its identical equation is

T(MN) = TiM)TiN)conj crd T~liMN).
Let

1 — ßx -x 1 — ax
TlPiix) =-;    Tlp)ix) =-— •

1 — ax 1 — ßx

Then

jconj crd T^iMN)] (p)(x, y) = 1 - ß2( 1 - — Jxy{ J2ßm+"xmyn}

1 — ßix + y) + aßxy

(1 - ßx)H - ßy)

Hence

conj crd T-'(MN) = L2(M)L2(N) ■ {L? (I.e.m of M,N) X L¡\g.c.á of M, N)} .

Thus the identical equation for T becomes

T(MN) = Lx(M)LxiN)-L2iM)L2iN)-L2(M)L2(N)- {L2\l) X Lx\g)]

= Ei(M)£i(A0-{x71(/) XLx\g)}

= LxiM)LxiN)- {LtiD X Lxig) X p(M)piN)]

where g, I are, respectively, the g.c.d. and the l.c.m. of M, N.

For example, the identical equation of the totient <rv,* = E,-X.r1 (which

* Compare V §3.
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reduces to Jordan's function for k = 1, and for k = a positive integer, is iden-

tical with Schemmel's extension of Euler's function,* when the argument

has no prime factors equal to, or less than k) is

(M N\T
ïr.kiMN) =   £(-) \k{HSx, St)}[g(Si, 52)Ypi5x)piô.

\ Sx82 /
)

or

<t>r.kjMN)       ^„„,,   {gJ5x,52)Y
<-A) - ,,,,,,     =    2-,Ekiôx82)-—--piox)piS2).

iMN)r (SiS2)r

If T is an enumerative totient, then E2 = E, and the identical equation takes

the form

TiMN) = LxiM)LxiN)- {Lxig)piM)piN)\.

In particular, for the Jordan function

4>riMN) U(5i,<52)}r

-tTT;— = ¿-—77T\-MSiMW,
MTNT i&i52)T

a result which may also be derived from (A).

4. The Busche-Ramanujan identity.   E. Buschef stated that

o-aiM)o-aiN) =   £¿v/-jpY

summed over the common divisors d of M and iV; Ramanujan has utilised

this result (for the case a = 0), as well as its inverse form it

caiMN) =   2>/-W—\d'pid).

We shall say generally that a function/(Mi, M2, - - • , Mr) admits a Busche-

Ramanujan identity, if we have identically

fiMxNx, M2N2, ••■ , MrNT)

^   /Mi    M2 Mr\/Nx   N2 NX   t

* Dickson, p. 147.

t Dickson, p. 319, Note 147.

X Collected Papers, p. 134.
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summed for common divisors S¡ of Mi, Ni (*' = 1, 2, • • • , r), F being some

(necessarily multiplicative) function of r arguments.

A relation of this form asserts that f{MxNx, M2N2, ■ ■ • , MrNr) is the

composite of ff and a principal function of the matrix-set | Mi, Ni\ (* = 1,

2, • • • , r). Hence a function/admits a Busche-Ramanujan identity, if, and

only if, its first cardinal function is a principal function; that is, only if

conj crd f~l{MxNx, M2N2, ■ ■ ■ , MrNT), and therefore also crd f-^MiNi,

M2N2, • • ■ , MrNr), becomes a principal function. To find the condition

that this may be the case, let

ftp)(xi, Xi, ■ ■ ■ , xT) =   22°(mi, m2, ■ ■ ■ , mr)xx "x2 ' • • ■ xr ,

so that

{crd/'^MiA7!, M2#2, • • • , MrNr)} ip)(xx, ■ ■ ■ , xr, yx, ■ ■ ■ , y,)

1     i       ViV i l \    "•   "« mr   nr

= 1 +  2^b(mx + nx, ■ ■ ■ ,mr + nr)xx yx   ■ ■ ■ xr y, ,

where, on the right, simultaneous zero values of mi, m2, ■ ■ ■ , mr and «i,

»2, • • • , «r are excepted from the summation. The condition that this may

be a principal function is the vanishing of b{mi+ni, m2+.n2, ■ ■ ■ ,m,+nr)

when any mi^ni (with the understanding that neither all the m's nor all the

«'s vanish together). In other words ¿>(Xi, X2, •• • , Xr) =0, whenever the X's

admit a partition Xí = í»í+«í (* = 1, 2, • • • , r), in which at least one m¡^M¡,

neither the m's nor the w's being all zero. Hence

(1) 5(Xi, X2, - • • , Xr) =0, if any X>2. For if X< = 3 (say), we can write

Xí = «íí+«í; m{ = 1, «i = 2; m¡^»¡; w.^O, «¿f^O.

(2) ¿>(Xi, X2, • • • , Xr) =0, if at least two of the X's do not vanish. For, if

Xit^O, X2;¿0, we can write Xi = wi+»i; X2 = w2+»2; »ii=Xi, «i = 0; w2 = 0,

«2 = Xs.

It results that b{\h X2, • • • , Xr) can have only 2r non-vanishing values

bi, d, corresponding to X, = 1 or 2; X, = 0 iox j^i. Thus it follows that

/(p)(Xi, Xi, • • • ,Xt) = 1 + ¿»iXi + ¿»2X2 +   •  • •

+ brXr + CXXX2  + C2X22  +   •   •   ■ + Crx} .

Therefore

1
/(p)(Xl,  X2,  ■   ■   ■   ,  Xr)   =  -     ;       =- ■      ==, -  •

1   +     ¿A*>  +    2^CiX>

Hence/(Mi, M2, ■ ■ ■ , M,) is an integral function of a special type, quadratic

in each of its arguments, its special property being that/_1(Mi, M2, • • • ,Mr)
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vanishes unless every two of its arguments are relatively prime.* Also, v/hen

/ is a function of this form,

{conj crd/-1(MiAri,M2iV2, • • -,MrNT) j <P>(xi, • ■ -,xr,yx, ■ - -,yr)

= 1 - Sc<*jy<.

Now the derívate of /(Mi, M2, • • • , Mr) with respect to the r — 1 arguments

other than M¿, is evidently an integral quadratic function of M„ which we

may denote by Li ■ LI ; we have

1
iLi-L¡)lp)iXi) = ——--(»- 1,2, ■ • -,r);

1 + biXi + Cixf

iLi X Li)/P)ixi) = 1 - CiXi.

It therefore follows that conj crd/-1(MiiVi, • • • , MrNr) is a principal func-

tion, princ E (say), where

F(Mx, M2, ■ ■ ■ , MT) = 0, if two of the arguments have a common factor,

= K\\Mx)K¡\m2) • • • K~\Mr), otherwise,

where

Ki = LiXLl (¿ = 1, 2, • • ■ ,r).

We have thus reached the following theorem:

Theorem XXXV. The only functions ofr arguments which admit a Busche-

Ramanujan identity are the integral quadratic functions, whose inverses vanish

unless every two of the arguments are relatively prime. The identity for a function

f of this type has the form

fiMxNx, ■ ■ -,MrNr) =ff princ F,

where E(Mi, M2, • • • , Mr) = 0, if any two of its arguments have a common fac-

tor, and is otherwise equal to Ä'r1(Mi)E"2_1(M2) • • • Kr~1iMr); Kí = LíXLÍ ,

and Li ■ L¡ (M.) is the derívate off with respect to ther — 1 arguments other than

Mi.

In particular, the functions f of one argument, which admit a Busche-

Ramanujan identity, are the integral quadratic functions and these only. When

f = Lx-L2 the identity has the form

f(MN) = fiM)fiN) -princ (Et X ¿2)"1.

* Functions with this property are, in a sense, the exact opposites of cardinal functions; they

may be called ''anti-cardinal functions."
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As illustrations of the identity for functions of one argument, we have

(1) since ffa = Ia-E,

°a(MN) =   ^«(y)«^)5*^«),

summed for common divisors 5, of M and A^;

(2) in particular,

Oa(N2) =   22\ <M—) ( °"p(s)t summed for divisors S, of N.

Generally, iif=LxL2, and LX2 = LXXL2, then when M is a multiple of N,

<M\ IN\
f(MN) =   £/(y)/(y)¿72(a),

_ (MN\
f(M)f(N) =   £/(-—j¿12(0),

the summation extending to divisors S, of N, in each case.

In particular, if M = Nk,

/<*-) = Y.{rÇ){^)Ghy,
/jyk+lx

f(N*)f(N)= Zfir-rr-JLim.

A different form may also be given to the Busche-Ramanujan identity

for /(M) = (Fi • L2) (M).  Namely, we have

/(MAO =/(M)/(A7)-conjcrd/-1(MA?)

= //•£    ■ Eprinc (LX2  EE   )

= ffÉ'1-{(L¡2-E)(g)},

where g is the g.c.d. of M, N.

For example,

aa(MN) =Ia-{(I~a1-E)(g)}

/M N\a
=   22 [-—- )F{g(8i52)} (hx/M,b2/N),

\ Ô1Ô2 /

where g{hx, h2) denotes the g.c.d. of 5i,'S2 and F{N) =the product 11(1—/><■)

extended over all the^prime factors oi[N.
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An alternative form of the same result is

fiM)fiN) = fiMN) • E-1 • £ • princ (E12 -£■£-')

= /(MA0-£-i-{(Ei2-£)(g)}
or

if-E)iM)if-E)iN) =■ Z/í—-YEi2-£)(g(5„o2)),
\ Ol o2/

which is valid, when/is any integral quadratic function.

5. The second and third cardinal functions. We shall next investigate

the form of the functions, whose second, or third, cardinal functions become

principal functions.

The second cardinal function C2(| M„ Ni\ ) of/(Mi, M2, • • • , Mr) is given

by

fiMiNi, M2N2, ■■■ , MrNr) = ffX iCt-E).

Writing

f(P)ixi, x2, ■ • • , xr) =   Ha(wii m2, ■ ■ • , mT)xiix2   ■ ■ ■ xrr,

it follows that

(C2-£)(p)(*i, • • • , xT, yi, ■ ■ ■ , yr)

aimx + »!, m2 + n2, ■ ■ ■ , mr + nT)   m, », m, »,
= 2^ —:-r-,-r ^1^2   • • • xt yx  ■ ■ • yr .

a(mi, m2, ■ ■ ■, mr)ainu n2, ■ - •, nr)

This determines C2. If C2 is to be a principal function, C2E must be a func-

tion of the g.c.d.'s gi of M„ N{ (Theorem XXXI).  Hence

«(«i + «1, m2 + n2, ■ ■ ■ , mT + nr)

a(mi, m2, ■ • ■ , wr)a(«i, n2, ■ ■ ■ , «,)

must depend only on the smaller element of each of the pairs (wi, nx),

im2, n2), ■ ■ ■ . Hence, if Wi^Mi,

a(mx + k + «1, m2 + n2, ■ • ■ , mT + nT)

a(»i + k,m2, ■ ■ ■ , «r)a(»i, n2, ■ ■ ■ , nr)

is independent of k, and is equal to

a(«i + »1, • • • , mT + nT)

a(mu ■ • ■ , »r)a(«i, n2, ■ ■ ■ , nT)

It follows from this that if w,>0,

aimum2, ■ • • ,mr) = X¡ '   a(mum2, ■ ■ ■ ,m¿_i, l,mi+x, ■ ■ ■ ,mT)ii = 1, 2, ■ • ■ , r).
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Also

ajl, 1, 0, -    -, 0) = a(0, 1, 0, • • • , 0) _ ^

a(0, 1,0, ••-,0)a(l,0, - - • , 0)      a(0, 1, 0, • • • , 0)a(0, 0, • • ■ , 0)

since in both cases the lesser of m¡, «i is the same. Hence

a(l, 1,0,---,0) =a(0,l,0,    --,0)a(l,0,---.O).

Similarly

a(l, 1, • • • , 1) = a(l,0,0, - • ■ ,0)a(0, 1,0, • • •, 1,0) • • • .

Thus

a(mx,m2, ■ ■ ■ ,mit0, • • -,0) = {X^UA • • -,0)} {\r_la(0,l,0, • • -,0)} • • -,

where
f»i, m2, ■ - - , mi > 0.

Writing

a(l, 0, • • • , 0) = Xi - ai;   a(0, 1, 0, - - • , 0) = X2 - a2, etc.,

it follows that

(1 — aixi)(l — a2x2) • • • (1 — arxr)
/(p)(Xi, x2, • • • , xr) =-

(1   -   XlXi)(l   -   X2X2)   ■   ■   •   (1   —   XrXr)

Thus/is a totient. Also it is easy to see that (C2-£)(| M¡, N{\ ) now becomes

T'igi, g2, ■ ■ • , g/), where V is the level totient such that F'x/ = the linear

component of/.   Hence

Theorem XXXVI. The totients are the only functions of r arguments,

whose second cardinal function is a principal function. Also,if T{MX, M2, • • • ,

Mr) is a totient, and T' is the level totient such that TxT' is a linear function,

T{MXNX, M2N2, ■■-., MrNr)

= T(MX, Mi, ■ ■ ■ , Mr)T(Nx, Ni,--- , Nr)T'(gx, g2, • • • , gr).

For instance, if <pk{M) is the Jordan function,

<t>k(MN) gk

<t>k(M)4,k(N)       <t>k(g)

More generally, if <f>k.r = IkK~l is the Jordan-Schemmel totient (VII §3),

4>k,r(MN) gk

4>k,T(M)<t>k,r(N)       <t>k,r(g)
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The third cardinal function is less interesting than the other two, and

becomes a principal function only in a trivial case.

Theorem XXXVII. If the third cardinal function C3 of f is a principal

function, it is the principal function E0, andf must be a linear function.

For, with our previous notation, it follows that when C3 is a principal

function, we must have,

a(wi + »i, m2 + n2, ■ ■ ■ , mr + nr) — a(mx, m2, ■ ■ • , mr)ainx, n2, ■ ■ ■ , nT) = 0,

whenever any m^ni (* —1, 2, • ■ ■ , r).  Hence writing

ax = o(l, 0, • • • , 0); a2 = o(0, 1, 0, • • • , 0) etc.,

we have

aimx, 0, • ■ ■ , 0) = fl(2, 0, • • • , 0)a"""2 («, è 2),

and similar equations. Also, if Wi^2, nx7i2, mi-£ni,

(a(2, 0, • • • , 0)}2 a?'+n'~4 = aimu 0, • • • , 0)a(n,, 0, ■ ■ - , 0)

= aimx + «i, 0, • • • , 0)

= a(2, 0, • • • , 0)a7'+n'-\

Hence a(2, 0, • - • , 0) =a2, so that aimx, 0, • • • , 0) =a¡niim1 = 0, 1,2, ■ ■ ■).

Also, if «i, m2, - - • , m^O,

aimx, • ■ • , w,-, 0, • ■ • , 0)

=   aimx, 0, • • • , 0)a(0, m2,0, •• •, 0) • • • a(0. • • • , 0, mit 0, ■ • ■ , 0)
m,   m, f»$

= öi a2   • • • a¡ .

Thus/ is the linear function whose generating series

1
/fj»(*) ==r^-••

11(1 — aiXi)

6. The restricted Busche-Ramanujan identity. If FiM, N), F'iM, N)

are two functions with identical dérivâtes, then Theorems XXVIII and

XXXIV state that each of E, F' is the composite of the other with a cardinal

function, and also the compound of the other with a cardinal function. We

can however state the relation between E, F' in the more general form, that

each of E, F' can be obtained from the other by composing it first with a

cardinal function, and then compounding the composite with a second car-

dinal function; that is,

F' = iF-Ci) ®C2.
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Now, if/(M) be a function of a single argument, /(MA7) and/(M)/(A7) have

identical dérivâtes. The relation between /(MA7) and f{M)f{N) can there-

fore be put in the general form

f(MN) = iff-Ci) © Ci,

where Cx, C2 are cardinal functions of M, N. It is clear that, in this relation,

either of the cardinal functions Cx, C2 may be arbitrarily chosen, and that the

other becomes then determinate. We enquire, in regard to this equation,

when it can happen that both G and C2 are principal functions.

The arithmetical significance of the assumption that G and C2 are simul-

taneously principal functions is clearly that/ satisfies a Busche-Ramanujan

identity for certain restricted values of M, N. For it is evident that the

compound of F{M, N) and a principal function of M, N has the same value

as F{M, N), whenever M, N do not both contain any prime factor p raised

to the same power. Thus, when G, G are principal functions,/satisfies the

Busche-Ramanujan identity

f(MN)=ff-Cx,

for all such values of M, N as have no common block-factor. We say in this

case that/ admits a restricted Busche-Ramanujan identity.

To investigate when G, G are both principal functions, take

/(p)(x) = 1 + aix + a2x2 + • • • ,

{f(MN)}(p)(x, y) =   22am+nXmyn,

G(p)(x, y) = 1 + txxy + t2x2y2 + ■ • • ,

C2(p)(x, y) — 1 + kxxy + k2x2y2 + • • ■ .

Then

22a^+nXmyn = ( 22amXm)( 22a«y")(i + tixy + *«*V + • • • )

+ kxxy + k2x2y2 + • • •

(V §1). Hence, if m^n,

(A) am+n — aman + txam-ian-X + t2am-2an-2 + • • • .

Hence, if m>n + 2,

aman+2 + am-Xan+xtx + • • • + am_„_2/„+2

= am+n+2

= aiam+n+i + am+Ji (by (A))



654 R. VAIDYANATHASWAMY [April

= ci(aman+i + a„_ia„/i + • • • + am_»_iiB+i)

+ txiaman + am-xa„-xtx + • • • + ßm-»<»)

= aman+2 + am-xan+1tx + • • • + am-ntnia2 + tx) + axam-n-xtn+x,

so that

(1) * am_„_2/»+2 + tnam-nia2 — a2 — /i) = 0    (m > m + 2).

By varying m in this equation, it follows that

(2) —- - a constant X =-     (r > 2).
ar_2 aí + h — ai

Similarly, by varying n, we have

(3) /»+2 = t„t2.

Now from (2),

a3 = öia2 + ¿Mi = aiX,

therefore

(4) either ax = 0, or X = a2 + h.

Again from (2), aia4 = fl2ö3.  Hence

a2a3 + tiiaia2 + ûi/i) = ai<i4 + a3/i = a6 = a2a3 + aia2ti + axt2.

Hence,

(5) either ax = 0, or i2 = tí.

Now, the relation am+l — amax — am_iii = 0 holds from m = 2 onwards, on ac-

count of (A). Hence the series/(p) ix) is a recurring series of the second order,

its value, in finite terms, being evidently

1 + iat- ax2 - ti)x2
f(p)ix)

1 — axx — tix2

There are now three possibilities to be considered.

Casel. a2 — a2 — h = 0. For this case the element of/ to the base p is that

of an integral quadratic function; from (2) and (3), we easily see that <„ = 0

for n> 1. We also see that C2 reduces to E0, so that our restricted identity

becomes the unrestricted identity, which, we know, is satisfied by every

integral quadratic function.

Case 2. a2 — a2 — h^O, au¿0. For this case it follows from (4), (5), that

it
k = ti2,-—- = X = a2 + tx.

ai+ti — a2
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These imply the vanishing of ai —a2 {a2+tx), which is the resultant of the

numerator and denominator oif(p){x). Thus the element of/ reduces to that

of a totient. Conversely, when/ is the totient Fi • L2~x,

1 — ax
/(*)(*) =

{f(MN)}lp)(x,y) =

1 - ßx

1 — a(x + y) + aßxy

(1 - ßx)(l - ßy)

(1 — ax)(l — ay) a2xy

(1 - ßx)(l - ßy)(l - aßxy)      1 - aßxy

Hence f—LxL2~l has the restricted identity

/(MAO = {//princ (F1XF2)}.

Case 3. a2 — a2 — h^O, ai = 0. Now

,    , .       1 + (ai - /i)x2

/<*>(*) =—:——.— '
1 — ¿ix2

so that / is the convolute of a totient.   Conversely, when / is the second

convolute of a totient,

1 + ax2

/<*)(*) =

{/(MAO}(p,(x,30 =

1 - ßx2

1 + a(x2 + y2) - aßx2y2 + (a + ß)xy

(1 - ßx2)(l - ßy2)

(1 + ax2)(l + a;y2)(l + ßxy)        axy(l — axy)

(1 - ßx2)(l - ßy2)(l + aßx2y2) 1 + aßx2y2

Hence if/ is the second convolute of the totient T = LiL2~1, it has the re-

stricted identity
/(MAO =//princ F,

valid whenever M, N have no common block-factor, where

Li(N)L2(D)
F(N) = —^-L-LJ.,

Li(D)

D being the greatest number whose square divides N.    Combining these

results, we have

Theorem XXXVIII. The only functions of M which admit a restricted

Busche-Ramanujan identity {namely an identity valid when M, N have no com-

mon block-factor) are (1) the integral quadratic functions, (2) totients, (3)

second convolutes of totients, and (4) crosses between these types.
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As illustrations of the theorem, we have the following identities, valid

when M, N have no common block-factor:*

7>(t>
summed for common divisors 5, of M, N, where p is Euler's function.

(2) conv<r>(MA0 =   £ conv <p( — ) convoi —jF(Í),

where E(iV) is the least divisor of N, which is divisible by its complementary

divisor.

Section VII.  The theory of Smith's determinant

1. Ordinal functions of r arguments. A function/(Mi, M2, • ■ ■ , MT) of

r arguments may be called generally an ordinal function, if it vanishes when-

ever certain prescribed inequalities of the form Mj>M,- hold between the

arguments. Since we restrict ourselves to multiplicative functions, this

property may be shown to imply a more specialized property of/.

Theorem XXXIX. If a multiplicative function of Mi, M2, • • • , MT

vanishes whenever Mi>M,, it necessarily vanishes whenever Mi is not a factor

of Mi.

For by hypothesis, fipmi, pmi, ■ ■ ■ , pmr) vanishes, for any prime p, when-

ever mi>m,-; that is, unless pm<is a factor of pm>'. Hence/(Mi, M2, • • • , Mr)

vanishes if any prime p occurs to a higher power in M,- than in M,-, that is,

unless Mi is a factor of My.

We shall concern ourselves only with two types of ordinal functions;

namely, the functions/(Mi, M2, ■ ■ • , Mr), which vanish whenever a pre-

scribed argument M,- is greater than any of the remaining arguments, and

functions E(Mi, M2, • • ■ , M,) which vanish whenever a prescribed argument

My is less than any of the other arguments. We call/(Mi, M2, ■ ■ ■ , Mr) a

minor ordinal function with the minor argument M¿, and E(Mi, M2, • • • , Mr)

a major ordinal function with the major argument My. We shall usually indi-

cate the major or minor argument by writing it without the suffix.

2. Major ordinal functions and functions with a modulus. There exist

multiplicative functions/(Mi, M2, • • • , Mr_i, M), whose value is unaltered

if Mi is increased by any multiple of M (* = 1, 2, ■ ■ ■ , r — 1) ; such functions

may be said to possess the modulus M.  We shall now show that, with each

.* These two results (the first of which is due to Mr. S. S. Pillai, as already stated) have been pub-

lished as questions for solution in the Journal of the Indian Mathematical Society (December, 1928,

last page, Nos. (1529) and (1530)).

(1) cbiMN) = Erf
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function /(Mi, M2, ■ • • , MT-i, M) possessing the modulus M, we can as-

sociate a major ordinal function F {Mi, M2, • ■ ■ , Mr_i, M) with the major

argument M, in such a way that

/(Mi, Mt, - - - , Mr_,, M) = F(£!, g,,--, gr_i, M),

where g,- is the g.c.d. of M,-, M (*" = 1, 2, • • • , r — 1).

For, since /(Mi, M2, • • • , MT-i, M) has the modulus M, and is a multi-

plicative function of its arguments, it follows that

f{Mi,Mi,---,Mr-i,l) =/(l, 1,---,1).

Hence DM(f) =£, so that by Theorem XXVI, / is a multiplicative function

of its modulus M alone. Further, let N be any number prime to the

modulus M. Then by a well known theorem, Mx, Mx+M, MX+2M, • ■ ■ ,

Mi+{N — 1)M is a complete residue system mod N. Hence there exist inte-

gers Xi, X2, • ■ • , Xr-i, such that Mi+\iM is prime to N {i = 1, 2, • • • , r — 1).

Hence

}(Mi, Mi,--- , Mr-i, M)

= /(l, 1, • • • , l)f(Mi, Mi,--- , Mr-i, M)

= f(N, 1, ■ ■ ■ , l)/(Mi + XjM, Mi + \2M, ■■■ , Mr-, + Xr-iM, M)

= f(MiN + \iMN, Mi + X2M, • • • , Mr-i + \-iM, M)

(since/ is a multiplicative function of its r arguments)

= f(MxN, Mi,--- , Mr-i, M)

(since/ has the modulus M).

Hence the r —1 arguments Mi, M2, •• • , Mr_i of a function /(Mi,

Mi, ■ ■ ■ , Mr-i, M) with the modulus M can not only be increased by multi-

ples of M, but can also be multiplied by any number prime to M, without

affecting the value of the function. Hence/ depends on Mi, M2, • • • , Mr-i

only through their g.c.d.'s with M.

Now, if/(Mi, Mi, - - ■ , Mr-i, M) be any multiplicative function, we can

define a function F (Mi, M2, • • • , Mr_i, M) by

F(Mi, Mi,--- , Mr_i, M) = /(Mi, Mi,--- , MT-i, M),

when each Mi is a factor of M,

= 0, in other cases.

The multiplicative character of F follows from that of /. Thus an arbitrary

function/(Mi, M2, ■ ■ ■ , Mr-i,M) defines a major ordinal function F(Mi, • ■ •,
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Mr-i, M); but it is obvious that E does not determine/ uniquely. If, how-

ever, /(Mi, M2, • •■ , Mr-i, M) possesses the modulus M, then from what we

have proved, / both determines and is determined uniquely by E.

As an illustration, we may mention von Sterneck's function fiN, M)

which represents the excess of the number of partitions of N into an even

number of parts mod M, over the number of those into an odd number. This

function can be shown to be multiplicative, and possesses, by definition, the

modulus M. Hence it must be a multiplicative function of the modulus alone,

and can be expressed as a function of M and its g.c.d. with A7.*

3. Minor ordinal functions. If /(M, Mi, • • • , Mr_i) is a minor ordinal

function with the minor argument M, we shall call piM) =/(M, M, • • • , M)

the kernel of/.

We can associate with every minor ordinal function/(M, Mi, ■ • ■ , Mr-i)

a general multiplicative function FiM, Nx, N2, ■ ■ ■ , Nr-i), of r arguments,

defined by

FiM, Nx, N2, • • • , Nr-i) = /(M, MNx, MN2, • • • , MNr-x).

Conversely, from any multiplicative function FiM, Nx, ■ • • , Nr-x), we can

define a minor ordinal function/(M, Mi, ■ • • , Mr_i) by

/      Mi    Mi Mr A
/(M, Mi, • • •, Mr_i) = El M,-> -; ■ • ■ »-), when M divides each M¿,

\      M     M M /

= 0, otherwise.

Thus the minor ordinal functions are in reversible one-to-one correspondence

with all multiplicative functions. We observe, in particular, that the derívate

of the function FiM, Nx, N2, ■ ■ ■ , Nr-x) with respect to Nx, N2, ■ ■ ■ , Nr-x

is the kernel of the corresponding ordinal function/(M, Mi, •• • , Mr_i).

The case in which the associated function FiM, Nx, ■ ■ ■ , Nr-x) is of the

form piM)piNx, N2, • • ■ , Nr-i) is of special importance. For this case we

have

Theorem XL. When the associated function of the ordinal function

/(M, Mi, • • • , Mr_i), with the minor argument M, is of the form piM)piN\,

Nt,---, Nr-x), then

(1) p is the kernel off,

(2) the ordinal function f is the composite of princ p and a function of

Mi, M2, • • • , Mr-i only.

Conversely, the composite of a principal function P oír arguments, and

* See Bachmann, Niedere Zahlen-Theorie, part 2, p. 230 ff.
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any function of r —1 of the arguments, is a minor ordinal function, whose

kernel is the equivalent function of P.

The first part of the theorem follows from the fact that the kernel is the

derívate of the associated function. To prove the second part, let the as-

sociated function have the generating series

"1    --     V        A m    «i *r-l

*■   (p)\X,   XX,   -   -   ■   ,   Xr—l) ¿m^amOm,m,. • -mr— \X    XX      '   '   '   XT—1    .

Then, the generating series to the same base of the minor ordinal function is

evidently

m    m+m i    wi+îtij tn+tnr—1

(*mOmimi- • • mr—I**     *1 ^2 "   *   "   *r—I

=    {   22am(xXX ■   ■   ■  Xr_l)m} {   X*m1mI..-m,-ia;i,^2' '  '   "   XT-1   },

which proves the theorem.

Definition. The composite of a minor ordinal function with any function

of its minor argument M, will be called a Smith function in respect to M.

Also, the kernel of the ordinal function will be termed the kernel of the cor-

esponding Smith function.

It follows from this definition, that, if S{M, Mi, ■ • • , M,_i) is a Smith

function in respect to M, there exists a function \p{M), such that S\p is a

minor ordinal function with the minor argument M.

4. Smith's determinant. Let S{M, Mi, ■ ■ ■ , Mr-i) be a Smith's func-

tion in respect to M. The values taken by 5 when its r arguments range from

1 to m may be taken as the elements of an r-dimensional matrix of the mth

order, \S{M, Mx, ■ ■ ■ , Mr_i)|, the r arguments of 5 serving as the indices

of the matrix. This matrix can be evaluated as a determinant, if we assign

a signant or a non-signant character to each index.*   We shall call the de-

* The modern theory of the r-dimensional determinant

|a(mi, jmj, • • • , mT) \ (m,, »»2, • ■ • ,m, = 1, 2, • •■■ , n)

assigns either a signant or a non-signant character to each index m. The value of the determinant is

1
— 2Z ± ö(»»n, «si, • • • , »iri)a(»»i2, OT22, • • • , »»»rt) • • • a(m¡n, min, - - • , mm),

n!

summed for all permutations (mu mu • - - t«,„) of 1, 2, • • -, n (j=l, 2, • • • , r), so that there are

(n!)r terms in the summation. If e< represents +1 or — 1 according as (m« m<2 • • • »í.») is an even

or odd permutation of 1, 2, • • • , n, the sign of the general term is defined to be \\ti, where the

product extends over those values of i for which w< is a signant index.

The theory is due to Rice (P-way determinants with an application to transvectanls, American

Journal of Mathematics, vol. 40 (1918)) and was also discovered independently by Lecat and the

present writer (On mixed determinants, Proceedings of the Royal Society of Edinburgh, 1925). For

further information reference may be made to the works of Lecat, e.g. Coup d'Oeil sur la Théorie des

Déterminants Supérieurs, Bruxelles, 1927, and also to a recent article of Lecat, Le déterminant su-

périeur, qu'est il exactement? Les conceptions de Cayley, Gasparis, Rice et autres, Revue Générale des

Sciences, 1929.

22
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terminant 15(M, Mi, • ■ ■ , Mr_i) | a Smith determinant, if the signant

character has been assigned to the index M.

Theorem XLI. The value of the Smith determinant |S(M, Mi, • • • ,Mr_i)|

= Am, of order m, is zero if the number of signant indices is odd, and is

E(1)E(2) • • • E(m) otherwise, F being the kernel of S.

The first part follows from the fact that a determinant vanishes identi-

cally, unless it has an even number of signant indices.

The elements of the Smith determinant Am, in which the index M has

the value k, constitute an (r —l)-dimensional matrix of the mth order,

which we may call the £th section of Am. Since M is a signant index in Am,

it results that we may add to the elements of a section, any the same multi-

ples of the corresponding elements of any other section. Also, since S is a

Smith function, there exists a function piM), such that Sp is an ordinal

function with the minor argument M. Therefore if we add to the elements of

the mth section pim/8) times the 5th section (where S represents successively

each divisor of m other than m itself), and denote the new elements of the

mth section by S'im, Mi, • • • , Mr_i), we have

S'im, Mi, ■ • • , Mr_i)

= iS-p)im, Mi, ■ - • , Mr-0

= 0, if any M< 9e m,

= (S-p)im,m, • • • ,m)

= Fim), if Mi = M2 = • ■ • = Mr_i  = m.

Now, expanding the determinant in terms of the elements of the mth section,

it follows immediately that

Am = E(w)Am_i

= kFim)Fim - 1) • • ■ E(2)E(1),

where k is easily seen to be zero or 1, according as the total number of signant

indices is even or odd.

It will be noticed that the result does not depend on whether the signant

or non-signant character is assigned to the remaining indices.

The following are applications of the theorem :

(1) Any function Fig) of the g.c.d. of Mi, M2, • ■ • , Mr is a Smith func-

tion in respect to any of the arguments, with the kernel FE~l.   For,
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F(g) = £■ princ (F-JE^1),

therefore

E^(Mi)-F(g) = £(Mi, • • ■ , Mi-i, Mi+i, ■ ■ ■ , Mr) princ (F-E-')

= an ordinal function, with the minor argument Mi, and the kernel F Er1.

Hence the corresponding Smith determinant of order m and any number of

dimensions has the value

(F-F-OM X (F-E-i)(m - 1) X ■ ■ • ,

if the number of signant indices is even.

(2) Any linear function L{1) of the l.c.m. / of two arguments M, N is a

Smith function with respect to M or N. For

L(l) = F-semiprinc (F-£_1)

= £• \(L-E-1)(M)(L-E-i)N\ princ {(FF"1) X L\ (Example 12)

= L(M)L(N) -princ {(EL'1) X L\.

Hence

L~1(M)-L(l) = ¿(A7)-princ \(E-L~l) X L]

= an ordinal function with the minor argument M, and kernel

(EL-1) X L.

Hence the Smith determinant of order m and two dimensions formed with

the elements L{g), has the value

TLL(j)(E-L-^)(j) (j= 1,2, ••-,!»).

In particular, if L = I, the value is

D>0>0') 0' = 1, 2, ■ • ■ , m)    (Cesàro)*

where H{j) is the product of the negatives of the prime factors of/.

(3) Von Sterneck's function/(A7, M), which is equal to the excess of the

number of partitions of N into an even number of distinct parts mod M,

over the number of those into an odd number (zero not being admitted as a

part), is a multiplicative function with the modulus M, and may be shown

to be equal to E~1{M)E{N) princ /.f Hence it is a Smith function with the

kernel 7", the value of the corresponding Smith determinant being therefore

ml.

* Dickson, p. 128, 61.

f Cf. Bachmann, loe. cit.
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(4) If /(M) = (Ei • L2)(M) is an integral quadratic function,/(MA7) is a

Smith function with the kernel (£iX£2)_l; for, from the Busche-Ramanujan

identity,

/(MA7) = /(M)Z(A7)-princ (£, X L2)~\

Since the kernel is the inverse of a linear function, it vanishes for all numbers

with a squared factor, and so the corresponding Smith determinant of order

m vanishes unless m<4.
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