A FUNDAMENTAL PROPERTY OF HART
SYSTEMS OF CIRCLES.

By R. VAIDYANATHASWAMY, D.Sc.
Department of Mathematics, U niversity of Madras.

Received June 30, 1934.

Two sets of four circles in a plane such that each circle of either set is touched
by all the four circles:of the other set, are said to form two complementary
Hart Systems, in the casé in which neither set admits a common orthogonal
circle. The configuration of two such Hart Systems is fairly complicated
and has been extensively.studied ; an account of the theory' may be found
in Baker’s Principles of Geometry, Vol. IV, and in Coolidge’s Treatise on the
Circle and Sphere.

The purpose of this communication is to draw attention to a very signi-
ficant and hitherto unnoticed property of two complementary Hart Systems
and to discuss some of its implications. The property in question is :

TreorEM 1.—The eight circles of two complementary Hart Systems belong
to a one-parameter cubic family of circles.

I. Tt is well known that the plane geometry of circles under the
Inversion-group is equivalent to a projective Non-Fuclidean geometry of three
dimensions, with a hyperbolic metric determined by a real closed quadric
Q. This is seen by establishing a correspondence between the points (or
planes) of a three-space §3 and the circles of the plane; the locus of points
in 83 which correspond to the point-circles 6f the plane is then a real closed
quadric Q. The points in Sy which are without Q correspond to real circles
and the points within Q to imginary circles (meaning circles with a real centre,
the square of whose radius is a negative number). The angle between two
intersecting circles is the projective separation (with Q as absolute quadric)
of the corresponding points in S;. We shall here follow the usual practice and
use the language of three-dirhensional geometry, so that our symbols denote
both points in S;, and the corresponding circles of the plane.

Let A, B, C be three points in 83, and O the pole of the plane ABC with
respect to Q. Letqbe the conic of intersection of Q ‘with the plane ABC; and let
A’B’C’ be the polar triangle of ABC {yith respect to g. The conics in the plane
ABC which are outpolar to g and have A’B’C’ as self-polar triangle must pass
through four fixed points a, 8,v, 5. It is well known that the four lines Oa,
OB, Oy, O8 correspond to the four coaxial systems of circles which cut the
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given circles A,B,C at equal angles. The eight circles ¢y 1’ ca ¢ c3 ¢y cqcy
which touch A, B, C, must accordingly be found in these four coaxial systems.
It is well known that they are distributed in pairs cicy, coca’, cscs’, cacd’
lying respectively on the four lines Oa, OB, Oy, 08. It is also known that,
to form a Hart System (i.e., a set of four of these eight circles, which are touch-
ed by a fourth circle in addition to A, B, C), we must choose one circle from
each of the four pairs. Since there are eight ways of choosing a Hart System
from the & circles, it follows that three circles €1 €2 c3 chosen in any manner
one from each of three pairs, can be associated with one and only one circle
¢4 of the fourth pair, so as to form a Hart System. .

We now see that our theorem (Theorem I ) furnishes the selective principle
which determines cy when ¢, cs ¢y ave grven. Tor, in the language of three-
dimensional geometry, Theorem I amounts to the statement that the seven
points A, B, C, ¢, ¢s, c3, ¢4 lie on a twisted cubic. Since a twisted cubic is
determined by six points, we see that the twisted cubic which passes through
A, B, C and through three points chosen in any.manner, one from each of
three pairs, necessarily passes (by Theorem I) through a definite point of the
fourth pair, which is precisely the point which completes the Hart System.

II. We now proceed to prove (or rather verify) the truth of Theorem I.

Let A, B, C be three circles and O their common orthogonal circle. If
in S3 we choose the corresponding points O, A, B, C as the vertices of the
tetrahedron of reference, the tangential equation of the Absolute Quadric is

' aL® 4 bM* + ¢N* + 2fMN -+ 2gNL - 2ALM = T2
Pour of the circles which touch A B C and form a Hart System are then given
by"1 .

[a? cos (s — A), bt cos (s—p), ¢t cos (s— v), —1]
[a? cos (s—v), b} cos s, et cos (s—X), —1]
[a* cos (s—u), bY cos (s—A), ¢ cos s, —1]
[a? cos s, b* cos (s—v), ot cos (s—p), —1];
where s =4 (A -+ p -+ v), cos A = (be)tf; ete.
We have therefore to shew that the points A, B, C, whose co-ordinates are
(1,0,0,0), (0,1,0,0), (0,0,1,0) and the four points whose co-ordinates are written
above, lie on a twisted cubic. ‘It is clear that for our purpose, we can omit
the factors a?, d%, ¢t in the above co-ordinates. Further, if we prove that
the projections from A on any plane, of the remaining six points lie on a conic,
the same will follow by symmetry for the projections from B and C, and it
will result that the seven points in question, and by symmetry the eighth
point which with A B C completes the Hart System, lie on a twisted cubic.

! Baker, Principles of Geomelry, Cambridge University Press, 1925, Vol. IV, p. 78, 74.
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Now the projections from A on the plane OBC, of the remaining six points
have the co-ordinates

1, 0, 0

0, 1, 0
cos8 (s—pu), cos (s—v), —1
cos s, cos (8—A), —1
cos (s—A), cos s, —1

cos (8—v), cos (s—pu), —1.
It is obvious that these six points lie on a conic. For, the cross ratios of the
pencils subtended at the first and second points by the remaining four are -
{c08 (s—v), cos (s—A), cos s, cos (s—u)} and
{cos (s—p), cos s, cos (s—A), cos (s—wv)}.
These cross ratios are equal, since either of them is derived from the
other by reversal of order. The theorem is thus proved.

ITI. The twisted cubic of Theorem I may be called a Hart cubic with
respect to the given absolute quadric Q. To study the relation of a Hart cubic
H to the absolute quadric Q, consider the correspondence I between pairs
of points p, g on H such that pg touches Q (so that the circles corresponding
to p, ¢ touch each other). This correspondence is obviously a symmetric (4, 4)
correspondence, which (remembering that the twisted cubic is a rational
curve) is expressed by a relation of degree (4, 4) between the binary para-
meters of p, g. But from the definition of the Hart ‘cubic, it contains two
tétrads,‘ such that any two points chosen one from each tetrad correspond in
‘I'. Hence I must be sub-rational, that is, it is determined by a relation of
the form f(x) fy) + #(x) ¢(y)=0, where f,  are quartics and x, ¥ the
parameters of corresponding points. It also follows that I' must admit
an infinity of pairs of tetrads of the same type. Calling the family of circles
corresponding to a Hart cubic, a Hart SJamily, we have therefore :

THEOREM I1.—A Hart Jamily of civcles (that is, a family of the type given
by Theorem I) contains an infinity of pairs of complementary Hart tetrads of
circles. All these Hart tetrads belong to a pencil, i.e., the linear Jamily f(x) +
A (x).

We next proceed to shew that the pencil f(x)+Ad(x) associated with
the sub-rational correspondence I' on the Hart cubic is a syzygetic pencil.
To see this consider the six intersections a; ay a3 a4 as ag of the Hart cubic
H with the absolute quadric Q. Let the tangent plane at a; to Q cut H again
in 1 ¢1. It will follow then that the pencil f(x) + Ap(x) contains six perfect
squares of the type (v—p1)? (x—g,)2. This is impossible as the maximum
number of perfect squares that can be contained in a pencil of quartics is
three. It follows that more than one 4 must give rise to the same ?1 q1-
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Since, however, not more thantwo tangent planes to Q can pass through a
given line py ¢;, not more than two a’s can give rise to the same p; ¢;. It
follows that the six intersections fall exactly into three pairs in such a way
that the tangent planes at the points of each pair intersect in a chord p, ¢;
of H. Thus the pencil f(x)+Ap(x) contains three perfect squares and is
therefore a syzygetic pencﬂ. We have thus:

TreorEM III1.—The Hart tetrads of cirvcles comtained im a Hart family
belong to a syzygetic pencil. :

An enumerative argument? shews that Theorems IT and III are complete,
in the sense that there are no further limitations on-the projective relation
of a Hart cubic to the Absolute Quadric. In other words, if H is any twist-
ed cubic, and 4, 4, 43, 44 any four members of any pencil of syzygetic
tetrads on FI, then

(1) there are ool quadrics which touch the 16 joins of the vertices of
4, with those of 4, ;.

(2) among these ool there is precisely one, say Q, which touches in
addition the 16 joins of the vertices of 43 with those of 4,;
(3) H is a Hart cubic in respect of Q. '

We may verify directly one particular aspect of these statements. Among
the Hart tetrads on a Hart cubic, there would be two which coalesce with ‘their
complementary Hart tetrads. A tetrad of this kind corresponds to four
mutually tangent circles. If 4 is a tetrahedrvon inscribed in a twisted cubic,
we may shew that theve are just oo' quadrics which touch the six edges of A and
the four tangents to the curve at the vertices of 4. TFor take 4 as the tetra-
hedron of reference. The equation of a quadric touching its six edges is of
the form: '

a,’w," + a,°2* + a,’a,® + a0 205 Zax,—25a,0,0,0,= 0.

The tangent-cone to this from x, is seen to be:

1 1 1
a, i, * azaogl T @z, 0.

Now, if the tangents to the twisted cubic cut the opposite faces in

(0, a1, a2, ag), (Bo, 0, Bs, B3)s (vo,71,0,v3) (3, 81, 85, 0), the rank of the matrix

2 The number of cubic curves which are Hart cubics of a given quadric i is cof-1 =008,
There are co? quadrics and oo!? cubic curves in §3. If each cubic curve is a Iarb
cubic of eo” quadrics, it follows that 124r=8+9 or r=5. But the number of
syzygetic pencils on the cubic curve is oo%, -and the number of involutions between
tetrads of a syzygetic pencil is therefore co8 X oco?=o005, " Thus each quadric of Whlch‘
the curve is a Hart cubic is to be associated with an arbitrary involution' between
tetrads of a syzygetic pencil on. the curve.
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is just'2. Hence out of the four conditions of the type
' 1 1 1
=+ -+ =: 0,

a0, a0, aa
which the quadric has to satisfy for touching the four tangents, only two
are independent.  Hepce there are ool quadrics satisfying the given condi-
tions.  Since the twisted cubic.is a Hart cubic of each of these ool quadrics,
we infer that :
If 4y 45 ave two syzygetic tetrads on a twisted cubic H, there is a unique
quadric Q which touches the 19 edges of 4, As and the eight tangents to the curve
at their vertices. H 1s a Hart cubic of Q. |

Application to the theory of the Pedal and Contact civcles of a triangle.

IV. The most familiar example of complementary Hart tetrads of
circles is furnished by the sides and Feuerbach circle (N.P. circle) of a triangle
ABC, and the tetrad of its in- and ex-circles. Accordingly, by Theorem I,
there is a cubic family H of circles comprising as members, the sides, the
Feuerbach circle and the in- and ex-circles. By Theorem II, H contains
an infinity of pairs of complementary Hart tetrads of circles, and by Theorem
I11, all these Hart tetrads form a syzygetic family in H. These results have
a close bearing on two theories of triangle-geometry, the theory of the pedal
circle, and the theory of the contact circle. \

If P P’ are a pair of isogonal conjugate points of ABC, the six feet of
the perpendiculars from P, P’ on the sides of the triangle lie on a circle which
1s usually called the pedal circle of P (or P’). We shall, however, find it more
appropriate to call it the pedal circle of the line PP’ ; this alteration in nomen-
clature will cause no inconvenience as there is a unique pair of isogonally
conjugate points on every line other than the bisectors of the angles A, B,.C.

It may be shewn that the totality of pedal circles is a two-dimensional
quadrinodal cubic manifold in circle-space, the in- and ex-circles T, 91, 2, I3
being in fact the nodal gircles. Now a quadrinodal cubic surface contains
(1) the six joins of the nodes, two and two, (2) three other straight lines, and
(3) o= twisted cubics passing through the nodes, Thus the coaxial systems
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determined by any two circles 7 are composed entirely of pedal circles. Cor-
responding to (2) we observe that the three coaxial systems determined by
the circles on BC, CA, AB as diameters, are composed entirely of pedal
circles. It is easy to identify the cubic families of circles which correspond
to (3) ; they are in fact the families of pedal circles of lines which pass through
a fixed point. All these families contain the four circles 7. OQur cubic family
H us one of these famslies, and indeed, the only one among them, which is a Hart
Sfamily. For, if O’ is the reflection of the orthocentre O in the circumcentre
S of ABC, it is easily seen that BC is the pedal circle of the perpendicular
from O’ on BC, and that the Feuerbach circle is the pedal circle of O’ 8. Hence :

THEOREM IV.—The cubic Jamily H is the family of pedal circles of lines
through O’.

Since H is a Hart family we can conclude that the pedal circle of any
line O'L is touched by the pedal circles of four other lines O'M;, O'M,,
O'M3, O'My, and that the latter four circles are all touched also by the
pedal circles of three other lines O'Ly, O'Ls O'L, Here the two tetrz_tds of
lines (O'Ly, O'Lg, O'Ly, O'Ly), (O'M;, O'Ms, O'M3, O'M,) are syzygetic tetrads
of (0T, O'I;, O'I,, O'Is), where the I’s are the in- and ex-centres. The tetrad
(O'S, O'a, OB, O'), where O'a, O’B, O’y are perpendicular to BC, CA, AB
also belongs to the same syzygetic family.3

If P, P’ are isogonally. conjugate points, the six points of contact with
the sides, of the two inscribed conics whose centres are P, P’ lie on a circle,
which is the contact circle of the line PP’. The totality of contact-circles forms
also a quadrinodal cubic manifold, with the circles 5 as nodal circles, The
theee coaxial systems of contact-circles are lines through the mid-points of
BC, CA, AB. Asin the case of the pedal circle, the cubic families of contact-
circleg containing the circles 7, are the contact-circles of lines through a fixed
point Among these families our Hart family H is included. TFor, if G
be t_]fie centroid of ABC, the contact-circle of GA is BC, and the contact-circle
of &S is the Feuerbach circle. Hence :

THEOREM V.—The Jamily H s also the Jamaly of contact-circles of lines
through G.

As before we may express the implications of the fact that H is a Hart
family.3

® Mr. M. Bhimasena Rao has noticed the existence of an infinity of pairs of com-
plementary Hart tetrads in the system of pedal circles of lines through O’, In the
postseript to his paper ¢ An Extension of Feuerbach’s Theorem ’ (Jowr. Ind. Math. Soc.,
Dec. 1919, page 219), he says ¢ Of the system of pedal-contact circles, each circle
touches four circles, which latter are touched by three more circles of the system’, and

adds that his proof is incomplete, He does not appear to have published any proof
subsequently,
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The complete intersection of two quadrinodal cubic surfaces with the
same nodes consists of the six joins of the nodes, and a twisted cubic through
the nodes. Hence the pedal circles which are also contact-circles must
either belong to a coaxial system determined by two of the circles 7, or to the
Hart family H.

From the two-fold character of the family H, it follows that the pedal
circle of any line O’X is the contact-circle of a line GX. Clearly the rays
GX, O’X are homographically related, and therefore the locus of their inter-
section X is a conic R. The pedal circle as well as the contact-circle of any
line through an in-centre I is evidently the corresponding in-circle. Hence
the conic R passes through the in- and ex-centres and through G and O'.
Thus finally, the rectangular hyperbola through the in- and ex-centres and the
centroid G passes through the point O’; and if P bhe any point on it, the
contact-circle of GP is identical with the pedal circle of Q'P.





