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ANY space S can be topologised by assigning arbitrarily the farﬁﬂy (I, of
its open sets, subject to the requirements:

(1) 0 and 1 (i.e., the null set and the whole space S) are in {3},
(2) Any set-sum and any finite set-product of members of {I}} are in {I3}.

Since set-sums and set-products are distributive, it follows that I} is a gene-
ral distributive lattice of subsets of S, containing 0, 1, closed for all set-sums,
and with all sums distributive. From known theorems in lattice-theory,
it results that I} is a complete distributive lattice, with completely distri-
butive sums, in which all lattice-sums and finite lattice products are identical
with the corresponding set-operations. The lattice-product of an infinite
number of open sets will in fact be the interior of their set-product (which
will not in general be open).

As a simple example to shew the non-distributivity of infinite lattice-products in [, consider
the Cantor-discontinuum C in the interval (0, 1). Then C is the set-product of a sequence
G,, Gy, --+ of open sets, and being non-dense, has no interior. If C’is the dense open set

which is the complement of C, it follows that C’+Interior ([IG;) = C'Z=1. But C'+ G;=1
for each i, and therefore,

Interior IT (C'+ G) = IT (C'+ G;) = 1 %= C'+ Interior (I G,).
Since the topology is completely determined by I, the topological

properties of S may be interpreted as structural lattice-properties of I7.
This is true in particular of the separation-postulates T,, Ty, Ts, Tz T,*

* These postulates are :

T,—Of any two distinct points, one at least has a neighbourhood not containing the
other.

T,—Any point has a neighbourhood not containing any other assigned point.

T,—Two distinct points possess disjoint neighbourhoods.

T,—Two disjoint closed sets, of which one consists of a single point, possess disjoint
neighbourhoods.

T,—Two disjoint closed sets possess disjoint neighbourhoods.

In these, ‘neighbourhood’ mav be understood as ¢open neighbourhood’.—Cy.

Alexandroff and Hopf, Topologie, pages 58, 59, 67, 68.
- ey
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by which we pass from general topological spaces to the special ones which
are nearer metrical space. The present paper is an attempt to view these
separation-postulates from the lattice-structure of I'j, and to shew in parti-
cular that the last two, namely T,, T, are connected with the theory of the
last residue class.t

We begin by certain preliminaries relating to distributive lattices.

§1. The ideals I1,, I, of a distr{butive lattice I' with 0, 1

Even though I' is not closed for product- or sum-complements, there
exists a set IT, (II,) of elements whose product- (sum-) complement is 0 (1).
Neither I1, nor I, is empty since 1 Il,, 0 ¢ IT,. It is clear that II, is an
a-ideal, and IT, is a p-ideal, and that I1,, II, are important structural elements
of I.

In the particular case in which I' is a complete lattice with completely
distributive sums (products), we can characterise in terms of I7, (I7,) the
p-ideals (a-ideals) of I' whose product-complement is 0 (1). Namely,

THEOREM I : If I' is a complete lattice with completely distributive
sums, the p-ideals whose product-complement is O, are precisely those whose
comprincipal envelope is a principal ideal of the form P, (f) where tell,.

For, in a complete lattice any p-ideal P, is convergent, since the sum
t of its elements exists, and the comprincipal envelope® of P, is the princi-
pal ideal P, (?). If the product-complement P,’= 0, it follows that {P, ()}’
cP,’ and is therefore 0. It results that te II,. Conversely let the com-
principal envelope of a p-ideal P, be the principal ideal P, (£), where te I,
To prove that P, = 0, we observe that since ¢ is the distributive sum of the
elements of P,, #y=0 implies and is implied by xy =0 for every x in P,.
Hence P,'={P, (1)}’ =0.

Properties of a lattice in which one of the ideals I1,, I1, is O

Assume for instance that in I' the ideal IT, = 0, i.e., consists of the single

element 0. Dual properties will hold for a lattice in which I7, is 0, i.e.,
consists of the single element 1.

THEOREM II: If II, =0, the most general a-ideal with the product-comple-

ment O has 1 for its comprincipal envelope (so that the product of all its
elements exists and is equal to 0).

(Note.—This is not a special case of Theorem (I), since we do not

assume here that I' is complete or has completely distributive sums or
products.)
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PrROOF: If P, C the principal ideal P, (t), and if Py’ = 0, then {P4 ()} = 0.
Hence, since I, = 0, it follows that 7=0. Thus the only principal «-ideal
containing P, is 1.

Taeorem UI: If II, =0, and a is any element of the lattice, the ideal
{P,(a)} is always comprincipal and is the cut-complement of {P, (a)}; dashes
denoting product-complements.

Corollary. If II,=0, the product-complement of any p-ideal P, is
comprincipal and is the cut-complement of its last residue class.

PrOOF: Let ¢ and x be arbitrary elements such that ta=0,.a+ x= 1.

Then t=t(a+x)=ta + tx =tx. Hence every ¢t c every x. Conversely
if an element f c every x such thata + x =1, tx =t=t(a + x)= ta+ tx.

Hence ta c tx for every x. Therefore fa = tax, so that ta c every ax.
In other words P, (ta) contains P, (@) + {P4 (@)}’. Since the product-comple-
ment of this latter ideal is 0, it follows from Theorem (II), that ta= 0. This
proves that {P, (@)} is the cut-complement of {P, (a)}’, and is therefore com-
principal.

It follows that IT {P, (a)}’ is the cut-complement of X' {P, (a)}, where

the product and sum extend over all the elements a of a p-ideal P,. But
the product is P," and the sum is the last residue class of P, ; as the product
of the comprincipal ideals {P, (a)}’, the product-complement P,” is com-
principal. This proves the corollary.

§2. Semisimple ideals of a distributive lattice

An ideal P, (P,) of a distributive lattice I" with units will be said to be
semisimple, if for each element x in P we can find an element y in P such
that there exists an element t withtx =0,¢t +y =1( +x =1, ty =0),

In other words a u- or a-ideal is semisimple, if for each element x of the
ideal, P, + {P, (x)} =1, Po+ {P, (x)}'= 1. It is clear from this that every
semisimple ideal contains the double-product-complement of every principal
ideal that it contains.* |

It is known that a simple ideal of I" must necessarily be principal. Con-
versely it follows immediately from the definition that a principal ideal is
semisimple only if it is simple.

TaeOREM Il: The semisimple ideals are those which are identical with
the last residue-class of their last residue-class.

* This is also a property of normal ideals. It is not known whether the normal and the
semisimple ideals are the only ones which possess this property.
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For the Lr.c. of a p-ideal P is the set of #s for which there is y in P
with ¢4y = 1. The necessary and sufficient condition that P may be the
Lr.c. of its Lr.c. is that for each x in P there exists a ¢ with fx = 0. This
is clearly the same as the condition that P be semisimple. We also note
that if P be semisimple, its Lr.c. is also semisimple.

TuroreM I11: The sum of semisimple ideals is semisimple; the product
of two semisimple ideals is semisinple.

For any element of the sum of a family (P;) of semisimple p-ideals is
of the form x; + x4+ .... 4+ x,; x;eP;. Also for each x; there is y; in P;
and t;, such that t; x,=0,% + y;=1. Hence t; f5. . . .2, (X + %, + .... +X,)
=0 and t;t,....8, + y1 + ¥y +....+ y, = 1. This proves the first part.

Also any element of P, P, is of the form x;x, (x; ¢P;). For each
such element, there is an element y,y, in P;P, and # -+, such that
(ty + 1) x1x; =0, (4, +1, + y1ys) = 1. This proves the second part.

THEOREM 1V: The product-complement of a semisimple ideal is the cut-
complement of its last residue class.

For let P, be a semisimple p-ideal and let s be < every element of the
last residue class of P,. If possible let there be an element x in P, such that
sx == 0. Since P, is semisimple there is y in P, and an element ¢ in the last
residue class, with tx=0, t+ y=1. Hence 0 == sx c sc t. But sxt= 0 == sx.
We have thus a contradiction. Therefore the product-complement of P,
contains the cut-complement of its last residue-class. On the other hand
any element x of P,/ is clearly c any element ¢ of the last residue-class,
since t +y =1 gives xt = x. This proves the theorem.

Corollary. In a complete distributive lattice the product-complement
of a semisimple ideal is principal.

§ 3. Applications to Iy. Product-complements of p-ideals

Consider now the lattice I'; of open sets of the topological space S.
Since I is a complete lattice with completely distributive sums, it is closed
for product-complements. Define the exterior (interior) of any set X as the
sum of all the open sets disjoint with (contained in) X. Then the product-
complement in I'; of any open set is then its exterior. The open domains® (as
the normal open sets may be called) are then the open sets which are identical
with the exterior of their exterior, or alternatively, with the interior of their
closure. The lattice-product (that is, the interior of the set-product) of any
number of open domains is an open domain. The sum of two open do-
mains is not necessarily an open domain. (Example: If from a circular area
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in the Cartesian plane, the circumference and a diameter be removed, what
remains is an open set which is not an open domain, even though it is the
sum of two open domains, namely the two semicircular areas.)

The open sets whose exterior is null (namely, the elements of the ideal
IT, of I'}) are the dense open sets, which are obtained by removing a non-
dense closed set from the space S. From Theorem I, the u-ideals whose
product-complement is O are precisely those which are generated from an
open covering of a dense open set (in particular, of space).

If the space S is bicompact?® (that is, if every open covering of S contains
a finite covering), it is easy to see that every p-ideal of I is principal, and
conversely.

§ 4. Product-complements of a-ideals of I3.

If the space S is metrical, or even if it is simply a T,-space, it is easy to
see that the ideal I7,=0. But II,=0 is not a consequence of the general
topological postulates. We have accordingly to introduce a postulate
(which I shall call II;) of the same nature as the separation-postulates T, to
ensure this.

Postulate I1,. Any non-null open set contains a non-null closed set.

If the open set g == 0, contains the closed set ¢ == 0, theng + ¢ = 1;
¢ == 1. Hence the product-complement of P, (g) == 0, since it contains an
element different from 1, namely ¢’. Hence [I,=0 and conversely II, =0
implies the poslulate 7.

It is clear that T, implies /7, ; on the other hand I, is independent of
T,, that is, neither implies the other. This is seen from the following
examples :

Ex. (1). Adjoin a point a to a Tl-space M, and define a Ty-topology
in M + a by:

Closure of X in M 4 a =closure of X in M, if X <« M ; closure
of a=a + b (beM).

This topology does not satisfy I, since the non-null open set (a) con-
tains no non-null closed set. Hence T, does not imply IT,.

Ex. (2). Consider the resolution-topology (studied by Miss Mary Thomas)5
defined as one in which every closed set is open, and vice versa. It follows
that the closures of two points are either identical or mutually disjoint,
and that the topology resolves the space into mutually disjoint sets, which
are the closures of single points. This topology is not Ty, but satisfies [1,.
Hence I7, does not imply T,.
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As IT, is related to the structure of I'; more directly than T, we
substitute I7, for T, and consider the sequence of separation-postulates
(HO: Tl: T2s T3, T4)

From Theorem (III) corollary, it follows that for a Il;-space, the
product-complement X' of any p-ideal X of the I is the cut-complement
of the last residue class of X. That the product-complement X’ is comprincipal
follows already from the fact that Iy is closed for product-complements.

For a T,-space, every one-pointic set is closed. Hence I} has a maxi-
mal basis, consisting of all open sets obtained by removing a single point
from space. These maximal sets are all dense, and hence belong to I, if
no point is an isolated point of space, that is, if space is dense-in-itself.

THEOREM V: In the case of a T\-space, every principal a-ideal of I7
is normal.

For, in a Ty-space S, if a set X does not contain the point @, there is an
open set containing X and not containing a, for example the open set (S-a).
Now the product-complement {P, (g)}" of the principal a-ideal P, (g) evidently
consists of all open sets which contain the closed set g’ (the complement of g).
To prove that {P, (g)}" cannot be different from P, (g), we have only to
shew that for any open set g; smaller than g, we can find an open set g, in
{P. (2)}, such that g+ g,== 1. This is evident, since if a is a point in g
which is not in g;, we can take g,=S— a.

Corollary. For a Ty-space, all comprincipal a-ideals of I} are normal.

It was shewn in Theorem (II), that if IT,= 0, the comprincipal envelope
of any a-ideal whose product-complement is zero, must be 1. In the case
of Iy (for which I7,= 0), we can specify precisely the product-complement
of an a-ideal P, whose comprincipal envelope is 1 (so that the lattice-product
of the elements of P, is 0, and therefore their set-product is a non-dense

set N).

THEOREM VI: If the set-product of the elements of P, be a non-dense set
N (so that the comprincipal envelope of P, is 1), the product-complement P,
is the family of open sets containing N’, the set-complement of N. Hence
P, =0 if and only if N=0.

As a matter of fact, a similar theorem 1is true of the product-complement
of any a-ideal, P,, the set-product of whose elements is N. For, an open
set g whose sum with every element of P, is 1 cannot exclude any point
of the set-complement N’ of N; for, if it did, there are elements of P, which
exclude the same point, and the sum of g with these elements would
not be 1.
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As a particular case, we observe that in a T;-space, there are dense open
sets which exclude any limit-point of space. Hence the set-product of all

dense open sets (that is, of all elements of 11,) is the set I of isolated points
of space. Hence

THEOREM VII: In a T;-space the product-complement I1," of 11, is the
family of open sets containing all limit-points of space. In particular, if
space is dense-in-itself, Il,'= O.

§ 5. The separation-postulates T,, Ty, T,.

To get the background of these separation postulates, we begin by
considering the last residue class of the product-complement of -a principal
a-ideal P, (g). If g’ is the closed set which is the complement of g, this
product-complement is the family of open sets containing g'.

THEOREM VIIL: The last residue class of {Py (2)} is the a-ideal generated
by the exteriors of open sets containing g'; the last residue class of this last

residue class is the family of open sets containing the closure of an open set
containing g'.

The first part follows from the definition of the last residue class. If g,
is an open set containing g’, and g, is an open set such that g,+ Ext. g; =1,

it follows that g, should contain g, since Ext. g, is the complement of g,.
Hence the second part.

It is known that T, and T3 can be formulated alternatively thus:

T, Every open neighbourhood of a closed set g’ contains the closure
of another neighbourhood of g'.

T; Every neighbourhood of a point contains the closure of another
neighbourhood of the same point.

Hence:

THEOREM IX: The regularity postulate T, states that every a-ideal Q, (a)
composed of all open sets containing a point a is semisimple; the normality

postulate T, states that every a-ideal Q, (g") composed of all open sets con-
taining a closed set g’ is semisimple.

Consider now the postulate T,; it states that two distinct points a, b
possess disjoint open neighbourhoods g,, g;. Hence the closed set g,” con-
tains g; and therefore. the closed domain g;. Hence the exterior of a can
be covered by closed domains of the form g; or by open domains Int.
‘gz or Ext. g,. Hence if we denote the exterior of a by A we see that T, states
that the last residue-class of Q. (a) = {P, (A)}’ has P, (A)= {P, (A)}" for its
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cut-complement. Conversely this property implies T,. It is to be noticed that
this property has the same form as the property of u-ideals given by Theorem
ITT. It will also be noticed that this does not imply the semi-simplicity of
{P, (A}, asserted by T,.

It is clear that T3 can also be put in this form; namely, if g i1s any open
set, T; asserts that the last residue class of Qg (g) ={P, (g)'} has {P, (g) ==
(P, (g)}" for its cut-complement. That this implies and is implied by the
semisimplicity of every {P, (A)} should be capable of direct proof from
lattice theoretic considerations.
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