
Formal Verification Coverage: Computing the Coverage Gap
between Temporal Specifications

Sayantan Das Prasenjit Basu Ansuman Banerjee
Pallab Dasgupta P.P. Chakrabarti
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur, India.

Chunduri Rama Mohan Limor Fix Roy Armoni
Strategic DA Planning, Client Platform Division Logic and Validation Technology

Intel Corporation, Folsom, USA. Intel Corporation, Haifa, Israel.

Abstract

Existing methods for formal verification coverage compare a
given specification with a given implementation, and evalu-
ate the coverage gap in terms of quantitative metrics. In this
paper, we consider a new problem, namely to compare two
formal temporal specifications and to find a set of additional
temporal properties that close the coverage gap between the
two specifications. In this paper we present: (1) the problem
definition and motivation, (2) a methodology for computing
the coverage gap between specifications, and (3) a method-
ology for representing the coverage gap as a collection of
temporal properties that preserve the syntactic structure of
the target specification.

INTRODUCTION

In recent times, formal property verification (FPV) is finding
increased acceptance within the pre-silicon design validation
flow. Design intent validation (alternatively, the task of ver-
ifying whether the RTL meets the designer’s architectural
intent), continues to pose new challenges to the design flow
today. Traditional approaches to formal verification attempt
to validate the given RTL implementation against a formal
specification using techniques such as model checking [4].

While FPV guarantees exhaustive validation of a formal
property on a given implementation, the task of determining
the completeness of the specification itself is left open. The
aim of FPV coverage is to close this gap. Existing methods
for FPV coverage [1, 3, 5, 6] compare a given specification
with a given implementation and deduce: (1) the parts of
the implementation that are not covered by the specification
and (2) the properties in the specification that are vacuously
satisfied in the implementation. The first measure indicates
incompleteness of the specification [5], while the second
measure indicates incompleteness of the implementation [1]
(in the sense that some part of the behavior modeled by the
formal specification is vacuous in the implementation).

In this paper, we study a new FPV coverage problem where
we compare two formal specifications and determine the cov-

erage of one by the other. We shall refer to one specification
as the target specification, � , and the other as the achieved
specification, �. Our aim will be to determine whether the
achieved specification covers the target specification. If the
answer is negative, then we will further aim to determine
the coverage gap or difference, � � �, between the speci-
fications, and represent it in a way that is both legible and
syntactically comparable with � . The problem is non-trivial,
since both � and�may contain several temporal properties.

We believe that the core problem of determining the coverage
of one specification by another will play an important role in
formal verification. Foreseeable applications include:

� Coverage of system-level properties by RTL properties
of component modules. The system-level properties
define the target specification, � , and the RTL proper-
ties collectively define the achieved specification,�.

� Specification matching. In order to determine whether
a target specification can be implemented by an existing
IP core, we need to determine whether the properties
guaranteed by the IP core cover the target specification.

One of the main issues in the given coverage problem is
to find an appropriate representation for the coverage gap.
Typically, individual counter-example traces that satisfy the
achieved specification but refute the target specification, ex-
pose only a small fraction of the coverage gap. On the other
hand, we aim to express the coverage gap in terms of ad-
ditional temporal properties that succinctly encapsulate all
the counter-example traces. We further aim to present these
additional temporal properties in a style that is syntactically
similar to the target specification, so that the designer can
visually compare them with the target specification. Section
presents examples to explain this intent.

A restricted version of the specification matching problem
was introduced by us as a short interactive presentation in
a recent conference [2]. Since then we have made signifi-
cant progress in developing the methodology for solving the
coverage problem. This paper presents a new and complete
methodology for the coverage problem, where the specifica-
tions are given in Linear Temporal Logic [7] (LTL).

0-7803-8702-3/04/$20.00 ©2004 IEEE. 198

THE SPECIFICATION COVERAGE PROBLEM

The inputs to the specification coverage problem are:

� The target specification � as a set of LTL properties
over a set, ��� , of Boolean signals, and

� The achieved specification � as another set of LTL
properties over a set, ���, of Boolean signals.

We shall also use � to denote the conjunction of the proper-
ties in the target specification, and � to denote the conjunc-
tion of the properties in the achieved specification.

Assumption 1 Throughout this paper we assume that�� �

� ���.

Typically this is not a restrictive assumption within the design
hierarchy, since it is generally considered a good practice for
designers at a lower level of the design hierarchy to inherit the
interface signal names from the previous level of hierarchy.

Given a specification, we define a state as a valuation of the
signals used in the specification. A run is an infinite sequence
of states.

Definition 1 [Coverage Definition:]
The achieved specification covers the target specification iff
there exists no run that refutes one or more properties of the
target specification but does not refute any property of the
achieved specification. �

Our coverage problem is as follows:

� To determine whether the achieved specification covers
the target specification, and

� If the answer to the previous question is no, then to
determine a set of additional temporal properties that
represent the coverage gap (that is, these properties to-
gether with the achieved specification succeed in cov-
ering the target specification).

The following theorem shows us a way to answer the first
question1.

Theorem 1 The achieved specification,�, covers the target
specification � , iff the temporal property � � � is valid.
�

The theorem shows that the primary coverage question can
be answered by testing the validity of � � � . Most model
checking tools for LTL already have the capability of per-
forming this validity check.

Example 1 Let us consider the design of an arbiter that ar-
bitrates between two request lines �� and �� from two master
devices. Let the corresponding grant lines to the master de-
vices be �� and ��. The arbiter also receives an input � from
�Proofs of all theorems are available in the detailed version of this paper.
Contact: pallab@cse.iitkgp.ernet.in

(b)(a)

XAND

XAND

XAND

a
b

c

z

��

��

��

��

Figure 1. A sample arbiter

a slave device, that remains high as long as the slave device
is ready.

The arbiter specification requires us to treat �� as a high-
priority request. Whenever �� is asserted and the slave is
ready (that is, � is high), the arbiter must give the grant, �� in
the next cycle, and continue to assert �� as long as �� remains
asserted. When �� is not high, the arbiter parks the grant on
�� regardless of whether �� is asserted. We are further given,
that the request �� is fair in the sense that it is de-asserted
infinitely often (enabling �� to be asserted infinitely often).
The target specification (in LTL) is:

��: � � � ��� �
��: �� � �� � � � � �� �� � ��� � �
��: �� � ��� � � � �� �

Let us now consider an implementation of the arbiter using
an existing component called XAND, as shown in Fig 1. The
specification of the module XAND is as follows:

��
�: �� � 	 �
 � � � � � �

Substituting the signal names of the instances of XAND in
Fig 1(b) with ��, ��, ��, �� and �, and adding the fairness
property on ��, we have the achieved specification as:

��: � � � ��� �
��: �� � �� � ��� � � � �� �
��: �� � �� � � � � � �� �

The first property is the same fairness constraint as in the tar-
get specification. The second property says if �� is asserted
and �� is deasserted then �� is asserted in the next cycle.
The third property states that whenever �� and � are asserted
together, then �� is asserted in the next cycle.

Our primary coverage problem is to determine whether �� ��

�� ���� � ��� � �� � ��� is valid. In this case the answer
is negative, since neither �� nor �� is covered by the prop-
erties in the achieved specification. For example whenever
we have a scenario where both �� and �� are low, the tar-
get specification requires �� to be asserted, but the achieved
specification does not have this requirement. This shows that
�� is not covered. Also, consider those scenarios where ��
and � are asserted together, but � deasserts before �� (that
is, the slave becomes unavailable before the transfer com-
pletes). In such scenarios, property �� requires �� to remain

199

high as long as �� remains high, but the achieved specifica-
tion does not guarantee this. �

COMPUTING THE COVERAGE GAP

We now address the more complex problem of computing and
representing the coverage gap. One way to demonstrate that a
coverage gap exists is to produce a counter-example run, that
is, a run that satisfies the achieved specification but refutes the
target specification. However, this only reflects a fraction of
the coverage gap. On the other hand, our aim is to find the set
of missing temporal properties in the achieved specification,
which when included in the achieved specification enables
the coverage of the target specification.

Example 2 Let us consider the coverage of the property, � �

of Example 1 by the achieved specification. We have already
established that �� is not covered. However this information
does not accurately point out the coverage gap between � �

and the achieved specification. Specifically the coverage gap
lies only for those scenarios where �� and �� are simultane-
ously low at some point of time. In other words, the coverage
gap can be accurately represented by the following property
that considers exactly the above scenarios:

��: �� � ��� � ��� � � � �� �

We have �� � �� � ��, and therefore �� closes the cover-
age gap between �� and ��. In general, our aim will be to
determine the weakest set of temporal properties that close
the coverage gap between the achieved specification and the
target specification. �

Definition 2 [Strong and weak properties:]
A property �� is stronger than a property �� iff �� � ��

and �� �� ��. We also say that �� is weaker than ��. �

Definition 3 [Coverage Hole in Achieved Specification:]
A coverage hole in the achieved specification is a property
�� over���, such that ����� �� � , and there exists no
property, ��

�
, over ��� such that ��

�
is weaker than ��

and �� � ��

�
� � � . In other words, we find the weakest

property that suffices to close the coverage hole. Adding the
weakest property strengthens the achieved specification in a
minimal way. �

Since ��� � ���, each property of the target specifica-
tion is a valid property over ���. The following theorem
characterizes the coverage hole.

Theorem 2 The coverage hole in the achieved specification
is unique and is given by � 	 ��. �

The following example demonstrates the notion of a coverage
hole in our formulation.

Example 3 Let us again consider the arbiter of Example 1.
We have seen that the coverage gap lies in �� and ��. By

Theorem 2 we have the coverage hole in the achieved speci-
fication as:

�� : � ��� � ��� 	 ���� � �� � ��� �

We can also write the same coverage hole as the conjunction
of the following two properties:

��
�: � �� 	 ���� � �� � ��� �

��
��: � �� 	 ���� � �� � ��� � �

The coverage hole, � 	 ��, may contain signals belonging
to ���
 ��� . In many cases, the designer may want to
evaluate the part of the target specification that is not covered
by the achieved specification. We therefore also consider the
problem of computing the uncovered target specification as
defined below.

Definition 4 [Uncovered Target Specification:]
An uncovered target specification is a property �� over��� ,
such that �� � ��� � � , and there exists no property � �

�

over��� such that � �

�
is weaker than �� and ���� �

�
��

� . In other words, we find the weakest property over �� �
that suffices to close the coverage hole. �

REPRESENTING THE COVERAGE HOLE

Our aim is to present the coverage hole and the uncovered tar-
get specification before the designer in a form that is syntacti-
cally close to the target specification and is thereby amenable
to visual comparison with the target specification. The ex-
pressibility of the logic used for specification does not always
permit a succinct representation of the coverage hole. In such
cases, we prefer to present the coverage hole as a succinct
set of properties that closes the coverage gap, but may be
marginally stronger than the coverage gap.

Example 4 We consider the coverage of �� by �� in the
specifications given in Example 1. By Theorem 2, the cov-
erage gap between �� and �� is given by the property: � �
�� 	 ���, which does not convey any meaningful informa-
tion to the designer. On the other hand, consider the property
�� of Example 2:

��: �� � ��� � ��� � � � �� �

�� is stronger than �, but is able to represent the coverage
gap more effectively than �, because the designer can visu-
ally compare �� with �� to examine the coverage gap.

It is also important to be able to preserve structural similarity
with the target specification when we present the coverage
hole. For example, the property �� can also be written as:

�� �� 	 �� 	� �� �

or as:

�� � �� �� � ��� � � �� �

200

These representations are logically equivalent to ��, but are
not visually similar to ��. We feel that preserving structural
similarity is a very important issue in representing the gaps
between formal specifications. �

Our specification coverage methodology is based on two key
algorithms. The first algorithm enables the computation of
the bounded terms in the coverage gap and then pushes these
terms into the syntactic structure of the target properties to
obtain the uncovered part. The second algorithm takes target
properties having unbounded temporal operators (such as �,
� and �) and systematically weakens them into structure
preserving decompositions. It then checks the components
that remain to be covered. The following example illustrates
this approach.

Example 5 Let us consider the coverage of the target prop-
erty:

� �

�
� �� � �� � � � � �� � �� � � �� � � ��� � �

by the achieved property:

��

�
� �� � �� � ��� � � � �� �

and the fairness property �� � �� � ��� �. We find that
�� � �

�

�
� � �

�
is not valid, which establishes that � �

�
is not

covered. However, we can decompose � �

�
into the conjunc-

tion of:

� �

�� � �� � �� � � � � �� �� � ��� � �

� �

�� � �� � �� � � � � �� � �� � ��� � �

The property � �

��
is covered by ��

�
and ��. The coverage

hole is therefore in the property� �

�� which is a more accurate
(weaker) representation than � �

�
. �

COVERAGE ALGORITHM

The remainder of this paper will outline the algorithms for
determining a structure preserving form of the coverage gap.
Our algorithm takes each formula�� from the target specifi-
cation � and finds the coverage gap, �, for�� , with respect
to the achieved specification�. Since� is required to cover
every property in � (by definition), we use this natural de-
composition of the problem.

Algorithm 1 Find Coverage Gap(�� ,�)

1. Compute � � �� 	 ��

2. If � is not valid then

(a) Unfold � up to its fixpoint to create a set of
uncovered minterms, �� ;

(b) Use universal abstraction to eliminate signals
belonging to �
� ��
� ,

(c) �� = Call Push MT(�� , �� , 1);

(d) � = Call Relax TargetSpec(��);

3. Return �;

The first step computes the coverage gap� using Theorem 2.
If � is valid then �� is covered. Otherwise we determine a
structure preserving representation of the coverage hole. The
second step of the algorithm performs this task. This step
is further divided into four steps. The following subsections
describe each of these steps with examples and correctness
proofs.

Step 2(a): Unfolding of �

In this step, we recursively unfold the property � upto its
fixpoint [4]. We then convert the unfolded property into
disjunctive form and select those terms that are free from the
� (always), � (eventually) and � (until) operators and put
them in the set �� . In other words, we consider minterms
with Boolean variables and the � operator. The following
example demonstrates one such unfolding.

Example 6 Consider the property 	 � �
 	 ��. After one
step of unfolding, the property looks like:

�
 	 � � 	 � 	 � � � 	 � �
 	 �� � �

Since the subformula within the scope of the � operator is
identical to the original property, we have reached the fix-
point.

After this unfolding we convert the property into disjunctive
form and select the terms that are free of temporal operators
except � . In this case we have two minterms, namely
 and
�. �

Theorem 3 The property represented by the set of minterms
�� closes the coverage hole for �� . �

It is possible that�� contains variables belonging to�
��

�
� . In order to obtain the uncovered target specification,
we need to eliminate these variables. This is done in the
following step.

Step 2(b): Abstraction

In this step we universally eliminate the variables in�
��

�
� from the property represented by �� . The following
theorem establishes that after the abstraction, �� still closes
the coverage hole.

Theorem 4 The property represented by the set of minterms
�� after universal abstraction closes the coverage hole for
�� . �

201

Step 2(c): Distribution of the minterms

We have shown in the previous section that the set of minterms
in �� represents a property that closes the coverage gap be-
tween �� and �. The next objective is to represent this
coverage gap as a set of properties that are structurally sim-
ilar to �� . We achieve this objective by distributing the
minterms in �� into the structure of �� . The following
theorem shows that this method is theoretically sound.

Theorem 5 The property �� � �� is at least as weak as
�� and closes the coverage gap for �� . �

The remainder of this section presents the methodology for
distributing the minterms in �� into the structure of �� .
The intuitive idea is to push the minterms to the subformulas
having similar variables. However, �� may contain some
minterms that contain variables from �� � other than those
in �� . Let us denote these variables by �� (for entering
variables).

The Function Push MT(� , �� , �) pushes the minterms in
�� into the syntactic structure of property,� . To intuitively
explain the working of this function, consider a case where
� is of the form � � �. Let � ����� and � ����� denote
the set of variables in � and � respectively. Then we com-
pute the universal abstraction of �� with respect to � �����
and recursively push the restricted minterms (containing only
variables in � �����) to �. We compute the universal abstrac-
tion of�� with respect to � �������� and recursively push
the restricted minterms to � . The decision to push minterms
containing entering variables to the left of the implication is
heuristic (but correct, since we could push them either way).
In case� was of the form � 	 �, we would have to push each
minterm to both � and �. The minterms are pushed right
down to the Boolean variables, where they form Boolean
formulas.

The third argument, � of the function Push MT specifies
whether �� should be considered in disjunction with � (in
which case � � �) or conjunction with� (denoted by � � �).
At the root level, we always have � � � (since we compute
�� ���). However the semantics of some operators require
us to recursively call Push MT() with � � �.

The functions ���	�� and
��	�� used in Push MT are
as follows:

UABS(�,
�) This function takes a set of minterms, �, and
a set of variables
� as input and universally eliminates
the set of variables given by �� � �
� from �. It
returns the property given by the union of the abstracted
set of minterms.

XABS(�) This function takes a set of minterms, �, extracts
those minterms that are within the scope of one or more

 operators, and returns these minterms after dropping
the most significant X operator.

Algorithm 2 Push MT(� , �� , �)

case(� � (� � �)) :
if (� = 1)

Push MT(� , ����	��� � � ����� � ���, 0);
Push MT(�, ���	��� � � ������, 1); �

else
 Push MT(� , ��� , 1); Push MT(�, �� , 0);�

case(� � (� � �)) :
if(� = 1)

Push MT(� , ���	��� � � ����� � ���, 1);
Push MT(�, ���	��� � � ������, 1); �

else
Push MT(� , �� , 0); Push MT(�, �� , 0);�

case(� � (� 	 �)):

Push MT(� , �� , �); Push MT(�, �� , �);�

case(� � (��)): Push MT(� , ��� , ��);

case(� � (
 �)):

��

��
=
��	(��); Push MT(� , ��

��
, �);�

case(� � (
 �) or (� �) or (� � �)): return;

case(� � � � ���) :
if(� = 1) Replace � by � � �� ; else Replace � by � 	 �� ;

Lemma 1 The property �� produced by Push MT(� , �,
�) is as strong as � �� when � = 1 and as weak as � 	�
when � = 0. �

Theorem 6 Push MT(�� ��� � �) returns a property�� that
closes the coverage hole. �

Step 2(d): Weakening of the temporal blocks

For properties having the unbounded temporal operators,
namely
 (always), � (eventually), and � (until), we use
heuristics to decompose the property into weaker fragments
and then return those fragments that are not covered by the
achieved specification. Within the weaker fragments, we
may again use Algorithm Push MT to compute the uncov-
ered target specification more accurately.

Our intuitive idea in this step is to systematically weaken
the intermediate uncovered target specification, �� , while
ensuring that it still closes the coverage hole. One of the
heuristics used in our tool is based on the observation that
a property can be weakened by setting some of its variable
instances to true, and setting some other variable instances
to false.

After choosing a variable and performing the weakening
substitution, we examine whether the weakened property
still closes the coverage hole. If so, then we recursively

202

attempt to weaken it further. Variable substitution retains
the syntactic structure of the original property, and hence the
uncovered target specification produced in the end is visually
comparable to the original target specification.

We also use a special algorithm for handling the coverage
of invariant properties of the form �� � ����, which are
very common in formal property specifications. The intuitive
idea is as shown in Algorithm 3. Theorem 7 shows that the
uncovered target specification obtained by this method closes
the coverage hole.

Algorithm 3 Coverage of Invariants

� We compute the invariant part, � of the achieved speci-
fication� (that is, we have� � ����). The property
� is computed by unfolding�.

� We then compute the minterms �� of ����������,
namely the coverage gap of���� with respect to����.

� These minterms are then pushed into� using Push MT
to obtain the weakened property, � �.

� We return ����� as the intermediate uncovered target
specification and apply Step 2(d) on the subformulas
of ����� to further refine the uncovered target specifi-
cation.

Theorem 7 The property,�� , returned by Algorithm 3 closes
the coverage gap of ���� with respect to �. �

Example 7 Let us return to the specifications shown in Ex-
ample 1 and let us consider the coverage of �� by ��:

�� � �� � ��� � � � �� �

�� � �� � �� � ��� � � � �� �

Since both properties are invariants, we use Algorithm 3. In
the first step, we compute � as � �� � ��� � � � �� The
set of minterms, �� obtained by unfolding �� � ��� is:

�� � ���� ������ �� � ��� � ������ 	

We now call Push MT to distribute the minterms in �� into
the parse tree of �� past the � operator. The uncovered part
of �� after applying Push MT is given by:

�� � ���� � ��� � � � �� �

Let us now revisit the coverage problem of Example 5, where
we examine the coverage of � �

�
by ��

�
and the fairness prop-

erty �� � �	 � ��� �:

� �
�
� �� � �� �
 � � �� � �� � � �� � � ��� � �

��
�
� �� � �� � ��� �
 � �� �

In this case also, all properties are invariants, hence we ap-
ply Algorithm 3. However, in this case Algorithm 3 fails
to weaken � �

�
and returns � �

�
. Therefore, we systematically

weaken � �
�

and search for weaker properties that still close
the coverage gap. In this case, we find that substituting 0 for

�� in � �
�

gives us the property:

� �
�� � �� � �� �
 � � �� �� � ��� � �

which is weaker than � �
�
, but still closes the coverage gap.

By our approach, no further structure preserving weakening
of � �

�� can close the coverage gap, hence we report � �
�� as

the uncovered part of � �
�
. �

Theorem 8 The coverage gap � returned by the function
Find Coverage gap(�� ��) closes the coverage hole. �

THE SPECMATCHER TOOL

We have tested the proposed methodology by developing
a prototype tool called SpecMatcher. We have examined
the performance of our tool on several test cases having
LTL specifications, and specifically on one industry standard
specification. The results are quite promising. In all of these
tests, the tool produced temporal properties that closed the
coverage gap and are syntactically similar to target specifi-
cation properties. The runtimes were negligible (less than a
second on a 2.4 GHz Pentium-4).

Acknowledgements

The authors acknowledge Intel Corporation for partial sup-
port of this work. Pallab Dasgupta and P.P.Chakrabarti fur-
ther acknowledge the partial support of the Department of
Science & Technology, Govt. of India.

REFERENCES

[1] Armoni, R., et al, Enhanced Vacuity Detection in
Linear Time Logic. In CAV’2003, LNCS 2725,
368-380, 2003.

[2] Basu, P., Das, S., Dasgupta, P., Chakrabarti, P.P., Rama
Mohan, C., Fix, L., Formal Verification Coverage: Are
the RTL-Properties Covering the Design’s
Architectural Intent? In DATE’2004, Paris, 668-669,
2004.

[3] Chockler, H., Kupferman, O., Vardi, M.Y., Coverage
Metrics for Temporal Logic Model Checking, In Proc.
of TACAS, LNCS 2031, pp. 528-542, 2001.

[4] Clarke, E.M., Grumberg, O., and Peled, D.A., Model
Checking, MIT Press, 2000.

[5] Hoskote, Y., Kam, T., Ho, P, Zhao, X. Coverage
Estimation for symbolic model checking. In Proc. of
DAC, 300-305, 1999.

[6] Katz, S., Geist, D., Grumberg, O., Have I written
enough properties? A method of comparison between
spec.and implementation. In Proc. of CHARME,
LNCS 1703, 1999.

[7] Pnueli, A., The temporal logics of programs. In Proc.
of FOCS’1997, 46-57, 1997.

203

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

