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Abstract

An effective Hamiltonian for the ferroelectric transition in PbT iO3 is

constructed from first-principles density-functional-theory total-energy and

linear-response calculations through the use of a localized, symmetrized ba-

sis set of “lattice Wannier functions.” Explicit parametrization of the polar

lattice Wannier functions is used for subspace projection, addressing the is-

sues of LO-TO splitting and coupling to the complementary subspace. In

contrast with ferroelectric BaTiO3 and KNbO3, we find significant involve-

ment of the Pb atom in the lattice instability. Monte Carlo simulations for

this Hamiltonian show a first-order cubic-tetragonal transition at 660 K. Re-

sulting temperature dependence of spontaneous polarization, c/a ratio and

unit-cell volume near the transition are in good agreement with experiment.

Comparison of Monte Carlo results with mean field theory analysis shows that

both strain and fluctuations are necessary to produce the first order character

of this transition.
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I. INTRODUCTION

Perovskite-structure oxides exhibit various types of lattice instabilities resulting from

inherent structural frustration in the prototype cubic structure1, shown in Fig. 1(a). This

class of materials includes a large number of ferroelectrics, with uniform polar distortions and

accompanying lattice relaxation (eg. PbT iO3, BaT iO3, KNbO3), while cation substitution

can result in dramatic changes in ground state distortion (eg. antiferroelectric in PbZrO3,

antiferrodistortive in SrT iO3) and corresponding complexities in the mixed systems (eg.

PbZr1−xT ixO3, Ba1−xSrxT iO3). However, in nearly all examples, the amplitudes and en-

ergies of the distortions are rather small, and cubic symmetry is restored at temperatures

above a critical temperature Tc, typically a few hundred degrees Kelvin.

For a better understanding of structural phase transitions in perovskite oxides, including

chemical trends in the transition temperatures, the first-order vs second-order character of

transitions, the relationship between local distortions and average crystallographic struc-

ture, and the stability of intermediate temperature phases, first-principles calculations offer

valuable access to microscopic information. With advances in algorithms and computational

capabilities, the challenge of achieving the high accuracy necessary for studying these distor-

tions has been largely met, and ground state distortions well reproduced for a wide range of

perovskite-structure oxides2–4. However, for ab initio molecular dynamics or Monte Carlo,

the system sizes required for the study of finite-temperature structural transitions are still

completely impractical.

An alternative approach is to focus on a restricted subset of the degrees of freedom

that is relevant to the transition and construct a simple effective Hamiltonian in this sub-

space. The parameters in these models are chosen to reproduce the low energy surface

of an individual material, and thus to reproduce its finite temperature behaviour in the

vicinity of its transition. Comparison of these models gives a systematic understanding of

similarities and differences in the microscopic structural energetics of different materials.

From the dependence of calculated properties on effective Hamiltonian parameters, one can
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also obtain a better understanding of the role of various microscopic couplings in producing

the observed behaviour. Microscopic effective Hamiltonians for structural transitions in per-

ovskites were first constructed using the concept of local modes, with empirically determined

parameters.5,6 First-principles total energy calculations were used in the determination of a

local mode effective Hamiltonian for the structural transition in GeTe7 and more recently

for the structural transitions in PbT iO3
8, BaTiO3

9 and SrT iO3
10. A systematic approach

which generalizes and refines the local mode concept, allowing the efficient construction

of an optimal effective Hamiltonian from first-principles total-energy and linear response

techniques, has been developed based on the concept of lattice Wannier functions.11 This

approach exploits symmetry properties of the system and is generally applicable to complex

structural transitions involving several unstable modes including ones at the zone bound-

ary. Information from additional first principles calculations allows for a systematic check

on the validity of the truncation of the effective Hamiltonian, and, when needed, the ex-

pansion of the subspace and refinements of its form. The resulting effective Hamiltonian is

quantitatively realistic while retaining a simple and physically transparent form.

In this paper, we present a detailed description of the first-principles investigation of

PbT iO3
12, which exhibits a single first-order transition at 763 K from the cubic high-

temperature phase to the ferroelectric tetragonal ground state, shown in Fig. 1(b). We

construct an effective Hamiltonian for this structural phase transition from first principles

using the lattice Wannier function method. In contrast with BaTiO3
9 and KNbO3

13 for

which the uniform polar distortions in the low temperature phase consist of predominantly

B-atom displacements, those in PbT iO3 are dominated by A-atom (Pb) displacements, which

will be important in determining the effective Hamiltonian subspace. The effective Hamil-

tonian also contains the coupling of these local polar distortions to strain. In Ref. 2, the

tetragonal phase in PbT iO3 was found to be stabilized relative to the rhombohedral phase by

the unit cell relaxation. In addition, we will find that strain plays a crucial role in producing

the correct finite temperature transition behaviour.

In Section IIA, we briefly review the method of lattice Wannier functions. In Section IIB
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and IIC, the first principles methods and results obtained for the lattice constant, elastic

constants, phonon frequencies and the effective charges of PbT iO3 are presented. In Sections

IIIA and IIIB, we describe the construction of the effective Hamiltonian, with particular

attention to the treatment of LO-TO splitting and crossing of branches through explicit

parameterization of the lattice Wannier functions. In Section IIIC, we describe properties

of the ground state of the effective Hamiltonian determined from first principles. In Section

IV, we present results of finite temperature analysis of Heff using mean field theory and

Monte Carlo simulations. These results are discussed in Section V.

II. METHOD

A. Lattice Wannier Function method for the construction of Heff

In the lattice Wannier function method, the effective Hamiltonian is obtained as the re-

sult of projection of the full lattice Hamiltonian (in the Born-Oppenheimer approximation)

into a subspace of the full ionic displacement space. The effective Hamiltonian subspace

is spanned by an orthonormal basis of “lattice Wannier functions:” symmetrized localized

atomic displacement patterns taken with respect to a high-symmetry reference configura-

tion. This basis defines a set of coordinates such that a given set of values of the coordinates

corresponds directly to a particular pattern of atomic displacements. As a result of the

symmetrized and localized nature of the basis, the Taylor expansion of the effective Hamil-

tonian around the high-symmetry reference configuration (with all coordinate values equal

to zero) has a simple form with relatively few parameters, which can be determined from

first principles calculations using the correspondence to patterns of atomic displacements.

We briefly review the procedure; further details can be found in Ref. 11. Construction

of the subspace begins with a Taylor expansion of the full lattice Hamiltonian to quadratic

order. A subset of the eigenvectors of the quadratic Hamiltonian is selected for inclusion in

the subspace. This subset must include the unstable modes which freeze in to produce the
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low-temperature structure. In addition, to achieve a good description of the branches which

emanate from the unstable modes, “end-points” of these branches at high symmetry k-

points are included. The symmetry properties of the subspace are established by identifying

symmetries of localized functions (Wyckoff position and site symmetry group irrep) which

can build up the selected subset of modes.

We follow the prescription in Ref. 11 to obtain an explicit, though approximate, form

of a lattice Wannier basis vector. This involves finding the symmetric coordination shells

surrounding a representative Wyckoff site and identifying the independent displacement

patterns of each shell that transform according to the given irreducible representation of the

site symmetry group. The amplitudes of these displacement patterns completely specify an

LWF. Because of the localized nature of LWFs, this infinite number of parameters can, to a

good approximation, be reduced to a small finite number by neglecting the displacements of

shells beyond a chosen range. At high symmetry points in the BZ, the modes built up with

these parametrized LWFs are then fit to the corresponding normalized mode eigenvectors

obtained from first principles.

These basis functions completely specify the effective Hamiltonian subspace. In the

ideal case, this subspace is completely decoupled at quadratic order from its complementary

subspace and to a good approximation at higher order as well. This happens when the

subspace consists of entire branches isolated in energy from the others and contains all

the unstable modes. In most real systems, branches emanating from the unstable modes

cross with branches in the complementary subspace. This leads to some degree of quadratic

coupling which is unimportant if the crossing occurs far away from the unstable modes.

If not, the subspace should be expanded to include these branches. In addition, in polar

crystals, the electric field at ~q → 0 can mix the LO modes differently from the corresponding

TO modes. In such a case, the Wannier basis vector which reproduces a given TO branch

will not reproduce any LO mode exactly. However, since LO modes are typically high in

energy, this approximate description of the LO mode should be adequate for the description

of the structural transition.
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The quadratic part of the lattice Hamiltonian has both kinetic and potential energy

contributions. However, in the classical statistical mechanical treatment, the kinetic energy

terms appear in Gaussian integrals in the partition function, factoring out to give a trivial

contribution to the free energy. In this case, the eigenmodes used in the construction above

could be of either the force constant matrix or the dynamical matrix. In PbT iO3, we have

found that the difference in the resulting effective Hamiltonian subspace is rather small and

both choices should give comparable results. In the construction described in section III,

we have used the eigenmodes of the force constant matrix. Eigenmodes of the dynamical

matrix are strongly preferable only if the effective Hamiltonian is also to be used in classical

dynamics or quantum mechanical simulations, since in that case the form of the kinetic

energy is greatly simplified.

In the final step, the lattice Hamiltonian is projected into this subspace to obtain the

effective Hamiltonian. An explicit form Heff is obtained by identifying a small number of

physically important terms in a Taylor expansion in the lattice Wannier coordinates. The

coefficients of these terms are parameters to be determined from first principles by fitting

Heff to the results of selected total energy and linear response calculations, using the explicit

correspondence between the Wannier coordinates and the actual ionic displacements. To

check the validity of the truncated form of the effective Hamiltonian, additional independent

first principles calculations can be performed and compared with Heff .

B. First principles total energy calculations

The first-principles calculations for PbT iO3 were performed using the ab initio pseu-

dopotential method in the local density approximation (LDA) with the Perdew-Zunger

parametrization of the Ceperley-Alder density functional.14 For Pb, the scalar-relativistic

pseudopotentials from Ref. 15 were used. The use of a plane wave basis set dictates the

use of optimized pseudopotentials16 for O and Ti to achieve reasonable energy convergence

and transferability. For O, the reference configuration 2s22p4 was used with pseudopotential
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core radii rc,s = rc,p = 1.5 a.u. Optimization was performed with qc,s = 7.0(Ry)1/2 and

qc,p = 6.5(Ry)1/2 and 4 and 3 Bessel functions for s and p orbitals respectively. For Ti, it

is essential to treat the semi-core 3s and 3p electrons as valence electrons3,17. The reference

configuration 3s23p63d2 was used with pseudopotential core radii rc,s = rc,p = 1.45 a.u.

and rc,d = 1.5 a.u.. Optimization was performed with qc,s = 7.2(Ry)1/2, qc,p = 7.0(Ry)1/2

and qc,d = 7.74(Ry)1/2, and 4 Bessel functions. An energy cutoff of 850 eV (corresponding

to approximately 3600 plane waves for a 5-atom unit cell) was used to ensure convergence

within 10mRy/atom. The self-consistent total energy calculations were performed using the

program CASTEP 2.118 based on the stable and efficient preconditioned conjugate-gradients

method19. For the Brillouin zone integrations, k-point sampling was performed using the

Monkhorst-Pack construction20 with 64 k-points in the full Brillouin zone.

As reported in Ref. 8 and summarized here in Table (I), the lattice constant and elastic

constants of PbT iO3 in the cubic perovskite structure obtained from the total energy calcula-

tions for a range of unit cell volumes are in good agreement with previous calculations2,3. In

addition, in Fig. 4 of Ref. 8 we showed the calculated energies as a function of experimental

soft mode amplitude, which compare favorably with previous LAPW calculations2.

C. First principles DFT linear response

The technique of DFT linear response is used to calculate the second derivatives of the

total energy with respect to perturbation parameters through the self consistent calculation

of the first order correction to the occupied Kohn-Sham wave functions21,22. For example,

Born effective charges, dielectric constant and dynamical matrices are the second derivatives

of total energies and thus can be obtained with this technique. In this framework, the

dielectric constant can be calculated avoiding cumbersome sums over unoccupied bands.

Another significant advantage is that ~q 6= 0 force constants can be computed with an effort

similar to that of a single unit cell total energy calculation.

Our implementation is a modification of CASTEP 2.1 based on the variational formula-
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tion of DFT linear response22. All the linear response calculations reported here were done

at the experimental lattice constant23 of 3.96883Å with 64 Monkhorst-Pack k-points in the

full Brillouin zone. The Vosko-Wilk-Nusair parametrization of the Ceperly-Alder density

functional was used to permit the calculation of derivatives of exchange-correlation terms24.

A 36 × 36 × 36 fourier transform grid is used for integration over a unit cell in real space.

This real space grid breaks global translational invariance25,22, which manifests itself as small

violations of the acoustic sum rule (the calculated frequencies of zone center acoustic modes

are not exactly zero) and charge neutrality (the calculated change in polarization due to a

rigid displacement of the crystal in any direction is not exactly zero). The acoustic sum

rule was imposed by adding small corrections to the diagonal elements of the ~q = 0 force

constant matrix. Charge neutrality was imposed by adding the same small correction to the

effective charges of all atoms.

The Born effective charges are presented in Table (II) in very good agreement with

previously calculated values26. The main features of interest are the anomalously large

effective charges of Ti and O along the bond and the anisotropy of the oxygen charge. The

calculated dielectric constant is 8.24, which can be compared with the experimental value of

8.64 quoted in Ref. 26. The data in Table (II) combined with the calculated force constants at

~q = 0 give the frequencies of IR-active phonons presented in Table (III). Direct comparison

of these results with the previous calculations26 is not possible because the calculations

were performed at different lattice constants. This has an especially large impact on the

unstable mode frequency, as confirmed by our calculations of coupling between this mode

and homogeneous strain, to be described below. As can be seen in Table (IV), the unstable

Γ15 mode has the largest mode effective charge, which should be associated with the largest

LO-TO splitting. Since there are three polar zone center modes with the same symmetry,

mixing leads to LO-mode eigenvectors different from TO-mode eigenvectors. Effects of this

mixing can be quantified using the correlation matrix26

cij =< ξTO
i |M |ξLO

j >, (2.1)
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given in table (IV), where Mmn = Mmδmn is the mass matrix and ξi are the IR-active mode

eigenvectors. As expected, the unstable Γ15 TO mode has the strongest correlation with the

highest LO mode.

In Table V, we report selected phonon frequencies at other high symmetry k-points in

the Brillouin zone, focusing in particular on the lowest energy phonons. While we also find

unstable modes away from the Γ point, the unstable mode at Γ is clearly the dominant lattice

instability in our calculations, consistent with the observed low-temperature structure. The

eigenvectors of the lowest energy phonons and the corresponding force constant matrices

will be used in the determination of the parameters in the effective Hamiltonian in the next

section.

III. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN FOR PBTIO3

A. Construction of the subspace

The construction of the effective Hamiltonian subspace begins with consideration of

the calculated force constant matrix eigenvalues and eigenvectors at Γ, R, M and X. The

subspace has to include the unstable polar Γ15 mode which freezes in to produce the low tem-

perature tetragonal structure. In addition, to achieve a good description of branches which

emanate from this dominant unstable mode, the endpoints of these branches R15, M
′
2
, M ′

5
, X ′

5

are included. As can be seen from Table (I) of Ref. 11, the lattice Wannier functions which

can build up this subset of modes transform like 3-dimensional vectors centered at Pb-sites.

It should be noted that the lowest mode at R is actually R25, which corresponds to an

oxygen octahedron rotation instability seen in many perovskite oxides10. Since crossing of

the lowest branch along (111) with that emanating from R25 occurs far from the relevant

mode Γ15 and relatively higher in energy, we do not include it in the subspace.

To include coupling of the relevant polar distortions (Γ15) to local distortions of the

unit cell (inhomogeneous strain), we expand the subspace to include the acoustic modes by
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choosing an additional set of lattice Wannier functions. Of the three possibilities (listed in

Table (I) of Ref. 11), Ti-centered 3-dimensional vectors are preferable to Ox,x (1-dimensional

vectors) and Ox,y (2-dimensional vectors), since this choice corresponds to the smallest

subspace expansion and highest site symmetry group. Furthermore, unlike Ox,x, the resulting

6 · N dimensional subspace does not include the highest energy modes.

Next, we obtain an explicit form for the Pb-centered LWF. This involves finding the

symmetric coordination shells surrounding a Pb site and identifying the independent dis-

placement patterns of each shell that transform according to the vector representation of

the site symmetry group Oh. For a given shell there can be more than one pattern of

displacements with a given transformation property. To each such pattern corresponds an

independent amplitude parameter. By neglecting the displacements of shells beyond 1st

neighbour Ti and O shells and 2nd neighbour Pb shells, we obtain a total of 10 parameters.

The first shell of Ti atoms has 2 independent displacement patterns, parametrized by t1 and

t2; there are 1, 2, 2 parameters for the zeroth, first and second shells of Pb atoms respectively

and 3 parameters for the first shell of oxygen atoms. These displacement patterns are shown

in Fig. 2.

To determine the numerical values of these parameters for PbT iO3, we build up the

transverse modes e~q,α at high symmetry k-points in the Brillouin zone, namely Γ, X, M, and

R, from the parametrized LWF using

e~q,α =
∑

~Ri

exp(i~q · ~Ri)wi,α (3.1)

where ~Ri is a direct lattice vector and wi,α is an LWF centered at the Pb site in the ith unit

cell, α being its Cartesian component. This specifies atomic displacements in these modes

as linear functions of the parameters, to be fit to the normalized eigenvectors of the force

constant matrix calculated from first principles. With the parameters listed above, we can

reproduce the normalized eigenvectors of the modes Γ15, R15 and M ′
2

exactly. The remaining

free parameters, associated with Pb and Ti displacements, were used to fit to a normalized

mode with maximum overlap with the lowest M ′
5

(see Table (VI)). Numerical values of these

10



parameters, listed in Table (VII), clearly show that the magnitude of the parameters decays

rapidly with shell-radius, confirming the assumption of LWF localization. Furthermore, by

adding an additional shell of Pb (one parameter) and oxygen atoms (two parameters), we

can reproduce all the transverse optical modes in the subspace. The parameter values for

this refined LWF are given in Table (VII). The values of the parameters of the innermost

shells do not change very much, and the values of the new parameters are very small.

Another way of testing the approximate LWF is to see how well it reproduces other modes

in the subspace. For example, in Table VIII, we show the comparison of the first principles

X ′
5

eigenvector with the mode constructed with the approximate LWF. The approximate

mode has an overlap of 92% with the relevant mode, and if the approximate mode vector

is normalized, the overlap becomes 99.96%, showing that the LWF describes the subspace

very well.

For the simplest treatment of inhomogeneous strain (the acoustic branches), an explicit

expression of the Ti-centered LWF is not needed, since the goal is only to reproduce the

long wavelength acoustic modes, whose dispersion is determined from the elastic constants.

For a more refined treatment, an LWF could be parametrized as above and determined by

fitting to the first principles eigenmodes Γ15, R′
25

, M ′
3
, M ′

5
, X1, X5.

B. Determination of parameters in Heff

Using the symmetry properties of the lattice Wannier basis for the effective Hamiltonian

subspace, we write an explicit expression for Heff as a Taylor expansion in the lattice

Wannier coordinates, invariant under the space group Pm3m. {~ξi} and {~ui} denote the

Pb-centered and Ti-centered lattice Wannier coordinates respectively. Each of these three

dimensional vector degrees of freedom transforms according to the Γ15 irrep of the point

symmetry group Oh. Below, we organize the terms in the expansion of Heff into those acting

exclusively in the Pb-centered subspace and the Ti-centered subspace and those coupling

the two.
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In the Pb-centered subspace, we consider quadratic interactions up to third nearest

neighbour with the most general form allowed by the space group symmetry:

∑

i

(A|~ξi|2

+
∑

i

∑

d̂=nn1

[aL(~ξi · d̂)(~ξi(d̂) · d̂) + aT (~ξi · ~ξi(d̂) − (~ξi · d̂)(~ξi(d̂) · d̂))]

+
∑

i

∑

d̂=nn2

[bL(~ξi · d̂)(~ξi(d̂) · d̂) + bT1(~ξi · d̂1)(~ξi(d̂) · d̂1) + bT2(~ξi · d̂2)(~ξi(d̂) · d̂2)]

+
∑

i

∑

d̂=nn3

[cL(~ξi · d̂)(~ξi(d̂) · d̂) + cT (~ξi · ~ξi(d̂) − (~ξi · d̂)(~ξi(d̂) · d̂))], (3.2)

where ~ξi(d̂) denotes the LWF coordinate at a neighbour of site i in d̂ direction. Beyond third

neighbor we use a dipole-dipole form parametrized by the mode effective charge Z
∗

and the

electronic dielectric constant ǫ∞:

∑

i

∑

~d

(Z
⋆
)2

ǫ∞

(~ξi · ~ξi(d̂) − 3(~ξi · d̂)(~ξi(d̂) · d̂))

|~d|3
. (3.3)

An important simplifying approximation is that the onsite potential, depending on the value

of ξi at a single i, is the only set of terms including anharmonic interactions acting exclusively

in the Pb-centered subspace. For simplicity, anharmonic terms are included only in the onsite

potential with isotropic terms up to eighth order in |~ξi| and full cubic anisotropy at fourth

order:

∑

i

(B|~ξi|4 + C(ξ4

ix + ξ4

iy + ξ4

iz) + D|~ξi|6 + E|~ξi|8). (3.4)

In the Pb-centered subspace, the parameters to be determined from first principles are

A, aL, aT , bL, bT1, bT2, cL, cT , B, C, D, E, Z
⋆
. This determination relies on the explicit cor-

respondence between the lattice Wannier coordinate {~ξi} and the ionic displacements {~di}

obtained in subsection III A. This correspondence allows us to relate the first principles total

energies and the derivatives of total energies to various terms in Heff . The parameters in the

quadratic part of Heff are linearly related to the force constant matrices obtained from den-

sity functional linear response at high symmetry k-points in the BZ. In Table (IX) are given

specific relations for modes at various k-points in the BZ including Γ15, X
′
2
, X ′

5
, M ′

5
, M ′

2
, R15
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and the Λ3 modes at (111)π/(2a), (111)π/(4a). The parameter Z
∗

is determined from the

eigenvector of unstable Γ15 and the Born effective charges. Obtaining ǫ∞ directly from DFT

linear response and solving the system of linear equations yields values for all the parameters

in the quadratic part of Heff , listed in Table (IX). The resulting normal mode dispersion of

Heff is shown in Fig. 3. For the LO modes at (111)π/(2a) and (111)π/(4a), the reasonable

agreement between the calculated force constant matrix eigenvalue and Heff is an indication

of the validity of the truncation in the Taylor expansion.

The parameters B, C, D, E appearing in the onsite anharmonic terms are determined

from the total energies of uniformly distorted configurations (~ξi = ~ξ), as shown in Fig.

4. The minimum energy configuration has rhombohedral symmetry (~ξ along (111)). The

difference among the energies of uniform distortions with different symmetries ((100), (110),

(111)) is a reflection of the cubic anisotropy, which is described quite well by the fourth

order terms. The resulting parameters are listed in Table (X).

To account for the effects of changes in lattice parameters at the structural phase tran-

sition, we include the lowest order terms in the homogeneous strain and its coupling to the

Pb-centered subspace:

N

2
C11

∑

α

e2

αα +
N

2
C12

∑

α6=β

eααeββ +
N

4
C44

∑

α6=β

e2

αβ + Nf
∑

α

eαα

+g0(
∑

α

eαα)
∑

i

|~ξi|2 + g1

∑

α

(eαα

∑

i

ξ2

iα) + g2

∑

α<β

eαβ

∑

i

ξiαξiβ, (3.5)

where eαβ is a component of the strain tensor, C11, C12, C44 are the elastic constants, and the

parameters g0, g1, g2 give the strength of coupling of strain with the local polar distortions

ξiα. All these parameters are determined from the single unit cell total-energy calculations

for three independent types of unit cell distortions (isotropic, uniaxial and rhombohedral

shear), with magnitudes of up to 2 to 4 % of the experimental lattice constants. The total

energies of these strained unit cells with no local polar distortion, shown in Fig. 5, give

the three elastic constants C11, C12 and C44. For each of these unit-cell-strain types, we

also compute the second derivative of energy with respect to uniform local polar distortions

~ξi = ~ξ, as shown in Fig. 5. These results yield the coupling parameters shown in Table (X).
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Now we turn to the determination of the terms in Heff acting in the Ti-centered subspace.

Because this subspace contains the zone center acoustic modes, these terms must satisfy

global translational and rotational invariance. This symmetry is built into the systematic

expansion procedure given by Keating27, in which invariant terms are built up from dot

products of differences of the ~ui’s. If the expansion of the effective Hamiltonian in the

Keating construction27 is truncated at quadratic order and three independent parameters,

corresponding to the three elastic constants, the following terms are obtained:

1

N

∑

i

Ã|~ui|2

+
1

N

∑

i

∑

d̂=nn1

[ãL(~ui · d̂)(~ui(d̂) · d̂) + ãT (~ui · ~ui(d̂) − (~ui · d̂)(~ui(d̂) · d̂))]

1

N

∑

i

∑

d̂=nn2

[̃bL(~ui · d̂)(~ui(d̂) · d̂) + b̃T1(~ui · d̂1)(~ui(d̂) · d̂1) + b̃T2(~ui · d̂2)(~ui(d̂) · d̂2)] (3.6)

The relations of these parameters to the elastic constants are made by using the Keating

expansion to evaluate the energy of homogeneously strained configurations. With these

relations, Ã = C11+2C44, ãL = −1

2
C11, ãT = −1

2
C44, b̃L = −b̃T1 = −1

8
C12+

1

24
C44 and b̃T2 =

0, these parameters can easily be obtained from first-principles calculations. Because there

are no unstable modes in this subspace, there is no need to include higher-order interactions.

In any case, within the local anharmonicity approximation, global translational invariance

requires anharmonic terms to be zero at all orders. As mentioned in the previous section,

there is no need for an explicit form of the Ti-centered LWF in this minimal treatment.

For refinement of Heff in this subspace, one could construct an explicit form and determine

additional parameters in a manner analogous to that for the Pb-centered subspace.

Finally, the simplest coupling between local polar distortions (Pb-centered subspace) and

inhomogeneous strain (Ti-centered subspace) that satisfies the constraint of global transla-

tional invariance and does not vanish in the limit ~k → 0 is the nearest-neighbor coupling

linear in ~u and quadratic in ~ξ, with both ~ξ variables taken on the same site:

h̃0

N

∑

i

{ξ2

ix

∑

~d=±ŷ±ẑ

(ux(~Ri +
a0

2
x̂ +

a0

2
~d) − ux(~Ri −

a0

2
x̂ +

a0

2
~d)) + c.p.}
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+
h̃1

N

∑

i

{ξ2

ix(
∑

~d=±x̂±ẑ

(uy(~Ri +
a0

2
ŷ +

a0

2
~d) − uy(~Ri −

a0

2
ŷ +

a0

2
~d))

+
∑

~d=±x̂±ŷ

(uz(~Ri +
a0

2
ẑ +

a0

2
~d) − uz(~Ri −

a0

2
ẑ +

a0

2
~d))) + c.p.}

+
h̃2

N

∑

i

{ξixξiy(
∑

~d=±x̂±ẑ

(ux(~Ri +
a0

2
ŷ +

a0

2
~d) − ux(~Ri −

a0

2
ŷ +

a0

2
~d))

+
∑

~d=±ŷ±ẑ

(uy(~Ri +
a0

2
x̂ +

a0

2
~d) − uy(~Ri −

a0

2
x̂ +

a0

2
~d))) + c.p.} (3.7)

ξ2

iα couples only to differences of the uβ’s, which can be recognized as finite difference ap-

proximations to the gradient, and thus as the local strain tensor (see also Ref. 9). The

terms in Heff coupling inhomogeneous strain and polar distortions are related in the long

wavelength limit to the coupling between homogeneous strain and the polar Γ15 mode. Thus

the three independent coupling parameters can be obtained from the corresponding homo-

geneous strain coupling parameters: h̃0 = (g0 + g1)/4, h̃1 = g0/4 and h̃2 = g2/8.

C. Examination of model energetics

Having fully determined Heff , we now explore the low energy surface of the model to

confirm that it gives a correct ground state when compared with the real crystal. Since

the anharmonic terms occur only in the Pb-subspace and are local (the anharmonicity

is wavevector independent), it is easy to determine the ground state from the quadratic

order terms. The lowest energy mode is obtained by freezing in the most unstable mode:

Γ15. We consider changes in energy as this mode is frozen in with polarization along the

(001), (110) and (111) directions. In Fig. 4, it can be seen that the rhombohedral state

((111)-distortion) has the lowest energy. If the unit cell is allowed to relax as the mode is

frozen in, by minimizing over the homogeneous strain, we find an overall increase in distortion

energy, with the lowest energy state being of tetragonal symmetry ((001)-distortion) as can

be seen in Fig. 6. This is consistent both with previous first principles calculations2 and

experimental results23.

For the lowest energy tetragonal configuration, we obtain a value for the spontaneous
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polarization from the mode effective charge of Ps = 0.87C/m2, which is in the range of values

(Ps = 50 to 100C/m2) reported from experiments1. From the values of homogeneous strain

in this ground state, we obtain a c/a ratio of 1.08, to be compared with the experimental

value of 1.06123. Using the explicit form for the LWF, the atomic displacements in the model

ground state can be obtained. We find that the oxygen octahedra are almost undistorted and

the relative displacement of the Pb atoms is 0.35 Å(to be compared with the experimental

value of 0.47 Å23). It should be noted that this is not the true LDA ground state, since

previous total energy calculations8 for the experimental distortions showed the latter is

slightly lower in energy. This means that there is a higher order coupling of the unstable Γ15

mode to an additional polar Γ15 mode not included in the effective Hamiltonian subspace.

Considering that the atomic displacements in PbT iO3 are relatively large, the presence of

such anharmonicity is not surprising. However, as discussed above, the ground state of the

model is very similar to the experimental ground state and the small loss of accuracy is more

than compensated for by the gain in simplicity.

IV. FINITE-TEMPERATURE BEHAVIOUR

The effective Hamiltonian is constructed to show the same finite temperature critical

behaviour as the full lattice Hamiltonian in a statistical mechanical analysis. While the form

of Heff is somewhat too complicated for the application of analytical methods beyond mean

field theory, it is quite suitable for Monte Carlo simulations, since the changes in energy for

changing system configurations can be readily evaluated. Monte Carlo simulations are used

in the detailed analysis of Heff to obtain T-dependence of a variety of structural properties

near the transition, while our mean field theory analysis is limited to the estimation of Tc

and the identification of the order of the transition and symmetry of the phases. Comparison

of the mean field results with those of Monte Carlo simulations allows us to study the effects

of fluctuations.
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A. Mean field theory

Variational mean field theory for the class of models with variable length vector degrees

of freedom and strain coupling was developed in Ref. 28. In this approach, the homogeneous

strain and uniform polarization (~P ) are identified as the order parameters for the transition.

~P is directly related to the average value of uniform local distortion through the mode

effective charge Z
⋆

and the unit cell volume Ωcell,

~P = Z
⋆
. < ~ξ > /Ωcell. (4.1)

In the high temperature (cubic perovskite) phase, the uniform polarization is zero and

the strain tensor has full cubic symmetry: exx = eyy = ezz. We used the variational

formulation of mean field theory, which involves constructing a trial density matrix as a

product of single site density matrices and minimizing the resulting free energy functional

with respect to the variational parameters in the trial density matrix. We minimized the

trial free energy with respect to variational parameters corresponding to cubic, tetragonal

and rhombohedral symmetries to determine the stable phase at various temperatures. The

system is stable in the cubic phase above the transition temperature Tc = 1100K and in

the tetragonal phase below Tc, but within the accuracy of our calculation, the transition is

second order. Switching off the coupling to homogeneous strain resulted in a second order

cubic-rhombohedral transition at a significantly lower temperature of 900 K.

B. Monte Carlo simulations

Classical Monte Carlo simulations29 were performed using the Metropolis algorithm for

finite size systems of L×L×L unit cells and periodic boundary conditions. A configuration

of the system is specified by two sets of three dimensional vectors {~ξi} and {~ui} placed on

interpenetrating simple cubic lattices of size L × L × L. We generated a trial configuration

by updating a single vector to a randomly chosen vector inside a cubic box centered at the

current value of the vector. The size of this box is chosen to yield a reasonable acceptance
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ratio (> 0.1), and is roughly 0.25a0 near Tc. With the change in a single vector, the change in

energy associated with short range terms (quadratic interactions up to third neighbour, the

onsite potential, coupling to strain and third order coupling between the two subspaces) is

easy to calculate. Because of their long range, computation of dipolar intersite interactions

is relatively costly, limiting the size of our simulations to L ≤ 12. The 3 × 3 matrix of

dipolar intersite coupling for each pair of spins was calculated using the Ewald summation

technique for each value of L. Changes in the quadratic intersite interaction due to changes

in strain are neglected in this model. One Monte Carlo sweep (mcs) involves one update of

the ξi’s (in typewriter mode) followed by one update of the ui’s (in typewriter mode), and

20 updates of the 6 components of the strain tensor.

Preliminary Monte Carlo simulations performed with 25,000 to 50,000 sweeps showed

dependence on the initial configuration of simulations at temperatures in the vicinity of the

transition for L > 5. For L = 5, which is small enough for ergodic sampling in a run of this

length, the energy histogram shows two clearly separated peaks. This behaviour is typical

of a first order transition30. At larger system sizes, due to the exponentially increasing

free energy barrier between the regions of configuration space corresponding to low and

high temperature phases, only one of the two peaks in the energy histogram is sampled,

depending on the choice of initial configuration. An accurate determination of Tc requires

knowledge of the relative free energies of the high and low temperature phases as a function

of temperature. Recently developed methods to extract Tc for first order transitions include

multicanonical algorithms30 and jump-walking algorithms31. In our applications of these

methods to PbT iO3, we found that these approaches require very long (106 mcs) simulations,

and therefore are rather impractical. However in the present case, the uncertainty in Tc

obtained from the range of hysteresis is small compared to the LDA and other errors in our

analysis and therefore high accuracy determination of Tc is not necessary. The calculation

of the physical properties of the high and low temperature phases at temperatures inside

the range of hysteresis is carried out with an appropriate choice of the initial configuration.

In Fig. 7, we show the bounds on Tc for L = 5 through 11, obtained by monitoring the
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sensitivity of the average structural parameters to the choice of initial state: T> is the lowest

temperature at which the system averages are characteristic of the cubic state, starting with

an inital ground state tetragonal configuration, while T< is the highest temperature at which

a starting cubic configuration results in a tetragonal state. A value of Tc = 660K, obtained

from averaging the bounds at the largest system size, is in very good agreement with the

experimental transition temperature 763K.

To detect the symmetry of the low temperature phase, we calculated the averages of

largest, smallest and intermediate absolute values of the cartesian components of ~ξ =

1

N

∑
i(~ξi). These averages for the 7 × 7 × 7 system as a function of temperature are shown

in Fig. 8. Near Tc, the largest component jumps to a finite value, while the other two

components remain close to zero, indicating tetragonal symmetry of the low temperature

phase. As shown in Fig. 9, this uniform tetragonal polar distortion is accompanied by a

tetragonal strain c/a 6= 1. This quantity also shows a marked jump near Tc. Finally, from

the average homogeneous strain we obtained the average volume of the system as a function

of temperature, as shown in Fig. 10. The negative thermal expansion in the simulations

just below Tc is also seen experimentally32.

The latent heat of a first order transition is given by the difference in energies at which

the two peaks appear in the energy histogram in the simulations at Tc. To determine this

energy difference, we performed two simulations for L = 9 at the midpoint of the hysteresis

range Tc = 675K, one starting with a tetragonal configuration and the other starting with a

cubic configuration. The difference in the positions of the peaks in the energy histograms for

these two simulations yields an estimate of latent heat of 3400 J/mol, in rough agreement

with the measured value of 4800 J/mole33. It should be noted that these values are much

larger than 209 J/mol latent heat of the cubic tetragonal transition of BaTiO3
34.

Information about the local distortions in the high temperature nonpolar phase just

above Tc, can be obtained from the single spin distribution < ~ξi >. For all L, we find the

distribution to be very close to Gaussian. The rather broad width (≈ 0.04a0) shows that

there are significant local distortions.
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For the system sizes used in the simulations, the coupling to the inhomogeneous strain

appears to be relatively unimportant. If the coupling is set to zero the changes in the calcu-

lated Tc and other transition properties are negligible. However, for larger scale simulations

involving multiple domains the effects should be significant.

V. DISCUSSION

The first principles effective Hamiltonian constructed in the previous section provides

a quantitative microscopic description of the structural energetics of PbT iO3 relevant to

the paraelectric-ferroelectric phase transition. This model can be used to investigate the

connection of specific features of the Hamiltonian to the observed behaviour in the vicinity

of the transition. In addition, it is possible to connect these features to aspects of the

chemistry of PbT iO3 and related compounds.

One important feature of the Hamiltonian is that the TO branches are unstable through-

out most of the BZ (Fig. 3). So, although Γ15 is the dominant instability, finite wavelength

fluctuations have relatively low energy. This may account for the breadth of the single site

distribution, and can be expected also to be reflected in the short range order. The unstable

branch along the (111) direction in PbT iO3 is quite flat when compared with SrT iO3
35

and KNbO3
13. In comparison with KNbO3 and ferroelectric BaTiO3, in which the polar

unstable modes have a strong B-component13,9, the instabilities in PbT iO3 are dominated

by large Pb-displacements. From symmetry arguments11, the Pb displacements couple with

oxygen displacements at Γ, X, R and M leading to the low energy of the modes at those

points. While the same argument applies to Ti displacements at Γ, X and M , they do not

couple with any other mode at R point. Therefore, the energy of the mode at R is high and

the dispersion along Γ to R is large. The special role Pb plays in the instabilities of PbT iO3

and PbZrO3
36 in contrast with the A-atoms in non-Pb perovskite compounds has its origin

in the strong hybridization of Pb with oxygen atoms2,37.

To understand the consequences of the coupling of the polar subspace to the strain at
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finite temperature, we performed Monte Carlo simulations for Heff with this coupling set to

zero. This corresponds to a constant volume phase transition with the unit cell constrained

to be cubic. In this case, we find a second order phase transition at 400 K directly to the

rhombohedral phase. Thus, the coupling of local polar distortions to strain is responsible

for both the stability of the tetragonal phase relative to the rhombohedral one and the first

order character of the transition at finite temperature. As discussed in the previous section,

mean field theory shows a second order transition both with and without strain coupling,

implying that both fluctuations and strain coupling are required for producing the first order

transition. Comparing the transition temperatures obtained in Monte Carlo and mean field

theory with and without strain coupling, we find that while fluctuations suppress Tc, the

coupling to strain enhances the stability of the ferroelectric phase.

In comparison with related ferroelectric compounds, the transition in PbT iO3 has a much

stronger first order character, reflected in its large latent heat. While the strain coupling is

responsible for the first order character38, anharmonicity in the lattice plays an important

role in the magnitude of its discontinuity28. The minimum energy uniform polar distortions

in PbT iO3 are much larger than those in related compounds indicating a large contribution

from anharmonicity in the low-energy surface. The relation of these features to the chemistry

of A or B atoms was discussed using ionic radii in Ref. 28.

There are two main sources of error in the work presented in this paper. One of these

is the LDA used in the exchange correlation functional. Equilibrium lattice constants are

typically underestimated in the LDA calculations. This can strongly affect the study of

structural phase transition, since the lattice instabilities are very sensitive to the lattice

parameters. In the present work these errors were partially eliminated by expanding the

effective Hamiltonian around the experimental lattice constant near Tc and dropping the

term linear in strain. The other source of error is the truncation of the effective Hamilto-

nian subspace. In the LWF approach, this subspace is decoupled at quadratic order from

its complementary subspace to a good approximation. However there can be anharmonic

coupling between the two subspaces. In the case of PbT iO3, there is a small higher order
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coupling of Γ15 to modes not included in the subspace, which affects the energies of large

distortions. Since these large distortions are mainly important at low temperatures, we

expect this coupling to have a small effect on Tc.

VI. CONCLUSION

In conclusion, we have applied the method of lattice Wannier functions to construct an

effective Hamiltonian for the ferroelectric phase transition in PbT iO3 completely from first

principles. Monte Carlo simulations for this Hamiltonian yield a first order cubic-tetragonal

transition at 660 K and a description of the system near the transition in good agreement

with experiment. The strong involvement of Pb atom in the lattice instability as well as

anharmonicity and the coupling of polar distortions with homogeneous deformations of the

lattice are found to be very important in producing the transition behaviour characteristic

of PbT iO3.
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TABLES

TABLE I. Cubic perovskite lattice and elastic constants calculated from various first principles

calculations. Elastic constants are given in eV/cell.

This work Ref. 2 Ref. 3

a0 (Å) 3.883 3.889 3.889

B (GPa) 203 215 209

C11 117. - 123.

C12 51.6 - 53.6

C44 137. - 148.

TABLE II. Effective charges calculated from first principles linear response and compared with

the results of the geometric phase approach (Ref. 26).

Z⋆
pb Z⋆

ti Z⋆
o1 Z⋆

o2

This work 3.87 7.07 -5.71 -2.51

Ref. 26 3.90 7.06 -5.83 -2.56

TABLE III. IR active optical phonon frequencies (cm−1) at Γ obtained using linear response

at the experimental volume. They are compared with the results of the frozen phonon calculations

performed at the LDA volume with ultrasoft pseudopotentials26.

TO1 TO2 TO3 LO1 LO2 LO3

Present work 182 I 63 447 47 418 610

Ref. 26 144 I 121 497 104 410 673
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TABLE IV. LO-TO splitting: mode effective charges and correlation matrix.

Z
⋆

LO1 LO2 LO3

TO1 9.45 0.224 0.466 0.855

TO2 2.56 0.974 0.116 0.192

TO3 1.53 0.010 0.876 0.481

TABLE V. Selected phonon frequencies (cm−1) at high symmetry k-points calculated using

DFT linear response. Symmetry labels follow the convention of Ref. 11.

k-point phonon frequencies

X X ′
5 30.6 I, 264

X ′
2 93.1, 647

M M ′
5 35.1 I, 400, 201

M ′
2 16.4

R25 145 I

R15 15.5, 339

R R′
25 367

R′
12 370

R′
2 746

Λ1 8.78, 249, 421, 696

(111) π
2a Λ2 148

Λ3 58.2 I, 82.9, 230, 301, 430
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TABLE VI. Determination of LWF parameters. Linear combinations of these parameters for

the modes at high symmetry k-points and the corresponding components of the normalized eigen-

vectors of the force constant matrix.

Mode combination of the parameters component of the eigenvector

Γ15 p1 + 4p2 + 2p3 + 12p4 0.5560

8t1 0.5375

4o1 -0.3414

4o2 -0.4109

R15 p1 − 4p2 − 2p3 + 12p4 0.8981

4o3 − 8o6 -0.3110

M ′
2 p1 − 4p2 + 2p3 − 4p4 1.0000

M ′
5 p1 − 2p3 − 4p4 0.9010

8t2 0.3024
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TABLE VII. Values of the LWF parameters determined from first principles. The parameters

of the approximate LWF described in the text are given in the second column. Parameters for

the refined LWF are obtained by fitting to all the TO modes at Γ, R,X and M , with additional

parameters associated with third neighbour shell of Pb atoms and second neighbour shell of oxygen

atoms.

Parameter Approx. LWF Refined LWF

p1 0.839 0.829

p2 -0.037 -0.049

p3 -0.012 0.014

p4 -0.009 -0.019

p5 0.0 0.017

o1 -0.085 -0.086

o2 -0.102 -0.103

o3 -0.077 -0.087

o4 0. .00045

o5 0. -.0045

t1 0.067 0.067

t2 0.038 0.037

TABLE VIII. Comparison of X ′
5 eigenvectors. Mode vector (first row) built up using the

approximate LWF is compared with the eigenvector (second row) of the force constant matrix at

X.

Pb component O component

Mode in the subspace 0.853 -0.341

Eigenvector from LR 0.937 -0.349
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TABLE IX. Determination of coefficients in the quadratic part of Heff . Linear combinations

of these coefficients for the modes in the Heff subspace at high symmetry k-points are equated to

the corresponding eigenvalues of the projected force constant matrix.

k-point Mode eigenvalue at k of the effective Hamiltonian Value from LR

(eV/Å2)

- z = Z
⋆2

/ǫ∞ 12.18

Γ15 A + 2(aL + 2aT ) + 4(bL + bT1 + bT2) + 8(cL + 2cT )/3 − 0.964843z/2 -1.908

X ′
2

A − 2aL + 4aT − 4(bL + bT1) + 4bT2 − 8(cL + 2cT )/3 + 2.231399z/2 6.467

X ′
5 A + 2aL − 4bT2 − 8(cL + 2cT )/3 − 1.115699z/2 -0.266

M ′
5 A − 2aL − 4bT2 + 8(cL + 2cT )/3 + 0.6165696z/2 -0.360

M ′
2 A + 2aL − 4aT − 4(bL + bT1) + 4bT2 + 8(cL + 2cT )/3 − 1.23314z/2 0.103

R15 A − 2aL − 4aT + 4(bL + bT1) + 4bT2 − 8(cL + 2cT )/3 0.076

(111) π
2a A − (−2(bL − bT1) + 0.41635523z/2.0) -0.568

(111) π
4a A +

√
2(aL + 2aT ) + 2(bL + bT1 + bT2) + 0.942809(cL + 2cT )

−((−bL + bT1) − 0.942809(cL − cT ) + 0.7953677z/2) -1.750

TABLE X. Parameters in the effective Hamiltonian (units of eV per unit cell).

A 18.43 aL 39.27 C11 117.9

B 2.629×103 aT -10.67 C12 51.50

C 4.277×103 bL 4.882 C44 137.2

D -1.658×105 bT1 -1.391 g0 -107.7

E 9.630×106 bT2 -0.1434 g1 -790.3

Z
∗2

/ǫ∞ 12.18 cL -3.389 g2 -357.09

cT 0.7104 f 4.48
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FIGURES

FIG. 1. (a) Unit cell of the cubic perovskite compounds ABO3 (b) Low temperature crystal

structure of PbT iO3. Displacements of the atoms indicated by arrows form the polar distortions

of the cubic unit cell.

FIG. 2. z component of the vector-like Pb-centered lattice Wannier functions. Pb, T i and O

atoms are represented by solid squares, empty squares and circles respectively. Parameters labeling

the displacement patterns correspond to the length of the displacements (arrows) of atoms for the

unit value of the LWF coordinate.

FIG. 3. Normal mode dispersion of Heff . Solid circles are the first principles mode eigenvalues

used in the fitting. Open circles are the first principles mode eigenvalues not used in fitting the

Heff , which test the validity of the truncated form of the effective Hamiltonian.

FIG. 4. Total energies for uniformly distorted configurations (~ξi = ~ξ) along directions

(001), (110) and (111). Solid lines are the fit obtained with the parameters B,C,D and E in

Heff .

FIG. 5. Energetics of the homogeneous strain ( (a) isotropic, (b) uniaxial and (c) shear) and

its coupling to the uniform polar distortions. Circles are the total energies for the strained unit cell

configurations with no polar distortions. Solid lines going through the circles are the fits obtained

with the elastic constants C11, C12 and C44. Squares correspond to the second derivative of the

total energies with respect to uniform polar distortions for the strained unit cells. Solid lines going

through the squares are the fits obtained with the coupling parameters g0, g1 and g2.

FIG. 6. Model energetics of the uniform polar distortions along (100), (110) and (111). Dotted

lines correspond to the polar distortions with the unstrained cubic unit cell, and solid lines to the

distortions with unit cell allowed to relax with respect to homogeneous strain.

FIG. 7. Bounds on the transition temperature Tc as a function of system size used in the

simulations.
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FIG. 8. Averages of largest, smallest and intermediate absolute values of the cartesian com-

ponents of the order parameter ~ξ =
∑

i
~ξi/N as a function of temperature, obtained from Monte

Carlo simulations (125000 mcs) of a 7 × 7 × 7 system.

FIG. 9. Average tetragonal strain parameter c
a as a function of temperature, obtained from

Monte Carlo simulations (125000 mcs) of a 7 × 7 × 7 system.

FIG. 10. Average unit cell volume as a function of temperature, obtained from Monte Carlo

simulations (125000 mcs) of a 7 × 7 × 7 system.
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