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We discuss our new implementation of the Real-space Electronic Structure method for studying
the atomic and electronic structure of infinite periodic as well as finite systems, based on density
functional theory. This improved version which we call HARES (for High-performance-fortran
Adaptive grid Real-space Electronic Structure) aims at making the method widely applicable and
efficient, using high performance Fortran on parallel architectures. The scaling of various parts of
a HARES calculation is analyzed and compared to that of plane-wave based methods. The new
developments that lead to enhanced performance, and their parallel implementation, are presented
in detail. We illustrate the application of HARES to the study of elemental crystalline solids,
molecules and complex crystalline materials, such as blue bronze and zeolites.

I. INTRODUCTION

Technological advances are pushing the size of device
components and the demands on their performance to
ever smaller sizes and higher standards. These trends,
which are only expected to accelerate in the future, make
it imperative that the structure and behavior of systems
at the atomistic level are thoroughly understood from a
fundamental perspective. While experimental methods
are steadily improving in their ability to probe atom-
istic processes of materials, computational approaches
provide a complementary technique for systematic and
well-controlled studies. Tuning and optimization of the
properties of materials, taking into account their chemi-
cal composition, require computational methods that are
of general applicability, unbiased and accurate.

First-principles methods based on density functional
theory (DFT)1 have proven to be an accurate and reli-
able tool in understanding and predicting a wide range of
physical properties of finite (such as molecules and clus-
ters) and extended structures (such as bulk crystalline
solids, their defects and surfaces). Such methods must
obtain the quantum mechanical ground state of the in-
teracting electrons and ions, which makes them computa-
tionally very intensive. The computational cost scales as
a rather high power (typically 3) of the number of atoms
or electrons in the system, which limits the sizes that
can be investigated in a reasonable time. Improvement
of the efficiency of first-principles calculations is therefore
an important goal. This goal can be reached either by
improving the algorithms to obtain better scaling with
system size, or by exploiting modern computational re-
sources and in particular parallel architectures.

The scaling of the calculation of the quantum mechan-
ical ground state of interacting electrons and ions can be
improved by exploiting what W. Kohn has called “the
short-sightedness” of quantum mechanics: due to screen-
ing, interactions are essentially short ranged. A natural
way to express this property is through the density ma-

trix of the system. Thus, implementations of linear scal-
ing (referred to as O(N) methods, with N a number rep-
resenting the system size, like the number of electrons)
typically involve density-matrix expressions with local-
ized orbitals2. In terms of the computational time, O(N)
methods prove advantageous for insulating systems with
N > 103 or metallic systems with N > 104 electrons
(the number of atoms in the system is typically an or-
der of magnitude smaller than the number of electrons).
This difference in efficiency of the O(N) methods be-
tween insulators and metals is related to the long-range
behavior of the density matrix which has a different fall
off, i.e. exponential in the former vs. power law in the
latter. These methods are well suited for the calculation
of the total energy of the system, which provides useful
information about its optimal structure, dynamics, and
response to mechanical loading. In addition to the total
energy, it is often important to study the electronic struc-
ture of the system. This is necessary for understanding
electronic, optical and magnetic properties, and is rele-
vant for the study of both insulators (semiconductors)
and metals. A DFT electronic structure calculation re-
quires the calculation of the eigenvalue spectrum of the
single-particle Hamiltonian, a problem which is not easily
amenable to improvements in scaling since diagonaliza-
tion of the Hamiltonian typically scales as N3. Localiza-
tion of the electronic orbitals can be detrimental to the
accuracy of electronic properties though it helps improve
the efficiency of O(N) methods.

In DFT calculations, the single-particle Hamiltonian
matrix itself depends on the eigenfunctions, so the com-
plete solution must be obtained by iterating the solution
to self-consistency. The size of the Hamiltonian matrix
depends on the basis set used to represent the electronic
wavefunctions and the electronic charge density. Ideally,
one would like to work with a sparse Hamiltonian, which
can be solved efficiently using iterative algorithms; the
use such algorithms reduces both computer memory and
time requirements. A natural way to generate a sparse

http://arXiv.org/abs/cond-mat/0006183v2


2

Hamiltonian is to use a real space grid for the representa-
tion of the electronic eigenfunctions and charge density:
each term in the Hamiltonian, evaluated at some point
in space, acts only on the wavefunctions at the same
point in space, except for the Laplacian in the kinetic
energy operator which involves several points simultane-
ously. The number of points included in the evaluation
of the Laplacian determines the few off-diagonal non-zero
matrix elements in each row (or column) of the Hamil-
tonian matrix. The calculation can be made even more
efficient by using an adaptive grid in real space for rep-
resentation of the eigenfunctions, with points distributed
according to the electronegativity of ions. The adaptive
grid can be mapped onto a regular grid in curvilinear
space through the proper definition of a metric. The reg-
ular grid in curvilinear space makes it possible to exploit
fully the capabilities of modern computational platforms
based on parallel processing. Thus, this formulation of
the problem satisfies all requirements for very efficient
electronic structure calculations: (a) Sparsity for fast it-
erative diagonalization of the Hamiltonian; (b) Adaptabil-

ity for efficient distribution of grid points as demanded
by the physical system; and (c) Efficient parallelization

of the computation due to the natural distribution of the
regular curvilinear space grid onto the processor grid.

Our original implementation of such a method3 demon-
strated the feasibility of performing calculations within
this framework. The data structures and operations in-
volved in this method make it easily parallelizable, par-
ticularly using high performance Fortran (HPF). In the
present paper we discuss several algorithmic issues that
enhance the performance of the method and their imple-
mentation using HPF; we refer to the new implementa-
tion as HARES for HPF-Adaptive-grid Real-space Elec-
tronic Structure. The paper is organized as follows: In
section II we briefly review the theory underlying the
HARES method and present an analysis of the compu-
tational effort involved in the various parts of the calcu-
lation. In section III we discuss the recent algorithmic
enhancements and their implementation. In section IV
we illustrate the efficacy of these algorithmic enhance-
ments through several applications of HARES to inter-
esting systems. These include: (a) a few simple elemental
crystals and a few molecules composed of atoms in the
first row of the periodic table which typically present a
computational challenge to plane-wave (PW) methods;
(b) blue bronze, a quasi one-dimensional conductor; and
(c) a zeolite, that is, a complex structure composed of Si-
O tetrahedra and large pores, which represents a molec-
ular sieve. Section V contains our conclusions.

II. THEORETICAL FRAMEWORK

A. Density Functional Theory

The problem of finding the quantum mechanical
ground state of electrons in solids is a many body prob-

lem which, at present, can be solved only approximately.
The computational framework of choice for a wide range
of problems involving a system of ions and interacting
electrons is DFT1. The central theorem of DFT, proven
by Hohenberg and Kohn, states that the ground state
energy of an electronic system is a unique functional of
its charge density ρ(r) and is an extremum (a minimum)
with respect to variations in the charge density. Kohn
and Sham1 expressed the charge density in terms of single
particle wavefunctions ψα(r) (referred to as Kohn-Sham
orbitals) and occupation numbers fα

ρ(r) =
∑

α

fα|ψα(r)|2.

The ground state energy functional is then given by

∑

α

fα

∫

ψ∗
α(r)

[

−
1

2
∇2 + Vext(r)

]

ψα(r)dr +

EH[ρ(r)] + EXC[ρ(r)],

(1)

where Vext(r) is the external potential experienced by the
electrons due to the presence of the ions, EH is the elec-
trostatic (also known as Hartree) energy due to Coulomb
repulsion of electrons and EXC is the exchange-correlation
(XC) contribution, which embodies the many-body prop-
erties of the interacting electron system. A variational ar-
gument in terms of the single-particle states ψα(r) leads
to a set of single-particle equations for fictitious non-
interacting particles that produce the same density as
the real electrons:

[

−
1

2
∇2 + Veff(ρ(r), r)

]

ψα(r) = ǫαψα(r). (2)

The effective potential Veff in these single-particle equa-
tions is:

Veff(ρ(r), r) = Vext(r) + VH[ρ(r)] + Vxc[ρ(r)] (3)

where VH is the electrostatic potential due to Coulomb
repulsion between electrons (known as the Hartree poten-
tial) and VXC = δEXC/δρ(r) is the exchange correlation
potential. The system of Eqs. (2), referred to as Kohn-
Sham equations, represents a set of nonlinear coupled
equations due to the dependence of VH and VXC on the
density (and hence the wave functions ψα); these equa-
tions are solved iteratively, beginning with a guess for the
ψα’s, until self-consistency is achieved.

The only significant approximation in this set of equa-
tions is the form of EXC[ρ(r)], which is not analytically
known. The standard choices involve expressions that de-
pend locally on ρ(r) (known as the Local Density Approx-
imation — LDA), or involve both ρ(r) and its gradients
(known as the Generalized Gradient Approximation —
GGA). Such expressions have been derived from analyz-
ing the behavior of the uniform or non-uniform electron
gas in certain limits, or by fitting the results of accu-
rate calculations based on quantum Monte Carlo tech-
niques for sampling the many-body wavefunction; they
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work well in reproducing the energetics of a wide vari-
ety of ground state structures of extended (crystalline)
or finite (cluster or molecular) systems. We discuss next
the basic features of the LDA and GGA approaches and
their limitations and capabilities.

In the LDA, the exchange-correlation functional is ex-
pressed as:

ELDA

XC
[ρ(r)] =

∫

ρ(r)ǫ0
XC

(ρ(r))d3
r. (4)

when the number of spin-up and spin-down states in the
system are equal (we refer to this as the “spin compen-
sated” case). In this expression ǫ0

XC
(ρ) is the exchange

correlation energy of the uniform electron gas of density
ρ, which can be obtained by more elaborate computa-
tional methods like quantum Monte Carlo, or even ana-
lytically in certain limits. The ground state of a number
of physical systems, such as atoms, molecules, and mag-
netic crystals can exhibit nonzero spin-polarization. In
the above description of DFT, the single particle states
label α can be extended to include the spin (up or down)
quantum number, and the energy functional can be read-
ily generalized to take into account the spin-polarized
electrons. The spin-polarized version of the exchange-
correlation energy functional in the so called Local Spin
Density Approximation (LSDA) is written as

ELSDA

XC
[ρ↑(r), ρ↓(r)] =

∫

ρ(r)ǫ0
XC

(ρ↑(r), ρ↓(r))d
3
r, (5)

where ρ↑(r) and ρ↓(r) are the electronic densities of spin-
up and spin-down electrons, in terms of which the total
electronic density ρ(r) is:

ρ(r) = ρ↑(r) + ρ↓(r).

Among the various proposed XC functionals ǫ0
XC

(ρ),
in our approach to the DFT method we have imple-
mented two different parametrizations of the Ceperley-
Alder (CA) functional4 for both spin-polarized and spin-
compensated systems: the first is the Perdew-Zunger5

parametrization (PZ-CA) and the second is the Perdew-
Wang6 parametrization (PW-CA). The PW-CA func-
tional uses a more accurate spin interpolation formula for
the correlation, proposed by Vosko, Wilk, and Nusair7,
which is based on the random-phase approximation;
the PZ-CA functional uses the von Barth-Hedin8 spin-
dependence for the correlation which is correct for the
exchange part of the functional.

Although the L(S)DA has proved successful in a variety
of chemical and physical applications, it suffers certain
well known deficiencies. Among those, the most serious
are:

(i) The tendency to produce more bonding in solids
than is observed experimentally; manifestations of
this tendency include the underestimate of the lat-
tice constant or bond length and the overestimate
of the cohesive energy and the bulk modulus.

(ii) Poor representation of activation energies which are
related to chemical reactions or transitions between
structures.

(iii) Incorrect relative stability of different magnetic
phases for some magnetic materials.

In order to correct these deficiencies, expressions for the
XC functional which go beyond the density and include
gradients of the density have been devised. In the so-
called generalized gradient approximation (GGA), the
XC energy functional is expressed as follows:

EGGA

XC
[ρ↑(r), ρ↓(r)] =

∫

ρ(r)ǫGGA

XC
(ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r))d

3
r.

(6)

Applications of GGA to real materials show a tendency
to over-correct the deficiencies of L(S)DA. For instance,
the lattice constants of common crystalline solids tend
to be overestimated within GGA calculations, while bulk
moduli are underestimated9,10. We have implemented
in HARES the recently developed parameter-free GGA
functionals (PW9111,12 and PBE9612,13,14). Present ca-
pabilities include the use of the GGA functional in two
different modes : (a) fully self-consistent GGA calcula-
tions and (b) a posteriori correction of the total energy
with the perturbative GGA XC correction applied at the
end of a self-consistent LDA calculation as:

∆Etotal = EGGA

XC
[ρLDA] − ELDA

XC
[ρLDA]. (7)

It is important to point out that the core–valence XC in-
teraction is significantly different between LDA and GGA
as was noted by Fuchs et al.15 Therefore, in order to en-
sure the reliability of the GGA results, it is necessary
to perform either the fully self-consistent GGA calcula-
tion using GGA-constructed pseudopotentials (referred
to as mode (a) above) or the a posteriori GGA correc-
tion after the self-consistent LDA calculation using the
LDA-constructed pseudopotentials with the partial-core
electron density (referred to as mode (b) above).

For the spin-polarized systems, we consider two dif-
ferent modes of the computation: (1) The conventional
unconstrained calculation, where the total electron den-
sity and the magnetic moment are determined simulta-
neously and self-consistently; and (2) the fixed spin mo-
ment (FSM) method16,17,18, which constrains the mag-
netic moment to be constant, but allows the possibility
of different Fermi energies for the spin-up and the spin-
down electron densities. The latter method has certain
advantages: A series of FSM calculations with different
magnetic moments provide the total energy as a func-
tion of the magnetic moment, yielding detailed informa-
tion about the magnetic phase. In addition, the FSM
calculations rapidly achieve self-consistency and are nu-
merically more stable compared with the unconstrained
calculations.
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B. Computational Approach

There exist a variety of methods for solving the set
of single-particle equations derived from DFT, Eqs. (2).
In the broadest classification, these methods fall into
two categories, depending on how they describe the
single-particle wavefunctions and charge density: Meth-
ods in the first category use explicit basis sets to
represent the wavefunctions and charge density, while
those in the second category use finite, discrete grids
(or meshes) of points on which these functions are
represented.19,20,21,22,23,24 A standard approach of the
first type employs a PW basis, which is a natural ba-
sis for periodic systems.25,26 The plane waves needed in
the expansion are determined by the reciprocal lattice of
the crystal while the number of plane waves included in
the basis is determined by the highest kinetic energy, a
parameter referred to as the “energy cutoff”. HARES
falls in the second category of methods, as it employs a
discrete mesh for the calculation. An important differ-
ence in the two types of methods is that in the former
all operators have a unique representation once the basis
set is chosen, whereas in the latter operators involving
differentials have many possible representations with dif-
ferent order of approximation. In this sense, the latter
type of methods involve an additional degree of approx-
imation. Both types of methods map the Kohn-Sham
problem onto a matrix eigenvalue problem, denoted by
HKS. One of the desirable features of grid-based methods
is to produce a sparse matrix HKS; this makes it possible
to employ iterative algorithms for its solution.

1. Adaptive Coordinate Transformation

HARES uses a uniform grid in curvilinear space which
is analytically mapped onto a grid in real space with reso-
lution (grid-spacing) adapted to natural inhomogeneities
in the problem. With the use of the adaptive grid,
one can use HARES for both all-electron and pseudopo-
tential calculations. However, use of pseudopotentials
proves effective in most practical calculations. In the
Kohn-Sham problem, inhomogeneities arise fundamen-
tally from Vext(r), which is the potential that each elec-
tron experiences due to the presence of the nuclei. The
Cartesian coordinates xi(ξα;Pm) depend on the curvi-
linear coordinates ξα and a set of parameters Pm that
allows tuning of the coordinate representation to a par-
ticular physical problem. The Jacobian of the transfor-
mation is

J i
α(ξ;P ) = ∂xi/∂ξα (8)

and describes how derivatives transform between the co-
ordinate systems; its determinant |J | = det J i

α is a mea-
sure of how the volume element is changed by the coor-
dinate transformation. The metric giving the elemental
length associated with infinitesimal displacement is given

by

gαβ = (J−1)α
i δ

ij(J−1)β
j . (9)

Details of the coordinate transformation can be found in
Ref. 3.

The gist of the transformation is to enhance spatial res-
olution in the region where it is desirable to increase the
accuracy of the finite-difference derivatives and the repre-
sentation of charge density inhomogeneities. The equiv-
alent enhancement of resolution in the PW approach is
the increase of the energy cutoff. The connection between
the effective energy cutoff and the local resolution of the
HARES grid is given by the factor |J |−2/3. The differen-
tial equation of the Kohn-Sham problem in the adaptive
grid representation becomes a finite matrix eigenvalue
problem, with only the kinetic energy term (the Lapla-
cian in the single-particle equations) having off-diagonal
elements.

The uniform mesh in ξ−coordinates is subsequently
broken into blocks that are distributed over a number
of processors on a parallel computer architecture. The
wavefunctions, potentials, and charge density are repre-
sented on this mesh allowing for balanced distribution
on processors. In the iterative solution of the eigenvalue
problem, an operation that is performed frequently dur-
ing the calculation is the product of the Hamiltonian
matrix with a vector representing a single-particle wave-
function. In parallel execution of this operation, it is
the kinetic energy term (the Laplacian) with off-diagonal
elements that requires most of the communication and
makes the solution of the eigenvalue problem nontrivial.

2. Boundary Conditions

In DFT calculations based on a real-space grid, bound-
ary conditions enter in the way the Laplacian is applied to
a function. There are only two aspects of a calculation
where this is relevant: (i) the kinetic energy operator,
that is, the Laplacian acting on wavefunctions and (ii)
the calculation of the electrostatic potential, obtained by
solving the Poisson equation, that is, the Laplacian act-
ing on the potential. Since the calculation of the Lapla-
cian (represented as a finite difference) of a function at
a given grid point uses values of the function at adja-
cent grid points, imposition of the boundary conditions
requires knowledge of the function at a few grid points
outside the boundary. For calculations on infinite crys-
talline solids, we use periodic boundary conditions (PBC)
demanding that the function is periodic in space with
the period of a unit cell that models a physical system.
Thus, application of the Laplacian at any point in the
unit cell involves values of the function inside the unit cell
making implementation of boundary conditions for this
case straight-forward. For calculations on finite systems
(atoms, molecules or clusters), we use open boundary
conditions (OBC). In this case, the treatment of bound-
ary conditions is more intricate since the grid points ad-
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FIG. 1: Cell used in a calculation with open boundary condi-
tions.

jacent to the ones on the boundary fall both inside and
outside the region containing the system. In Fig. 1, we
show how this is treated in HARES. We choose a rect-
angular box with a spherical region inside, the interior
of which is large enough to contain the physical system.
The thickness of the buffer region surrounding this sphere
depends on the order of the finite-difference Laplacian,
and is equal to this order times the grid-spacing. Thus,
the distance between the sphere and the box vanishes in
the continuum limit and the ratio of the volumes of the
sphere to the box becomes π/6. The wavefunctions and
charge density vanish outside the spherical region; this
takes care of the boundary conditions in the kinetic en-
ergy part. There is one more term that deserves special
attention in handling OBC: it is the electrostatic poten-
tial which has long range, and therefore cannot be as-
sumed to be zero in the buffer region outside the spherical
region. We obtain values for the electrostatic potential
in the buffer region through a multipole expansion up to
order 4, using the density inside the spherical region; we
use the values at those points as the boundary conditions
for VH in the solution of the Poisson equation.

3. Scaling of Computational Effort

It is useful at this point to analyze the computational
effort involved in various aspects of a DFT calculation
using HARES and compare it to that performed using
the PW method.

In the PW method, there is one grid in real (direct)
space and another in reciprocal space. The wavefunctions
are stored in reciprocal space on part of the grid inside a
spherical region with diameter equal to half of the side of
the full grid. These are transformed into real space us-
ing the fast Fourier transform (FFT) whenever necessary.
The calculations of the charge density, the local ionic po-
tential, and the exchange correlation energy are carried

TABLE I: Scaling of computational effort with system size in
HARES and a PW method.

Calculation of HARES Plane Wave Method

Charge density O(N2) O(N2 log N)

Kinetic energy O(N2) O(N2)

Local potential O(N2) O(N2 log N)

Nonlocal potential O(N3) O(N3)

Hartree energy O(N) O(N)

XC functional O(N) O(N)

Orthogonalization O(N3) O(N3)

out in real space, whereas the calculation of the kinetic
energy and the Hartree energy are carried out in recip-
rocal space. The calculation of the energy related to the
nonlocal pseudopotential can be done on either grid. For
small system sizes, the most time-consuming part is often
that of performing the FFTs, which scales as O(N logN).
The number of FFTs scales linearly with system size giv-
ing an overall O(N2 logN) scaling for the entire calcu-
lation. For large system sizes, the orthonormalization of
wavefunctions, or equivalent constraints imposed during
minimization of the energy functional, dominate the com-
putational time. These operations scale as O(N3). Cal-
culation of the contribution from the nonlocal pseudopo-
tentials normally scales as O(N3), but can in principle be
improved to O(N2) scaling by exploiting the short-range
character of the potentials in real space.

In HARES, the wavefunctions are stored on the full
grid in real space and all operations are performed on
the same grid, eliminating the need for FFTs. The
calculation of the kinetic energy is carried out using
finite-difference formulae for derivatives on a grid in real
space. The Hartree energy and the long-range electro-
static potential due to periodic charge density are com-
puted by solving the Poisson equation, which scales as
O(N). For large system sizes, orthonormalization of the
wavefunctions dominates the computational time, which
then scales as O(N3). The treatment of the nonlocal
pseudopotentials also scales as O(N3), unless their short-
range character is exploited. We summarize the compar-
ison of scaling between HARES and a PW method in
Table I.

The current parallel implementation of HARES is in
high performance Fortran (HPF), which involves sin-
gle instruction multiple data (SIMD) coding. Since the
wavefunctions and charge density are stored in real space
and distributed across processors, communication be-
tween processors is necessary in calculating:

(a) the finite-difference derivatives using the CSHIFT
operation, which cyclically shifts the data in an ar-
ray on a grid along the specified direction; and

(b) the inner product of two functions using the the
SUM operation.
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TABLE II: Scaling of communication between processors (as-
sumed to be on a cubic array) used in HARES calculation.

HPF Communication Number of

operation per operation operations

CSHIFT O(N2/3) O(N)

SUM O(N0) O(N2)

The scaling of inter-processor communication with sys-
tem size is presented in Table II. For large enough system
size, the SUM operations dominate the communications
in a parallel calculation.

III. ALGORITHMIC ENHANCEMENTS AND

IMPLEMENTATION

A. Non-orthogonal Unit Cell

Finite-difference formulae for derivatives of functions
represented on a grid with finite spacing are designed to
achieve high accuracy and are reasonably accurate for a
polynomial function up to certain order. These formu-
lae are typically derived for functions of one variable on
grids of uniform spacing. Their generalization to higher
dimensions is trivial through direct product if the grid is
orthogonal in the various dimensions. For periodic crys-
tals with non-orthogonal unit cell, it is often not possible
to design an orthogonal grid with the same periodicity in
all directions; in this case the implementation of finite-
difference formulae is not trivial.

The coordinate transformation employed in HARES
provides a very simple method to treat non-orthogonal
unit cells and grids. In this case, the transformation is
uniform throughout the unit cell and maps an orthogonal
unit cell in ξ−space onto a non-orthogonal unit cell in
x−space. If F is a matrix that gives the deformation of
the orthogonal unit cell into the one under study (i.e. its
columns are the non-orthogonal unit cell vectors), one
can always obtain a transformation that is symmetric
by filtering out the rotational part of F as follows: first
obtain an auxiliary matrix M defined as M = F ·FT and
then diagonalize M to obtain a diagonal matrix D. The
Jacobian for a rotation-free transformation is then given
by

J = T−1 ·D
1

2 · T,

where T is a matrix that diagonalizes M : D = T ·M ·
T−1. Once the mapping onto an orthogonal ξ−grid is
obtained, the derivatives, length and volume elements
can be obtained using the formalism described in section
II B 1.

B. Preconditioned Conjugate Gradients Solver

The dominant part of a DFT calculation often con-
sists of solving an eigenvalue problem, that is, obtaining
the lowest few (compared with the full spectrum) eigen-
values and eigenvectors of a very large matrix. In the
case of PW basis, the size of the matrix is determined
by the number of PW components included in the basis.
In the case of HARES, the size of the matrix is deter-
mined by the number of points that constitute the real
space grid. For small enough matrices the standard tech-
niques of linear algebra can be employed, which give the
exact (within the numerical accuracy of the algorithm)
eigenvalues and eigenvectors of the matrix. When the
size of the matrix is large, the conventional methods are
not practical and the only alternative is to employ iter-
ative approaches which approximate the eigenvalues and
eigenvectors in successively improving steps. We consid-
ered two iterative algorithms for the diagonalization task
in HARES:

(a) An Inverse Iteration (II) algorithm with multigrid
preconditioning27;

(b) A Conjugate Gradient (CG) algorithm28 with suit-
able preconditioning in real space.

The implementation of the former has been presented
earlier3 and we want to focus on the CG algorithm in
this subsection.

In Fig. 2, we present a flowchart of the CG algorithm.
It is similar to the one in Ref. 28, presented for a PW
basis. In real space, most steps in the algorithm remain
unchanged except for the preconditioning. The main idea
in preconditioning is to filter out high Fourier compo-
nents in the wavefunctions and the charge density. We
achieve this through multiple application of a coarsening
transformation. For example, the coarsening applied to
the charge density gives:

ρ(k, l,m) →
1

2
ρ(k, l,m) +

1

12
[ρ(k ± 1, l,m) + ρ(k, l ± 1,m) + ρ(k, l,m± 1)],

(10)

where k, l,m are indices of the grid points at which the
charge density ρ is calculated. We find that application of
this transformation twice on the function under consid-
eration results in adequate preconditioning. Better pre-
conditioning is possible in principle for selected cases but
may not be worth the extra effort required; this method
provides a preconditioner that works reasonably well in
all cases we have considered.

Another aspect of a DFT calculation is that the eigen-
value problem needs to be solved repeatedly while up-
dating the charge density to achieve self-consistency be-
tween the wavefunctions and the corresponding effective
potential, which depends on the density. Specifically,
a self-consistent DFT calculation starts with an initial
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FIG. 2: Flowchart of the conjugate-gradient algorithm for the
eigenvalue problem.

guess for the density and subsequently follows an iter-
ative procedure of alternating steps of diagonalization
and improved estimate for the charge density. Each iter-
ation i starts with a charge density ρi

in and obtains the
part of the eigenspectrum of HKS that corresponds to
occupied single-particle states and some low-lying unoc-
cupied states, which depends on ρi

in through the effective
potential. At the end of an iteration the eigenfunctions
are used to obtain an output charge density ρi

out. An im-
proved estimate for the charge density is obtained from
ρi

in and ρi
out; this is discussed in detail in the following

subsection.
We observe that diagonalization with full convergence,

that is, with the tolerance for the difference between the
ρi

in and ρi
out set to be very low, can be computation-

ally demanding and depends on the initial guess for the
density. Since the charge density at the initial stage of
self-consistency is far away from the self-consistent one,
accurate diagonalization of the Hamiltonian matrix at
this stage is not worthwhile. Accordingly, we limit the
number of CG steps for diagonalization at the initial
stages of the self-consistency loop to relatively few —
we found that two CG iterations at this stage yield op-
timal efficiency. Accurate diagonalization is achieved in
the course of self-consistency as the initial guess for the
eigensolver is steadily improved. We have found that
the performance of the II and CG algorithms for conver-
gence to self-consistency is comparable. The differences
are rather small and system-dependent. The advantage

of the CG algorithm is that all operations take place on
the same grid, whereas in the II algorithm multi-grid
preconditioning requires the mesh sizes to be a power of
two.

C. Charge Density Mixing

We return now to the way in which the charge density
is updated at the end of each iteration. In general, the
new charge density at the end of step i can be constructed
from the charge densities of previous steps:

ρi
new =

i
∑

j=i−d

(κin
j ρ

j
in + κout

j ρj
out) = ρi+1

in , (11)

where κj ’s are mixing coefficients and d is called the
“depth” of the mixing procedure, i.e. the number of
previous iterations used in the improved estimate of the
density. Various mixing schemes are available and have
been discussed in Ref. 29.

In our work, we added another feature to mixing: we
optimize the strength of mixing, that is, the values of the
parameters κj , as a function of iteration. This feature can
be used along with most of the mixing schemes employed
in the literature. To illustrate the basic idea, we take a
simple realization of a mixing scheme:

ρi
new = ρi

in + κ(ρi
out − ρi

in). (12)

κ = 1 is an extreme case where no knowledge of the input
density is used, and κ = 0 corresponds to the opposite ex-
treme where the density is not updated at all. For κ = 1,
there can be oscillations between input and output densi-
ties corresponding to underdamped mixing. On the other
hand, for small κ the oscillations are overdamped result-
ing in slow update of the density and hence the approach
to self-consistency. We have devised a way to achieve
the optimal critical damping in the mixing procedure. In
our scheme, we calculate the root mean square change in
density δρi at each iteration i:

δρi =

(

1

Ω

∫

|ρi
out − ρi

in|
2d3

r

)
1

2

,

where Ω is the unit cell volume, and define the rate of
self-consistency as

Ri ≡
∂ log(δρi)

∂t
,

where t is a fictitious time associated with iterations. Ri

is a rough measure of how well a calculation is evolving
toward a self-consistent solution. We monitor both the
rate and the mixing coefficient at each iteration and can
estimate λ ≡ ∂R/∂κ. If Ri is too small (< 0.2), the
approach to self-consistency is too slow. In that case,
the mixing coefficient is increased or decreased, depend-
ing on the sign of λ, by an amount ∆κ, — a positive
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λ corresponds to smaller κ and a negative λ to larger κ
compared with the optimal value of this parameter. This
has the effect of keeping the strength of mixing κ near a
value where R is optimal i.e., in the neighborhood of crit-
ical damping. The magnitude of change ∆κ is reduced
over time to make sure that it converges to its optimal
value.

D. Nonlocal Pseudopotential Projector

The nonlocal part of the pseudopotentials VNL(r, r′) is
used in a separable form30,31 to facilitate fast calculation
of its product with the wavefunction ψ:

〈r|VNL|ψ〉 =
∑

α,l,m

〈r|φα
lm〉〈φα

lm|ψ〉

ηα
lm

,

where α is an atomic index, l and m are angular quan-
tum indices, and ηα

lm are constants related to the normal-
ization of the nonlocal projectors φα

lm. Straightforward
application of VNL(r, r′) on the wavefunctions scales as
O(N3), since there are Ne wavefunctions on N grid
points, and Na atoms (the number of grid points N is
proportional to the system size measured by either Na or
Ne, which also scale with each other). This computation
can be accelerated significantly, by noticing that 〈r|φα

lm〉
is a localized function centered on atom α. Thus, a cal-
culation of 〈φα

lm|ψ〉 in real space involves only the grid
points near atom α making it an O(N0) computation,
which gives O(N2) for the overall calculation involving
the non-local pseudopotential. We use a filtered pseu-
dopotential approach32 with a filter that is smooth in
k-space (as opposed to the theta-function used in plane-
wave approaches). This minimizes the errors in the eval-
uation of 〈φα

lm|ψ〉 in addition to using the adaptive grid.
The parallel implementation of such a calculation is not
trivial, since it involves only those processors which store
the grid points near the given atom α. To address this
issue, we represent the atomic projectors φα

lm(r) in terms

of the packed projectors χj
lm(r) shown schematically as

follows:

{φα
lm(r)|α = 1, . . . , N} −→

{

χj
lm(r), βj

lm(r)|j = 1, . . . ,Md

} (13)

where χj
lm(r) is defined as the projector of the j-th largest

magnitude at a given grid point r (e.g. φγ
lm(r)), and

βj
lm(r) is the index of the atom from which χj

lm(r) was

generated (in the case of the above example βj
lm(r) = γ).

We only keep a number of important pseudoprojectors
Md, (thus letting j vary from 1 to Md), which we call the
depth of the packed projectors. We find that Md = 3 is
typically sufficient; for example, this is exact if the non-
local projectors of at most three atoms are nonzero at
any point r. This changes the scaling of memory require-
ments for the nonlocal potential from O(N2) to O(N).

With this choice of packing, the expression for the inner
product becomes:

〈φα
lm|ψ〉 =

∑

j

∑

r

δβj

lm
(r),α〈χ

j
lm|r〉〈r|ψ〉.

This is readily evaluated using an EXTRINSIC subrou-
tine call in HPF, which involves execution of the whole
routine on each processor, but on different data. Effec-
tively, an inner product 〈φα

lm|ψ〉 with contribution from
only the grid points inside a sphere centered at atom α
is calculated by distributing the data with respect to α
rather than grid points.

E. Computation of Forces

Forces on the atoms are calculated using the Hellman-
Feynman theorem, as is usual in DFT calculations:

Fα = −
∑

i

〈

ψi

∣

∣

∣

∣

∂Vext

∂Rα

∣

∣

∣

∣

ψi

〉

,

where Rα is the position of atom α. For reasons similar
to those mentioned in the previous subsection, the contri-
bution of the nonlocal pseudopotential to atomic forces is
computationally demanding and scales as O(N3). With

packed projectors 〈r|χj
lm〉, the scaling of this computa-

tional cost is improved to O(N2). This is a significant
improvement for problems involving structural relaxation
of large systems.

The implementation of packed projectors in the calcu-
lation of forces deserves further elaboration. The force
calculation with nonlocal pseudopotentials involves both
the projectors φα

lm(r) and their derivatives ∂φα
lm/∂Rα.

Since the latter is needed only during the calculation of
forces, it does not need to be packed and stored but can
be obtained at the time when it is needed. The inner
products of φα

lm with ψi have to be computed for all
atoms α at once at the beginning of a force calculation
since they are packed. With these improvements, we ob-
tain a factor of 7 speedup in the calculation of forces for
systems containing about 30 atoms.

Finally, we should note that as in any method that in-
volves a computational basis which changes with the po-
sitions of the atoms, the adaptive grid generates fictitious
forces referred to as Pulay forces. We have implemented
the correction related to the Pulay forces and found that
it is not significant when the grid is refined to the point
where it yields adequate accuracy. Thus, for all practical
purposes, with an accurate grid the Pulay correction to
the forces can be neglected (see also Ref. 3).

F. Geometry Optimization

In modern ab initio total energy calculations, one
of the objectives is to obtain minimum energy geome-
tries (corresponding to local minima or, if possible, the
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global minimum of the energy), where the Hellmann-
Feynman force on each atom is zero or, more precisely,
smaller in magnitude than a prescribed value (typically
≤ 0.5 mRy/a.u.). The process in which the initial ionic
geometry is sequentially updated to relax to a neighbor-
ing local minimum is referred to as the ionic relaxation.
Mathematically, the ionic relaxation is a nonlinear opti-
mization problem, which is a subject of vast interest in
applied mathematics.

Many optimization algorithms have been proposed so
far, which can be broadly classified into three groups:

(i) algorithms which require only the evaluation of the
function;

(ii) algorithms requiring the function values and its
gradients;

(iii) algorithms requiring the function values and its
first and second derivatives (the gradients and the
Hessians).

In electronic structure calculations, the function to be
optimized is the total energy and its gradients are the
forces on the atoms. Since the forces are not too com-
putationally demanding compared to the self-consistency
loop (especially after implementing the improvement dis-
cussed in the previous subsection), it is natural to use the
methods of class (ii) for ionic relaxation.

Among the gradient algorithms, the quasi-Newton
(also referred to as variable metric) method is known to
be most efficient33. The inverse Hessian is approximated
and updated at each iteration. Suppose |R0〉 is an initial
estimate of the minimizer of the total energy Etotal, |g0〉
is the corresponding gradient, and H0 is the initial guess
for the inverse Hessian. At the n-th relaxation step, the
next approximate minimizer is given by

|Rn+1〉 = |Rn〉 − βnHn|gn〉 (14)

where the step size βn is determined by the line search34

(or the line minimization). The inverse Hessian is up-
dated by

Hn+1 = Hn + ∆n (15)

where ∆n is the correction to Hn and is determined by
requiring that it satisfies the quasi-Newton condition,

Hn+1|hn〉 = |dn〉 (16)

with |hn〉 ≡ |gn+1〉 − |gn〉 and |dn〉 ≡ |Rn+1〉 − |Rn〉.
Among different update formulae for the in-

verse Hessian33, we have implemented the initially-
scaled Broyden-Fletcher-Goldfarb-Shanno (IS-BFGS)
expression35,36:

Hn+1 = H̃n −
H̃n|hn〉〈dn| + |dn〉〈hn|H̃n

〈dn|hn〉

+

(

1 +
〈hn|H̃n|hn〉

〈dn|hn〉

)

〈dn|dn〉

〈dn|hn〉

(17)

where H̃n = (〈dn|hn〉/〈hn|Hn|hn〉)Hn, when n = 0 and

H̃n = Hn, otherwise.
Implemented in combination with the approximate

line search algorithm37, the IS-BFGS provides an ef-
ficient ionic relaxation tool which assures the conver-
gence of the approximate inverse Hessian to the cor-
rect inverse Hessian and is numerically stable. As no-
ticed in other works38,39, restarting the update sequence
[Eq. (17)] can be beneficiary in some cases, and we
have used the following restart criterion: 〈dn|gn+1〉 ≤

0.5
√

〈dn|dn〉〈gn+1|gn+1〉. This implies that the displace-
ment of an atom is not too different from the direction
of the calculated force acting on it.

G. Dual real-space grid calculations

Typically, the representation of the charge density and
local potentials in a DFT calculation needs twice as much
spatial resolution as that of the wavefunctions. To exploit
this aspect of electronic structure calculations, we have
developed a version of HARES which employs two sep-
arate real-space grids — a coarser one and a finer one.
The wavefunctions are represented on the coarser grid
and the charge density on the finer one with half the
grid-spacing of the former. The finer grid corresponds to
the FFT grid in a PW calculation. This version of the
code reduces memory requirements substantially. The
computational cost of the worst scaling part of the cal-
culation (the wavefunction orthogonalization) is reduced
by a factor of 8.

The transformation from the coarser to the finer grid
is performed only when the charge density needs to be
calculated from the wavefunctions. We use wavelet inter-
polants40 to achieve this. The Poisson equation is solved
on the finer mesh to obtain the electrostatic potential.
The exchange correlation potential and the local part
of the pseudopotential are also calculated on the finer
grid; these terms are convolutions in k-space and in a
PW method are calculated on the FFT grid. The kinetic
energy operator and the nonlocal pseudopotential act on
the wavefunctions directly on the coarser grid. Naturally,
this necessitates usage of a higher order Laplacian in the
calculation of the kinetic energy, while the one with lower
order is adequate in the solution of the Poisson equation.

To check the accuracy of the dual-grid code, we calcu-
lated the energy difference between two configurations of
the O2 molecule and compared it with the result of a PW
calculation. Both methods were used at different energy
cutoffs, or equivalently, of spatial resolution. We found
that the energy difference as a function of the energy
cutoff behaves the same way in both methods. In fact,
at a low energy cutoff, the sign of the energy difference
was inverted in both calculations and the magnitude was
within 6 % of the correct value.

While the dual-grid approach to real-space electronic
structure calculation enhances the performance signifi-
cantly, we caution that the errors introduced by break-
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TABLE III: Comparison of performance of HARES and a PW
method.

System CPU time (8 nodes) CPU time (1 node)

HARES CASTEP 2.1

O2 150 sec 1548 sec

Si24O48 7.5 hours 36 hours

ing of translational invariance, a feature inherent in real-
space grids (see Ref. 3), are larger than those in the sin-
gle finer grid calculations. This is due to the coarser
grid used in the representation of wavefunctions and the
higher order expression for the Laplacian on the coarser
grid. Within the PW method, the same error enters in
calculating the XC potential on the real-space FFT mesh.
These errors enter into the calculation of forces and can
be minimized if necessary by using Fourier-filtered pseu-
dopotentials. We expect the use of the dual-grid ap-
proach to be very advantageous at the initial stages of
ionic relaxation of a system with large number of atoms,
when the accuracy in forces or wavefunctions is not cru-
cial since the system is presumably far from its optimal
structure.

H. Performance

In Table III, we present a comparison of the perfor-
mance of HARES and that of a PW code, for DFT cal-
culations on the O2 molecule and a zeolite, Si24O48. We
have selected for the comparison the academic version of
CASTEP41, a PW package which uses all the standard
methods for such calculations and is freely available to
academic researchers, as is also the case for HARES. We
believe this provides the most meanigful comparison of
the performance of the different approaches, for codes at
equivalent levels of development and availability to the
academic community. It is clear that the performance of
HARES for the oxygen molecule is definitely better than
the PW code. In general, we find that HARES performs
better for metallic systems. For the zeolite, which is an
insulator, CASTEP uses a variational method for direct
minimization of the total energy, which is not applicable
to the case of metals. This makes the performance of
CASTEP very good for such systems, though the perfor-
mance of HARES is not unacceptable (a factor of 1.66
slower than CASTEP). This advantage of CASTEP over
HARES is lost when applied to metallic systems, in many
of which the academic version of CASTEP available to
us failed to converge in the self-constistency loop. We
have been informed that in commercial versions of this
package the problematic convergence to self-consistency
in metallic systems has been solved and the performance
has been improved42. We point out that a comparison of
ab initio packages, is meaningful only for methods that
employ the same type of pseudopotentials. In the com-

parison discussed here, both methods use conventional
norm-conserving pseudopotentials. There exists another
class of pseudopotentials, called ultra-soft pseudopoten-
tials43, which reduce the size of the Hamiltonian ma-
trix substantially, making the calculations more efficient.
Codes that employ this class of pseudopotentials are nat-
urally faster, whether they use a PW basis or a real-space
grid. For instance, the VASP code based on the PW for-
mulation uses ultra-soft pseudopotentials and has proven
quite effective44; the commercial version of CASTEP also
uses these pseudopotentials42. This class of pseudopoten-
tials has not been yet implemented in HARES.

IV. APPLICATIONS

As a test of the accuracy and the efficiency of the algo-
rithmic improvements discussed above, we offer a range of
example applications of HARES. These include represen-
tative elemental crystals, some molecules, and a couple
of rather complex materials — blue molybdenum bronze
and the TON zeolite. All the calculations were performed
on a Silicon Graphics Origin 2000, using from 2 to 16 pro-
cessors in parallel mode.

A. Study of elemental solids

The simplest test of the method is its application to
elemental crystalline solids. We have calculated the ba-
sic structural and electronic properties for representative
elemental solids, including alkali metals (Li, K), group
II A metals (Be, Ca), sp-electron metals (Al, Ga), d-
electron non-magnetic metals (V, Cu, Mo), d-electron
magnetic metals (Fe, Ni), and semiconductors and insu-
lators (Si, C). The properties of these solids are extracted
from total energy calculations for a given crystal struc-
ture, using the LDA and applying the a posteriori GGA
corrections. We have used norm-conserving pseudopo-
tentials from Bachelet et al45 for V, and pseudopoten-
tials generated with the Troullier and Martins46 scheme
for the all the other elements. We perform the calcula-
tions as follows: we choose a sufficiently dense grid of
k-points in the Monkhorst-Pack scheme47 and fold it to
the irreducible part of the Brillouin zone by applying the
symmetry operations of the point group of the crystal
including inversion which is always a symmetry opera-
tion in reciprocal space. We make sure the calculation is
converged with respect to the real space grid spacing in
the neighborhood of the anticipated equilibrium lattice
constant, and keep the grid spacing approximately con-
stant for a range of lattice constants up to about twice
the equilibrium value. We then fit the resulting energies
to powers of Ω−2/3, where Ω is the volume of the unit
cell. We thus obtain accurate values of the equilibrium
lattice constant and minimum total energy. These val-
ues are used to fit the two-parameter Universal Binding
Energy Relation48, which has a simple analytical form
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FIG. 3: The bulk energies for various elemental solids and the
N2 and O2 molecules, scaled using the UBER48. The energies
are calculated with the a posteriori gradient correction to the
LDA results.

from which the bulk modulus and the cohesive energy
are obtained. This procedure relies on the fact that the
total energy differences used to fit the Universal Binding
Energy Relation converge quicker than the total energy
with respect to the grid parameters. For the nonmagnetic
materials we use the non-spin-polarized code to perform
these calculations for reasons of computational efficiency.
The free atoms in most of the cases we calculated are po-
larized, the extreme case being Molybdenum were all six
valence electrons have the same spin. We thus add to
the cohesive energy as calculated previously the differ-
ence of a free atom calculation using the spin-polarized
and spin-average codes. The free atom calculations can
be converged to the same, high degree of accuracy by use
of the adaptive grid and thus the relative energies of the
spin polarized and unpolarized atoms are evaluated on
an equal footing with the other energy differences.

In Table IV, we summarize the results of the calcu-
lations. The experimental values are a compilation of
results from Kittel49; for certain elements we considered
a simpler lattice than the experimental ground state, and
in these cases we compare our results to the all-electron
calculations of Moruzzi et al50. Note that, as expected,
the LDA results for the lattice constant are lower, and
for the bulk modulus are higher than the experimental
values. The gradient correction tends to improve the
situation. Overall, the agreement with experiment is
quite good, except for the cohesive energies, which is
a well known deficiency of the approach we are using.
Looking at the gradient corrected results, other than Ca
which seems to have large offsets, the lattice constants
are within 2.0% of the experimental values, bulk mod-
uli within 22%, and cohesive energies are within 26%.
In Fig. 3 we present the scaled results of the gradient

corrected calculations and the corresponding universal
curve. The magnetic moments of the ferromagnetic ma-
terials at their equilibrium lattice constant values as cal-
culated with the LDA (GC) are 2.06 (2.30) µB/atom for
Fe and 0.57 (0.59) µB/atom for Ni. These values com-
pare well with the experimental values of 2.22 µB/atom
for Fe and 0.61 µB/atom for Ni, as well as with the sum-
mary of the results of various theoretical methods that is
presented in Ref. 51.

B. Study of small molecules

In Sec. II B 2, we described how two types of boundary
conditions — OBC and PBC — can be readily used in
a HARES calculation. Many DFT methods designed to
do calculations for solids use PBC and are constrained
to use a large supercell to study an isolated molecule
or a cluster of atoms. Here, we present results for four
molecules N2, O2, H2O, and NH3 obtained using HARES
with the two types of boundary conditions keeping all
other computational parameters fixed. We use a periodic
box of dimensions 24 × 18 × 18 a.u.3 for the N2 and O2

molecules and 20 × 20 × 20 a.u.3 box for the H2O and
NH3 molecules, with a grid spacing of 0.25 a.u.

In Table V, the various results for small molecules are
summarized. In ammonia, we also calculated the inver-
sion barrier of the potential energy surface, by relaxing
the positions of the hydrogen atoms in the plane for se-
lected heights of the Nitrogen atom. We find that the
bond-lengths obtained with OBC tend to be smaller than
those obtained with PBC, though the difference is quite
small, in most cases smaller than the accuracy in the re-
ported results. The energies, on the other hand, have
significantly larger differences. We suggest that this is
due to the electrostatic interaction of the field in a su-
percell calculation with PBC. This interaction between
the molecule and its periodic images changes the energy
of the molecule. In the examples considered here a cubic
cell geometry is used, which results in zero dipole inter-
action (it can be shown analytically that the interaction
energy of a dipole with a full shell of dipoles is zero). This
indicates that the discrepancy is due to higher-order mul-
tipole terms. The computational time for the calculations
with PBC and OBC is similar, so there is no particular
advantage to either approach from the point of compu-
tational cost. It appears, however, that for truly isolated
systems the OBC approach gives more realistic results
due to the absence of any spurious long range fields.

C. Electronic Structure of Blue Bronze,

K3Mo10O30

The material called blue bronze (BB), whose chem-
ical composition is A0.3MoO3 with A an alkali metal,
exhibits a variety of interesting physical properties in-
cluding a metal-to-semiconductor transition at Tc =
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TABLE IV: Basic structural and electronic properties of selected elemental crystals. The elements marked by † (dagger) are
not in the experimentally determined crystal lattice but a simpler one; for these elements the numbers in the “Expt.” column
are from the all-electron calculations of Moruzzi et al.50. The elements marked by ∗ (asterisk) are considered in the magnetic
(spin polarized) ground state.

Element Crystal α0 (Å) B (GPa) Ecoh (eV)

LDA GGA Expt. LDA GGA Expt. LDA GGA Expt.

Li BCC 3.39 3.46 3.49 14.4 13.3 11.6 2.12 1.99 1.63

Be† FCC 3.16 3.19 3.15 144 134 134 4.72 4.42 3.97

C DIA 3.53 3.53 3.57 464 451 443 8.89 8.13 7.37

Al FCC 4.12 4.12 4.05 71.0 70.1 72.2 3.41 3.05 3.39

Si DIA 5.47 5.48 5.43 88 84.9 98.8 4.56 4.08 4.68

K BCC 5.17 5.32 5.23 4.7 3.9 3.2 1.05 0.96 0.93

Ca FCC 5.39 5.48 5.58 22.4 19.1 15.2 2.80 2.73 1.56

V BCC 3.01 3.06 3.03 198 169 162 7.32 5.67 5.31

Fe∗ BCC 2.78 2.90 2.87 201 144 168 6.73 5.39 4.28

Ni∗ FCC 3.48 3.59 3.52 248 179 186 5.70 4.43 4.44

Cu FCC 3.56 3.68 3.61 192 138 137 4.33 3.10 3.49

Ga† FCC 3.92 3.92 4.14 75.6 73.7 44.0 3.22 2.89 3.22

Mo BCC 3.17 3.21 3.15 279 246 273 8.19 6.18 6.82

TABLE V: Calculated structure and energetics of N2, O2,
H2O and NH3: effect of boundary conditions. In ammonia the
energy barrier for the inversion isomerization is given. The
“Expt.” column contains the experimental values, the OBC
column has our results using the open boundary conditions,
the PBC column has our results using the periodic boundary
conditions.

Molecule Property Expt. OBC PBC

N2 Bond-length (Å) 1.10 1.10 1.10

Cohesive Energy(eV) 9.9 9.8 10.0

Vibration (cm−1) 2359 2395 2390

O2 Bond-length (Å) 1.21 1.22 1.22

Cohesive Energy(eV) 5.20 7.63 7.79

Vibration (cm−1) 1580 1584 1571

H2O Bond-length (Å) 0.98 0.97 0.97

Bond-angle 104.6◦ 105.7◦ 104.4◦

NH3 H-H distance (Å) 1.64 1.67 1.68

N-H bond-length (Å) 1.00 1.02 1.02

Energy Barrier (eV) 0.23 0.13 0.10

180 K, quasi-one-dimensional electronic properties above
Tc, and the existence of incommensurate and commensu-
rate charge density wave (CDW) phases52. Recently, a
family of molybdenum bronzes has been extensively stud-
ied in experiments using angle-resolved photoemission
spectroscopy (ARPES) to explore a possible realization
of non-Fermi-liquid behavior due to its low-dimensional
electronic properties53,54,55. To our knowledge, the only
published electronic band calculation of BB is based on
a tight-binding (TB) method using some model struc-
tures56. The dispersion of the TB bands around the
Fermi level is qualitatively different from the ARPES ex-

perimental results54. It is of great importance to have
an accurate and reliable ab initio calculation of the elec-
tronic structure of BB in order to interpret the ARPES
measurement in terms of possibly interesting physics.
With a large number of atoms in the unit cell, includ-
ing 10 Mo atoms and 30 O atoms which are typically
difficult to handle with PW approaches, BB provides a
challenging system for performing state-of-the-art ab ini-
tio calculations of the electronic structure; this requires
a highly efficient computational tool such as HARES.

The structure and the lattice parameters of BB is
well documented in Ref. 57: the Bravais lattice is cen-
tered monoclinic (CM), the space group is C2/m, and
the lattice constants of the simple monoclinic cell are
a2 = 16.2311 Å, a3 = 7.5502 Å, and a1 = 9.8614 Å with
the angle β = 94.895◦ between a1 and a2. The basic
building block of BB is the MoO6 octahedron; ten oc-
tahedra form a rigid unit by edge-sharing. Within the
simple monoclinic (SM) cell, two rigid units are arranged
so that one of them is located at the apex and the other
at the center of the cell. As a result, neighboring rigid
units share a corner oxygen to form a slab spanned by
a2 −a1 and a3 and four infinitely-connected MoO chains
(per primitive unit cell) parallel to a3. The crystal struc-
ture is illustrated in Fig. 4 where the simple monoclinic
cell is indicated by a box; the two different classes of
octahedra are indicated by different colors: yellow for
those that participate actively to conduction along the
high-conduction direction (a3) and blue for those that
are apparently inactive.

We have performed electronic structure calculations
for BB with HARES. For these calculations we use
the Ceperley-Alder XC functional as parametrized by
Perdew and Zunger4,5. The ions are represented
by norm-conserving pseudopotentials generated by the
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FIG. 4: The crystal structure of K3Mo10O30 depicted with
MoO6 octahedra and K ions. The box indicates the simple
monoclinic unit cell, red balls represent K ions, blue octahedra
represent the electronically inactive MoO6 units, and yellow
octahedra represent the active MoO6 units. Upper and lower
panels correspond to top and front view, respectively.

Troullier-Martins scheme46 in the fully separable form of
Kleinman and Bylander30,31. The Brillouin zone (BZ)
integrations are performed using a 4× 4 × 4 Monkhorst-
Pack k-point mesh47 in the BZ of the CM cell. We used a
grid spacing of h ≃ 0.33 a.u. which gives around 200,000
real-space grid points.

In Fig. 5, we show isosurfaces of the valence electron
density obtained from the fully self-consistent calcula-
tion. A few interesting features can be observed from
the green isosurfaces which correspond to high electron
density:

(i) the high density region has a cylindrical shape with
its axes overlapping with MoO infinite chains;

(ii) the electron density is “marginally” connected
along the [110] crystallographic direction, which is
within the slab but perpendicular to the chain di-
rection;

(iii) the electron density is “barely” connected along the
slab normal.

FIG. 5: The isosurfaces of the valence electron density : the
blue and the green surfaces correspond to a very low and a
high density, respectively.
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FIG. 6: The ab initio band structure of blue bronze: Two
bands cross the Fermi level and disperse significantly along
the chain direction (indicated by gray panel). Notice the neg-
ligible dispersion in the other directions. Inset is the Brillouin
zone of the centered monoclinic cell and the reciprocal lattice
vectors (b1, b2, and b3) of the simple monoclinic cell are indi-
cated.

From these observations, we expect that electronic con-
duction will be highly anisotropic and the chain direction
is the most favored. On the other hand, the blue iso-
surfaces, corresponding to low electron density, indicate
that the valence electrons are largely depleted around the
potassium ion sites, suggesting that K atoms play the role
of donors.

The full spectrum of the energy bands is shown in
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FIG. 7: The ab initio bands (red) crossing the Fermi level
are compared with the tight-banding bands56 (green) in the
neighborhood of the Fermi level. z0 is a k-point on the simple
monoclinic BZ boundary and equal to b3/2.

Fig. 6. The lower valence band manifold (30 bands) has
O(2s) orbital character, the upper valence band mani-
fold (90 bands) has O(2p) character mixed with Mo(4d)
orbitals near the top of the energy range. There are two
bands crossing the Fermi level shown in red, well sep-
arated from both the valence band and the conduction
band manifolds. These bands disperse primarily along
the chain direction which is indicated by gray panels in
Fig. 6.

The two partially filled bands of our ab initio calcula-
tion are qualitatively different from the TB bands56 as
illustrated in Fig. 7. For instance, the two LDA bands
cross each other near the BZ boundary whereas the TB
bands do not. Within the SM BZ (from -z0 to z0), the
LDA bands have occupied bandwidths of 1.3 and 0.3 eV
while both of the TB bands disperse by 0.3 eV. The oc-
cupied bandwidth of 1.3 eV for the low-lying band is in
good agreement with the APRES data54. These qualita-
tive differences in the ab initio and TB bands originate
from the correct and unbiased description of the interac-
tions and the use of a realistic atomic structure in our
calculations. Our analysis of the wavefunction character
at the Γ-point shows anisotropic hybridization between
the Mo d-states and the O p-states. It would be rather
difficult to describe this situation within the context of
the TB approach.

The significant dispersion of the partially filled bands
only along the chain direction results in planar Fermi
surfaces, which are nested along the chain direction. In
turn, the nested Fermi surfaces induce a CDW. The
estimated CDW wave vector is ∼ 0.75 b3 compared with
the observed one in the range of 0.72 – 0.75 b3. A more
detailed analysis of the physics of this material will be
presented elsewhere58.

In summary, our application of HARES to the elec-

B

CA

FIG. 8: Framework in the structure of TON-zeolite, possess-
ing three types of cavities. O atoms occupy the positions at
the vertices of tetrahedra and Si (Al) atoms are at the center
of the red (green) tetrahedra. The Na atom (blue) remains
inside the cavity in the vicinity of the Al-occupied tetrahe-
dron. The rectangle in the center denotes the projection of
the orthorhombic unit cell perpendicular to the c-axis. In the
bottom left corner we label the three different types of pores.

tronic structure of BB suggests that an accurate and re-
liable method with a realistic atomic structure is needed
in order to investigate the behavior of such complex ma-
terials. The ab initio energy bands are in good agree-
ment with the ARPES measurement and the nature of
the electronic states relevant to conduction can thus be
elucidated.

D. Zeolite: NanAln Si24−nO48

The word “zeolite” (of Greek origin) means “boiling
stone” and derives from the visible loss of water when
natural zeolite minerals are heated. Zeolites are materi-
als with unique properties which make them useful in
a variety of applications such as oil cracking, nuclear
waste management, catalysis and animal feed supple-
ments. They form a well-defined class of naturally occur-
ring crystalline alumino-silicate minerals. They have el-
egant three-dimensional structures arising from a frame-
work of [SiO4]

4− and [AlO4]
5− coordination tetrahedra

linked at their corners. The frameworks are generally
very open and contain cavities that enclose cations and
water molecules. The presence of cavities make zeolites
porous and gives rise to their low density and unique
properties. Since the cations, water or other molecules
that can be contained in these cavities, interact weakly
with the cavity walls, these entities have high mobility in
the solid zeolite. As a result a number of interesting phys-
ical and chemical properties arise: facile ion exchange,
easy water loss upon heating, molecular sieve behavior,
etc.
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In this Section, we study a zeolite which is referred to
by the code name “TON”59 and has the general chemical
formula NanAln Si24−nO48; we will consider the struc-
tures for n = 0 and n = 1. The framework of tetrahedra
in its crystal structure is displayed in Fig. 8. TON has an
orthorhombic crystal structure with three different types
of pores or channels parallel to the c-axis. For n = 0,
its unit cell has 24 formula units of SiO2 with a volume
of about 1320 Å3. Its space group is Cmc21 and four
of the 24 formula units are symmetry-independent. For
n = 1 (called Theta-1), the structure has been deter-
mined from X-ray powder experiments60. Theta-1 is the
first reported unidimensional medium-pore high-silica ze-
olite.

Starting with the experimental geometry60, we relaxed
the atomic structure of Si24O48 using HARES. All the
bond lengths obtained from the calculation are within
2% of the experimental values. We next considered four
independent Si sites where an Al atom can be substituted
for a Si atom to obtain AlSi23O48, and relaxed its atomic
structure. Interestingly enough, we find that all four pos-
sible structures have very similar energies. Within the
accuracy of our calculations the four sites cannot be dif-
ferentiated.

Addition of a sodium atom to the AlSi23O48 structure
introduces a variety of structural possibilities. We ex-
plored three possible structures, based on the three types
of cavities in which the Na atom can be placed. In Fig. 9,
we show a unit cell of a structure with Na added in the
largest of the three cavities. Since AlSi23O48 is missing
one electron due to the substitution of a Si atom by an
Al atom, the added Na atom will naturally prefer to stay
in the vicinity of the Al atom to which is can donate its
valence electron. In the relaxed structure, the Na atom
sits closest to three O atoms that are bonded to the Al
atom and as a result the Al-O bonds are elongated.

In Fig. 9, we also show an isosurface of the electron
density for NaAlSi23O48 and compare it with that of
Si24O48. The two systems have very similar charge dis-
tribution except in the region localized near the Na and
Al atoms. The isosurfaces clearly have the same topol-
ogy as the geometrical structure in Fig. 9: O atoms are
at the center of the bulging regions of the isosurface and
Si atoms at the joints or vertices. This indicates that the
bonding is primarily ionic, with negatively charged O and
positively charged Si atoms. Partial covalent character is
also evident from the fully connected isosurface.

In NaAlSi23O48, the valence electron donated by Na
compensates for the one missing electron in the four
bonds formed by the Al atom. The nature of bonding of
Al with O atoms on the opposite side of the Na atom is
clearly different from that with the three O atoms on the
Na side. The latter is very similar to the bonding char-
acter between Si and O in Si24O48. The charge on both
Al and Na is positive, which has the effect of displacing
the Al atom slightly away from the Na atom resulting in
longer Al-O bonds. This introduces small structural dis-
tortions and changes in charge distribution in the neigh-

FIG. 9: From left to right, top to bottom, we show the space-
fill structure model and the charge density isosurfaces of the
Si24O48 and the NaAlSi23O48 structures. In the structure
models the Oxygen atoms are red, the Silicon atoms are yel-
low. In the NaAlSi23O48 charge density plot blue corresponds
to Na, and red to Al.

boring SiO4 tetrahedra. Since the addition of Na results
in compensating electrostatic and covalent interactions,
we expect that the energy barrier in the process of at-
tachment of Na (or in general a cation) to the walls of
cavities in this zeolite should be very small. Further in-
vestigation of the chemical activity inside these pores and
its effect in the electronic structure of the zeolite will be
the subject of future studies61.

V. SUMMARY

In this paper, we provided a comprehensive review of
the theory underlying HARES, which is a method for
ab initio electronic structure calculations implementated
using HPF on a shared memory parallel computer archi-
tecture. Several applications of the method to calculate
the properties of simple and complex physical systems
were presented to illustrate its capabilities. We obtained
the bulk features of elemental solids such as equilibrium
lattice constant, bulk modulus and cohesive energy, for
elements from many different columns of the Periodic
Table, and find good agreement with experiment within
the limitations of DFT/LDA calculations. For the small
molecules N2, O2, H2O, and NH3, we find that the struc-
tural features do not depend on boundary conditions
(open or periodic) used in the calculation, while the en-
ergy is sensitive to the the choice of boundary conditions.
Application of the method to blue molybdenum bronze
and a zeolite demonstrate that it can be used effectively
to study complex material systems. In the case of Blue
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Bronze the results help to clarify important issues of the
electronic structure pertaining to recent experiments. In
our study of the TON zeolite Si24O48 and its variations
containing Al and Na atoms, we demonstrated the ability
of the method to capture the nature of bonding between
a cation and the walls of cavities in the zeolite; such inter-
actions are related to the mobility of ions and molecules
inside pores of the zeolite framework and should give rise
to interesting physical and chemical behavior.
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