
ar
X

iv
:q

-b
io

/0
70

20
55

v1
  [

q-
bi

o.
Q

M
] 

 2
6 

Fe
b 

20
07

Positive Feedba
k, Sto
hasti
ity and Geneti
Competen
eRajesh Karmakar and Indrani Bose∗Department of Physi
sBose Institute93/1, A
harya Prafulla Chandra Road, Kolkata-700 009, India.
∗ Author to be 
onta
ted; e-mail: indrani�bosemain.boseinst.a
.inAbstra
tA single gene, regulating its own expression via a positive feedba
k loop, 
onstitutesa 
ommon motif in gene regulatory networks and signalling 
as
ades. Re
ent experi-ments on the development of 
ompeten
e in the ba
terial population B. subtilis showthat the autoregulatory geneti
 module by itself 
an give rise to two types of 
ellularstates. The states 
orrespond to the low and high expression states of the masterregulator ComK. The high expression state is attained when the ComK protein levelex
eeds a threshold value leading to a full a
tivation of the autostimulatory loop.Sto
hasti
ity in gene expression drives the transitions between the two stable states.In this paper, we explain the appearan
e of bimodal protein distributions in B. sub-tilis 
ell population in the framework of three possible s
enarios. In two of the 
ases,bistability provides the basis for binary gene expression. In the third 
ase, the systemis monostable in a deterministi
 des
ription and sto
hasti
ity in gene expression issolely responsible for the appearan
e of the two expression states.1 Introdu
tionPositive feedba
k loops are 
ommon motifs in gene trans
ription regulatory networks andsignaling 
as
ades. The simplest su
h motif is the autoregulatory loop in whi
h the pro-teins synthesized by a gene stimulate the produ
tion of more proteins in an auto
atalyti
fashion [1, 2, 3℄. In most 
ases, the 
on
erned gene is also expressed at a basal level, i.e.,proteins are synthesized even when the positive feedba
k is non-fun
tional. The autoregu-latory dynami
s have a nonlinear 
hara
ter and this 
ombined with positive feedba
k maygive rise to binary gene expression in a range of parameter values. The protein levels, as aresult, have a bimodal distribution in a population of 
ells. In a fra
tion of 
ells, the protein1
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level is low and in the rest of the population the level is high. Theoreti
al predi
tions ofbinary gene expression have been veri�ed in experiments on single gene auto
atalyti
 mod-ules in ba
teriophage λ and S. 
erevisiae [2, 4℄. The experimental �ndings further suggestthat the observed bimodality has a sto
hasti
 origin. A remarkable example of populationheterogeneity, brought about by a 
ombination of autoregulatory positive feedba
k andsto
hasti
ity, is provided by the ba
terial population B. subtilis in whi
h a fra
tion of thepopulation develops geneti
 
ompeten
e. Mi
roorganisms like ba
teria have to 
ope with amultitude of antagonisti
 agents and environmental 
onditions in order to live. Under su
h
ir
umstan
es, the ba
teria may adopt a number of strategies to optimize their 
han
esof survival [1, 5℄. One su
h strategy is the development of geneti
 
ompeten
e, observedin some ba
terial organisms. In the 
ompeten
e state, spe
ialized proteins are synthesizedwhi
h allow the 
ell to take up large pie
es of DNA from the environment and in
orporatethem into the ba
terial genome. New traits are thus a
quired from geneti
ally distin
t or-ganisms. Experiments show that only a small fra
tion of the ba
terial population rea
hesthe 
ompeten
e state. The resulting phenotypi
 diversity in the population may prove tobe advantageous. The individual 
ells in a homogeneous population share the same fatewhen subje
ted to harmful in�uen
es. Diversity enhan
es the 
han
e that a fra
tion of thepopulation, even if small, is able to survive and adapt to the 
hanged 
ir
umstan
es. InB. subtilis, the development of 
ompeten
e is regulated by the trans
ription fa
tor ComKsynthesized by the 
omK gene. The protein fun
tions as a master regulator whi
h a
ti-vates the trans
ription of several genes in
luding those ne
essary for DNA uptake. TheComK a
tivity in turn is 
ontrolled by a host of other proteins. An autoregulatory posi-tive feedba
k module forms the 
ore of the 
omplex regulatory network. ComK binds tothe promoter of its gene and promotes its own produ
tion. The positive feedba
k givesrise to bimodality in the 
ell population with low and high 
omK expression states asthe stable states. In the 
ompeten
e state, the level of ComK proteins is high enablingComK to a
t as a trans
ription fa
tor. Two independent experiments [6, 7℄ have 
on�rmedthat an autostimulatory loop of 
omK expression is by itself su�
ient to establish 
ompe-ten
e bimodality in a ba
terial 
ulture. The experimental �ndings moreover suggest thatsto
hasti
ity plays an essential role in the establishment of 
ompeten
e.In this paper, we study a simple model of autoregulatory positive feedba
k involvinga single gene using both deterministi
 and sto
hasti
 des
riptions. In the deterministi

ase, positive feedba
k and nonlinearity result in bistability in a range of parameter val-ues. The two stable steady states 
orrespond to low and high gene expression levels. The2



high expression state is rea
hed when the protein level ex
eeds a threshold value. Theauto
atalyti
 swit
h is then triggered bringing about a full a
tivation of the autostimula-tory loop. In the absen
e of su
h a
tivation the proteins are synthesized at a low level.Bimodality in a 
ell population requires the auto
atalyti
 swit
h to be triggered in a fra
-tion of the 
ell population. This is where sto
hasti
ity in gene expression 
omes into thepi
ture. Several re
ent studies, both theoreti
al and experimental, highlight the signi�
antrole of sto
hasti
ity in gene expression and its regulation [8, 9, 10, 11, 12℄. The two stablesteady states are separated by an unstable steady state. The 
orresponding protein level(intermediate level of gene expression) provides the threshold for the triggering of the au-to
atalyti
 swit
h. The low (high) expression state is obtained when the protein level isbelow (above) the threshold value. Sto
hasti
ity in gene expression gives rise to �u
tua-tions in the protein levels and the �u
tuations, if su�
iently large, bring about transitionsa
ross the threshold. In the deterministi
 pi
ture, bifur
ations o

ur at two spe
ial valuesof the parameter J0, the rate for basal protein synthesis. At the lower (upper) bifur
ationpoint, there is a transition from monostability (bistability) to bistability (monostability).This framework provides an alternative explanation of population heterogenity. Indu
ermole
ules are often required to initiate gene expression at the basal level. The distributionof the mole
ules may be non-uniform in a population of 
ells. Thus, the basal levels inthe individual 
ells are not identi
al but have a disribution around an average value. Ifthis distribution overlaps with the upper bifur
ation point, the 
ell population develops abimodal 
hara
ter. There is also a third explanation for population heterogeneity whi
his solely based on sto
hasti
ity in gene expression. In this 
ase, the system is not bistablein the deterministi
 pi
ture and bimodality o

urs due to random transitions between thelow and high expression states. In this paper, we explore the basis of bimodal proteindistributions in the three s
enarios outlined above. The results are interpreted in terms ofthe development of geneti
 
ompeten
e in B. subtilis ba
terial population.2 Deterministi
 modelWe 
onsider a simple model of autoregulatory gene expression involving a single gene. Theproteins synthesized by the gene form dimers. The dimer mole
ules bind to the promoterregion of the gene and a
tivate gene expression, thus 
onstituting a positive feedba
k loop.Apart from autoa
tivation, the gene synthesizes proteins at a basal level. The detailedkineti
 s
heme of the model is shown in �gure 1(a). The gene 
an be in two possible3
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FIG. 1(a): The kineti
 s
heme des
ribing autoregulatory gene expression. G and G∗arethe ina
tive and a
tive states of the gene. In the ina
tive state, proteins are synthesized ata basal rate J0. The protein mole
ules form dimers P2 whi
h bind to the promoter regionof the gene and a
tivate the state G to G∗.
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FIG. 1(b): The redu
ed kineti
 s
heme with e�e
tive a
tivation and ina
tivation rate
onstants k
′

a(x) and k
′

d.
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states G (ina
tive) and G∗(a
tive). In the a
tive state proteins are synthesized with rate
onstant J1. In the ina
tive state G, �leaky� gene expression o

urs at the basal rate J0(J1 >> J0). The basal rate may be enhan
ed using appropriate indu
er mole
ules. Thesynthesized proteins dimerize with K being the equilibrium disso
iation 
onstant. Theprotein dimer P2 binds to the gene in its ina
tive state G and a
tivates the gene to thestate G∗. The rate 
onstants ka and kd are the a
tivation and dea
tivation rate 
onstants.The synthesized proteins are degraded with a rate 
onstant kp. The kineti
 s
heme in �gure1(a) 
an be mapped onto a simpler s
heme shown in �gure 1(b). The e�e
tive a
tivationand dea
tivation rate 
onstants k
′

a(x) and k
′

d are given by
k

′

a(x) = ka

(x/ks)
2

1 + (x/ks)2
, k

′

d = kd (1)where x denotes the protein 
on
entration and ks =
√

k2

k1

K.In the simpli�ed kineti
 s
heme of �gure 1(b), the rate of 
hange of protein 
on
entrationis given by
dx

dt
=

J1k
′

a(x)

k′

a(x) + kd

+
J0kd

k′

a(x) + kd

− kpx (2)In the steady state, dx
dt

= 0 and one 
an identify a parameter region in whi
h the system isbistable, i.e., has two stable steady states. These states 
orrespond to low and high valuesof x. An unstable steady state (intermediate value of x) separates the two stable steadystates. Figure 2 shows a plot of xs versus J0 where xs denotes the steady state protein
on
entration. The solid bran
hes represent stable steady states and the dotted bran
h,the unstable steady states. In a range of parameter (J0) values, the system is bistable.The other parameters have values ka = 0.0008, kd = 0.0005, ks = 500.0, J1 = 0.1 and
kp = 0.0001 in appropriate units. Bistability is, in general, a

ompanied by hysteresis[3, 13℄. Let us assume that the system is in the lower steady state and the value of J0 issmall. As J0 is in
reased (say, with the help of indu
er mole
ules), the system 
ontinues tobe in the low expression state. At a 
riti
al value J0UC , a dis
ontinuous transition to theupper stable steady state o

urs. If J0 is in
reased further, the system is monostable, i.e.,there is only one stable steady state (the upper state). If the value of J0 is now redu
edbelow J0UC , the system remains in the upper steady state whi
h is a hallmark of hysteresis.At a lower 
riti
al value of J0 = J0LC (marked by a verti
al line on the horizontal axis of�gure 2), a transition from the upper to the lower stable steady state o

urs.Hysteresis promotes robustness as on
e the system is in the upper stable steady state,5
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J0 LC J0 UCFIG. 2: Bistability and hysteresis, the solid (dotted) lines represent stable (unstable) steadystates; xs is the steady state 
on
entration of proteins and J0, the basal rate of proteinsynthesis, serves as the bifur
ation parameter. The short verti
al lines on the horizontalaxis denote the lower and upper bifur
ation points, J0LC and J0UC .small �u
tuations of J0 around J0UC will not give rise to a transition to the lower stablesteady state. Let us now assume that the basal gene expression is initiated with thehelp of indu
er mole
ules. These mole
ules may have a heterogeneous distribution in the
ell population (ea
h individual 
ell 
ontains the autoregulatory module) whi
h gives riseto a distribution in the basal rates J0. If the threshold value J0UC falls within the J0distribution, the 
ell population exhibits bimodality. Cells in whi
h the basal rate J0 isless (greater) than J0UC , are in the low (upper) stable steady state. Figures 3(a) and (b)illustrate this for a normal distribution of basal rates with mean = 0.00445 and varian
e

= 0.0005. In �gure 3(b), p(x) des
ribes the steady state distribution in the protein levels.In the steady state, dx
dt

= 0 in equation (2), from whi
h the basal protein synthesis rate J0
an be expressed as a fun
tion of x i.e., J0 = f(x). Let p(J0) be the distribution in basallevels (J0/kp is the steady state basal level). One 
an then write
p(x) = p(j0) |J0=f(x) |

dJ0

dx
| (3)This way of explaining bimodality is 
onsistent with an earlier proposal on the originof binary gene expression [14℄. We now dis
uss the other two me
hanisms for obtainingbimodality taking sto
hasti
ity in gene expression expli
itly into a

ount.

6
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FIG. 3(a): Normal distribution des
ribing heterogeneous indu
er distribution overlaps withthe upper bifur
ation point J0UC .
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FIG. 3(b): The bimodal distribution in protein levels due to the heterogeneous distributionof indu
er mole
ules.
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3 Sto
hasti
 origins of bimodalityWe 
onsider a simple sto
hasti
 model 
orresponding to the kineti
 s
heme in �gure 1(b).In the model, the only sto
hasti
ity arises from the random transitions of the gene betweenthe ina
tive and a
tive states as in the minimal model of Cook et al. [15℄. Protein synthesisfrom the ina
tive (basal expression) and a
tive states of the gene and protein degradationo

ur in a deterministi
 manner. We would like to determine the distribution of proteinlevels in the steady state of the 
ell population. Following the method outlined in [16℄, the
on
entration of proteins evolves as
dx

dt
= J1z + J0(1 − z) − kpx = f(x, z) (4)where z = 1(0) when the gene is in the a
tive, G∗(ina
tive, G) state. The random variable

z swit
hes values with sto
hasti
 rate 
onstants k
′

a(x) (0 → 1) and k
′

d (1 → 0). Let pj(x, t)

(j = 0, 1) be the probability density fun
tion when z = j. The total probability densityfun
tion is
p(x, t) = p0(x, t) + p1(x, t) (5)The rate of 
hange of probability density is given by

∂pj(x, t)

∂t
= −

∂

∂x
[f(x, j) pj(x, t)] +

∑

k 6=j

[Wkj pk(x, t) − Wjk pj(x, t)] (6)where Wkj is the transition rate from the state k to the state j and Wjk is the same for thereverse transition. The �rst term in equation (6) is the so 
alled �transport� term repre-senting the net �ow of the probability density. The se
ond term represents the gain/loss inthe probability density due to random transitions between the state j and other a

essiblestates. In the present 
ase, equation (6) gives rise to the following two equations:
∂p0(x, t)

∂t
= −

∂

∂x
{(J0 − kp x)p(x, t)]} + kd p1(x, t) − k

′

a(x) p0(x, t) (7)
∂p1(x, t)

∂t
= −

∂

∂x
{(J1 − kp x) p1(x, t)} + k

′

a(x) p0(x, t) − kd p1(x, t) (8)Using equation (5), the steady state solution of equations (7) and (8) is given by
p(x) = C (kp x − J0)

−v(J1 − kp x)
−1+

kd
kp (x2 + k2

s)
wExp[u] (9)8



where
u =

ka arctan(x/ks) J0 ks

J2
0 + k2

p k2
s

, v =
J2

0 (−ka + kp) + k3
p k2

s

kp(J2
0 + k2

p k2
s)

, w =
ka kp ks

2(J2
0 + k2

p k2
s)

(10)and C is the normalization 
onstant.Figures 4(a)-(d) show the plots of p(x) versus x as the a
tivation and dea
tivation rate
onstants ka = 0.0008∗h and kd = 0.0005∗h are progressively 
hanged by varying the fa
tor
h. The other parameters have values ks = 500, J0 = 0.0035, J1 = 0.1 and kp = 0.0001. As his 
hanged from 2 to 100, there is a transition from unimodality (�gure 4(a)) to bimodality(�gures 4(b) and (
)) to again unimodality (�gure 4(d)). The unimodal distributions
orrespond to low (�gure 4(a)) and high (�gure 4(d)) gene expression states. In all thefour 
ases, the deterministi
 dynami
s (equation (2)) lead to bistability in the steady state(�gure 2). The three steady state solutions for J0 = 0.0035 are xstable1 = 50.11, xunstable =

160.60 and xstable2 = 418.13. The bimodality observed in �gures 4(b) and (
) are due tosto
hasti
 transitions between the stable steady states brought about by the �u
tuationsasso
iated with the protein levels. The two stable steady states xstable1 and xstable2 areseparated by the unstable steady state xunstable. When protein levels are below (above)
xunstable, the low (high) expression state be
omes the stable steady state. Flu
tuations inthe protein levels (due to sto
hasti
 gene expression) are responsible for the ex
ursionsfrom one state to the other. In the deterministi
 pi
ture (�gure 2), the system is in thelower stable steady state for the parameter value J0 = 0.0035 used in obtaining the plotsin �gure 4. Figures 4(b)-(d) thus 
learly demonstrate that noise 
an alter the deterministi
out
ome in a signi�
ant manner. In 
ase (d), the �u
tuations asso
iated with the lowerprotein level are so strong that ex
ursions to the higher protein level o

ur with probabilityone. In terms of the autoregulatory geneti
 module, the autostimulatory feedba
k loop isfully a
tivated when the protein level x is > xunstable so that the high expression state isa
hieved in the steady state. In the deterministi
 pi
ture, the time evolution of a dynami
alsystem 
an be predi
ted with absolute 
ertainty on
e the parameter values and the initialstate are spe
i�ed. In the present 
ase, the di�erent rate and binding 
onstants 
onstitutethe parameters. The state of the system at time t is given by the amount of proteins x(t).The value of x(t) is obtained by solving the di�erential equation (equation (2)) for a �xedset of parameter values and with a knowledge of the initial state x(t0) at time t0. Thetime evolution of the system is represented by a traje
tory in state spa
e (one-dimensionalin the present 
ase). The traje
tory starts from the point x(t0)and ends at a �xed point9



(dx
dt

= 0) des
ribing a stable steady state. In the region of bistability, the two stable steadystates xstable1 and xstable2 have their individual basins of attra
tion [17, 18℄. A traje
torywhi
h starts in one parti
ular basin of attra
tion rea
hes the 
orresponding stable steadystate in the 
ourse of time. The time evolution of a system stops on
e the steady state isrea
hed. A steady state is stable (unstable) if the system 
omes ba
k to it after a weakperturbation is applied. Small �u
tuations in the protein level x leave the system in thesame basin of attra
tion. There may, however, be ex
ursions from one basin to the otherwhen the �u
tuations are of su�
iently large magnitude. The probability of transitionfrom one basin of attra
tion to the other depends amongst other fa
tors on the value of
J0, the basal rate of protein synthesis. The gap between xunstable and xstable1 is smaller andthat between xstable2 and xunstable larger as J0 approa
hes J0UC . The reverse situation istrue as J0 approa
hes the lower bifur
ation point. The plots in �gure 4 have been obtainedfor progressively higher values of the a
tivation rate 
onstant ka. The value of J0 = 0.0035is 
loser to the upper bifur
ation point J0UC . The protein �u
tuations are ampli�ed forhigher values of ka. The �u
tuations have to bridge a smaller gap for transition from thebasin of attra
tion of xstable1to that of xstable2 than in the 
ase of the reverse transition. Inthe 
ase of �gure 4(a), the system remains in the basin of attra
tion of xstable1. As ka ismade higher, a greater fra
tion of the 
ell population attains the high expression state. Inthe 
ase of �gure 4(d), almost the whole 
ell population is in the high expression state.Figures 5(a)-(d) show plots similar to those in �gure 4 for a lower value of J0 = 0.0030.The gap between xunstable and xstable1 is now larger and that between xstable2 and xunstablesmaller (see �gure 2). The balan
e in this 
ase tilts in the favour of the lower stable steadystate.We now 
onsider the third 
ase in whi
h a bimodal protein distribution has a purelysto
hasti
 origin. The system is monostable in the deterministi
 des
ription. An earlierstudy by Kepler and Elston [19℄ provides examples of su
h 
ases. Some other studieshave explored the basis of sto
hasti
 binary gene expression in di�erent settings (withoutpositive feedba
k) [8, 12, 20, 21℄. An example in the 
ase of autoregulated gene expression isshown in �gure 6 for the parameter values ka = 0.0012, kd = 0.0004, ks = 500.0, J0 = 0.01,

J1 = 0.1 and kp = 0.0001. In the deterministi
 des
ription, there is only one stable steadystate, xs = 581.3. The protein distribution is obtained from the analyti
 expression givenin equation (9). The sto
hasti
 model 
onsidered in this se
tion is analyti
ally tra
tablebe
ause of 
ertain simple assumptions. The only sto
hasti
ity 
onsidered in the model isthat asso
iated with random gene a
tivation and dea
tivation. The auto
atalyti
 feedba
k10
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(d)FIG. 4: The steady state distribution, p(x)versus x, in protein levels with the a
tivationand ina
tivation rate 
onstants given by ka = 0.0008∗h and kd = 0.0005∗h. The plots areobtained for di�erent values of h, (a) h = 2, (b) h = 20, (
) h = 50 and (d) h = 100. Thebasal rate of protein synthesis is J0 = 0.0035. The three steady states in the deterministi

ase are xstable1 = 50.11, xunstable = 160.6 and xstable2 = 418.13.
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(d)FIG. 5: The steady state distribution, p(x) versus x, in protein levels. The parameter J0has the value J0 = 0.0030 with ka = 0.0008 ∗ h and kd = 0.0005 ∗ h as in the 
ase of �gure4. The values of h are (a) h = 2, (b) h = 20, (
) h = 50 and (d) h = 250. The three steadystates in the deterministi
 
ase are xstable1 = 39.55, xunstable = 178.22 and xstable2 = 409.14.
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is in
orporated in an e�e
tive rate 
onstant k
′

a(x). The gene expression is 
onsideredas a one-step pro
ess, i.e., the intermediate stage of mRNA synthesis is not expli
itlytaken into a

ount. We now des
ribe the results of a detailed simulation based on theGillespie algorithm [22℄ whi
h takes the two-step nature of gene expression into a

ount andtreats the distin
t bio
hemi
al events to be sto
hasti
 in nature. The di�erent bio
hemi
alrea
tions are listed in equations (11)-(21):
G + P2 → GP2 (11)
GP2 → G + P2 (12)

GP2 → G ∗ (13)
G∗ → GP2 (14)
G∗ → m (15)
G → m (16)

m → deg. (17)
m → P (18)

P → deg. (19)
P + P → P2 (20)
P2 → P + P (21)In the above equations, the mRNA and protein are represented by m and P respe
tively, P2is a protein dimer and GP2 denotes the intermediate state of a protein dimer bound to thegene in its ina
tive state G. Equations (17) and (19) des
ribe the degradation of the mRNAand protein mole
ules. In the simulation, the sto
hasti
 rate 
onstants asso
iated with theequations (11)-(21) are c(1) = 0.003, c(2) = 0.16, c(3) = 0.004 ∗ h, c(4) = 0.0006 ∗ h,

c(5) = 0.1, c(6) = 0.0015, c(7) = 0.0001, c(8) = 0.000001, c(9) = 0.008, c(10) = 0.01 and
c(11) = 0.01 in appropriate units. The simulation is 
arried out for three di�erent valuesof h = 1, 10 and 200 respe
tively. The results are shown in �gures 7(a)-(
). The plotson the left show the time traje
tories, x(t) versus t, where x(t) is the amount of proteinsat time t. The plots on the right show the distributions p(x) versus x on repeating thesimulation 3000 times. The quantity p(x)dx provides a measure of the fra
tion of 
ells in a13
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FIG. 6: The steady state distribution, p(x) versus x, in protein levels for ka = 0.0008,
kd = 0.0004 and J0 = 0.001. The bimodal distribution has a purely sto
hasti
 origin. Inthe deterministi
 
ase, there is only one stable steady state xs = 581.3.population with protein levels between x and x+dx. For the parameter values used in thesimulation, only a small fra
tion of 
ells is in the high expression state. Figures 7(a) and7(b) show that the sto
hasti
 nature of the bio
hemi
al events involved in gene expressionis responsible for a bimodal protein distribution.4 Dis
ussionsIn this paper, we study how positive feedba
k 
ombined with sto
hasti
ity gives rise tobinary gene expression, i.e., a bimodal distribution in the protein levels in a population of
ells. There are some earlier studies [2, 19℄ on the same issue but the modeling detail and
ontext are di�erent. The motivation for the present study 
omes from the experimentalobservation that a single 
omK gene, whi
h autoregulates its expresssion via a positivefeedba
k loop, is by itself su�
ient to generate heterogeneity in a population of B. subtilis[5, 6, 7℄. A fra
tion of the 
ell population develops 
ompeten
e due to the high expressionstate of 
omK. This is so when the ComK protein level ex
eeds a threshold value thus trig-gering the full a
tivation of the autostimulatory loop. The 
omK autoregulatory geneti
module is at the 
ore of a 
omplex network of mole
ular intera
tions whi
h regulate 
omKtrans
ription and the stability of the ComK proteins. In this 
ase, only a small fra
tionof 
ells, about ten per
ent, develops 
ompeten
e. When experiments are 
arried out onthe isolated geneti
 module, the fra
tion of 
ell population in the high 
omK expression14



Time (t)

x(
t)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+071(a) 0 200 400 600 800 1000
0

50

100

1900

2000

2100

 p
(x

)

 x 2(a)

Time (t)

x(
t)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+071(b) 0 200 400 600 800
0

50

100

1900

2000

2100
 p

(x
)

 x 2(b)

Time (t)

x(
t)

 0

 200

 400

 600

 800

 1000

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06  7e+06  8e+06  9e+06  1e+071(
) 0 100 200 300 400 500 600 700 800
0

50

100

1900

2000

2100

2200

2300

 p
(x

)

 x 2(
)FIG. 7: Results of simulation based on the Gillespie algorithm. The sto
hasti
 rate 
on-stants for gene a
tivation and ina
tivation are c(3) = 0.004 ∗ h and c(4) = 0.0006 ∗ h Thefa
tor h has values (a) h = 1, (b) h = 10 and (
) h = 200. The plots in the �rst 
olumnshow the variation of protein amount as a fun
tion of time. The plots in the se
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state 
an be quite large. It has further been suggested that sto
hasti
ity in gene expres-sion is responsible for throwing the auto
atalyti
 swit
h [5, 6, 7℄. In our study, we fo
usonly on the 
ore module, namely, the 
omK autoregulatory geneti
 module of the net-work regulating 
ompeten
e development. The module represents a single gene (
omK),the protein produ
t of whi
h autoa
tivates its own synthesis through dimerization andsubsequent binding at the appropriate region of the DNA. Our model in
orporates theseminimalist features of the autoregulatory 
omK module. We have explored the basis ofbinary gene expression in the framework of three di�erent possibilities. In the �rst two
ases, the underlying dynami
s lead to bistability in a deterministi
 des
ription. A hetero-geneous distribution in indu
er mole
ules may give rise to a bimodal distribution in theprotein levels. In the se
ond and third 
ases, we take sto
hasti
ity in gene expression intoa

ount and derive an analyti
 expression (equation (9)) for the steady state distribution ofprotein levels. The analyti
al tra
tability of the sto
hasti
 model arises from two assump-tions. Firstly, the two major steps of gene expression, namely, trans
ription (synthesis ofmRNAs) and translation (synthesis of proteins) are 
ombined into a single step leadingto protein produ
tion. Se
ondly, the only sour
e of sto
hasti
ity in the model lies in therandom a
tivation and dea
tivation of the target gene expression. The �rst assumptionprovides the basis for several studies of sto
hasti
 gene expression [15, 19, 21, 23℄. These
ond assumption is stri
tly valid when the dominant sour
e of noise is asso
iated with therandom a
tivation and dea
tivation of gene expression. This is so in the 
ase of slow pro-moter kineti
s. As dis
ussed in detail in [12℄, slow transitions between the promoter statesresult in trans
riptional bursts of mRNA synthesis and in
reased heterogeneity within a
ell population in
luding bimodal protein distributions. Experimental eviden
e of tran-s
riptional bursting has been obtained for both prokaryotes and eukaryotes [24, 25℄. Are
ent experiment on sto
hasti
 mRNA synthesis in mammalian 
ells [26℄ shows that themRNA levels display large 
ell-to-
ell variations due to random, infrequent a
tivation ofgene expression. The statisti
s of the variations are adequately des
ribed by a model inwhi
h the only sour
e of sto
hasti
ity lies in the random a
tivation and dea
tivation of thegene. There 
ould be a number of fa
tors whi
h lead to slow transitions between the pro-moter states. Chromatin remodeling has been 
onje
tured to 
ause trans
riptional burstsin eukaryoti
 systems [12℄. In both prokaryotes and eukaryotes, pulsatile gene expressionmay also result from regulatory mole
ules binding at and unbinding from the DNA sites,DNA undergoing 
onformational 
hanges so that the RNA polymerase has only brief a
-
ess to the promoter region et
. In the 
ase of E. 
oli, there is experimental eviden
es16



that long periods of ina
tivity are interspersed by shorter periods when the gene is in thea
tive state [24℄. An earlier result of Ozbudak et al. on B. subtilis [8℄ has been reanalyzedto show that the data are not in
onsistent with the possibility of trans
riptional bursts(random gene a
tivation-ina
tivation) [24℄. Our simple sto
hasti
 model, based on randomtransitions between ina
tive and a
tive gene states, is thus 
onsistent with experimentalreality. In the 
ase of bistability, sto
hasti
ity triggers transitions between the two stablesteady states whi
h is responsible for bimodal protein distributions. In the 
ase when thesystem is monostable in a deterministi
 des
ription, binary gene expression 
an still o

urdue to a 
ombination of positive feedba
k and sto
hasti
 transitions between the ina
tiveand a
tive states of the gene. Our analyti
al results are supported by the simulation resultsin the 
ase of a more detailed sto
hasti
 model in whi
h trans
ription and translation aretreated as separate pro
esses and sto
hasti
ity asso
iated with all the bio
hemi
al steps(equations (11)-(21)) are taken into a

ount. In both the 
ases, the results are valid overa wide range of parameter values. We now brie�y dis
uss the experimental possibility fordistinguishing between the three me
hanisms dis
ussed in the paper. As shown in �gure2, bistability implies hysteresis. A properly designed experiment 
an dete
t hysteresis inthe response (xs in �gure 2) as the variable along the x − axis (J0, the basal rate of pro-tein synthesis in �gure 2) is 
hanged. Dis
ontinuous jumps in response at the bifur
ationpoints and a non-reversible response are the hallmarks of hysteresis. The value of J0 maybe 
hanged using appropriate indu
er mole
ules. One 
an use a 
ell sorter and separate asubpopulation from a bimodal 
ell population. The subpopulation develops bimodality inthe 
ourse of time if there are sto
hasti
 transitions between the low and high expressionlevels.Süel et al. [27℄ have investigated 
ompeten
e development on the basis of a modeldes
ribing an ex
itable sto
hasti
 system. The key ingredients of the model are: the
omK autoregulatory loop, the inhibition of ComK degradation by ComS proteins andrepression of the 
omS gene by ComK. Theoreti
al analysis of the model dynami
s is
ombined with experiments to gain insight on the entry into and exit from the 
ompeten
estate. This state 
orresponds to an unstable �xed point of the model dynami
s. Thesystem has only one stable steady state in whi
h the ComK level is low. Flu
tuationsin the levels of ComK/ComS ex
ite the system into the 
ompeten
e state with eventualreturn to the non
ompeten
e state. In the ex
itable system, repeated sto
hasti
 triggeringof the 
ompeten
e state is thus possible. Some of the premises of the model like the�indire
t� repression of the 
omS gene by ComK need experimental 
on�rmation under17



wild-type expression 
onditions [28℄. The study nonetheless is an elegant example of howmodel studies 
ombined with experiments 
an provide a new perspe
tive on noise-indu
edphenomena in biologi
al systems. Our model has the 
omK autoregulatory loop as thesole ingredient and fo
uses on the spe
i�
 experiment by Smits et al. [1℄ on the singleautoregulatory module. Geneti
 
ompeten
e in B. subtilis provides a 
on
rete example ofa natural system in whi
h a single gene, regulating its expression via an autoregulatorypositive feedba
k loop, is by itself su�
ient to establish two types of stable states in the 
ellpopulation. Re
ently, two groups have independently dis
overed a similar phenomenon inthe human fungal pathogen Candida albi
ans [29, 30℄. In both the 
ases, the autoregulatorymodules are parts of 
omplex geneti
 
ir
uitry. The single gene modules almost ex
lusively
ontrol the 
ellular swit
h operating between two stable states. The resulting heterogeneityis epigeneti
 in nature. B. subtilis and Candida albi
ans thus illustrate the essentiality andsu�
ien
y of network modules in explaining parti
ular types of biologi
al fun
tion. Therole of the other 
omponents of the asso
iated regulatory networks lies in modulating thefun
tional response. In B. subtilis, several genes regulate the expression of the 
omK genethe protein produ
t of whi
h regulates the expression of several other genes. The produ
tsof the regulatory genes modulate the threshold for the triggering of the auto
atalyti
swit
h and in�uen
e the stability of the ComK proteins. The additional 
ir
uitry probablyin
ludes features whi
h further stabilize the steady states. In Candida albi
ans, the WOR1gene a
ts as the master regulator. The gene autoregulates its own expression via a positivefeedba
k loop. The swit
h now operates between the 
ellular states: white and opaque.The two types of 
ells, white and opaque, di�er in their morphologies, the genes theyexpress, the host tissues in whi
h they are resident and also in their mating 
hara
teristi
s.In the white 
ells, WOR1 is expressed at low levels whereas the levels are high in theopaque state. As in the 
ase of B. subtilis, sto
hasti
ity appears to drive the transitionsbetween the two types of 
ell. The results derived in this paper, spe
ially those pertainingto the 
ombined e�e
ts of bistability and sto
hasti
ity, should be of relevan
e in explainingthe white-opaque swit
hing in Candida albi
ans.A
knowledgementI. B. thanks W. K. Smits for some helpful dis
ussions. R.K. is supported by the Coun
ilof S
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