First-principles study of spontaneous polarization in multiferroic BiFeO$_3$

J. B. Neaton,1 C. Ederer,2 U. V. Waghmare,3 N. A. Spaldin,2 and K. M. Rabe1

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019
2Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California, 93106
3Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
(Dated: February 2, 2008)

The ground-state structural and electronic properties of ferroelectric BiFeO$_3$ are calculated using density functional theory within the local spin-density approximation and the LSDA+U method. The crystal structure is computed to be rhombohedral with space group $R\bar{3}c$, and the electronic structure is found to be insulating and antiferromagnetic, both in excellent agreement with available experiments. A large ferroelectric polarization of 90-100 μC/cm2 is predicted, consistent with the large atomic displacements in the ferroelectric phase and with recent experimental reports, but differing by an order of magnitude from early experiments. One possible explanation is that the latter may have suffered from large leakage currents. However both past and contemporary measurements are shown to be consistent with the modern theory of polarization, suggesting that the range of reported polarizations may instead correspond to distinct switching paths in structural space. Modern measurements on well-characterized bulk samples are required to confirm this interpretation.

PACS numbers: 71.20.-b, 77.80.-c

I. INTRODUCTION

There has been considerable recent interest in developing multifunctional materials in which two or more useful properties are combined in a single compound. Perhaps the most widely studied class of multifunctional materials are the diluted magnetic semiconductors, where interaction between magnetic and electronic degrees of freedom allows both charge and spin to be manipulated.

Multiferroic materials have simultaneous ferromagnetic, ferroelectric and/or ferroelastic ordering. Coupling between the magnetic and ferroelectric order parameters can lead to magnetoelectric effects, in which the magnetization can be tuned by an applied electric field and vice versa. Relatively few multiferroics have been identified, and in those that are known, the mechanism underlying their ferroelectricity is often unconventional. The purpose of this work is to understand the unusual ferroelectric behavior in multiferroic BiFeO$_3$, which has recently emerged as an especially promising magnetoelectric material.

Recently, large ferroelectric polarizations, exceeding those of prototypical ferroelectrics BaTiO$_3$ and PbTiO$_3$, have been reported in high quality thin films of BiFeO$_3$. These sizeable polarizations are consistent with the observed large atomic distortions, but apparently inconsistent with earlier studies of bulk BiFeO$_3$, a difference whose origin is currently under debate. In addition, appreciable magnetizations ($\sim 1 \mu_B$/formula unit), increasing with decreasing film thickness, have been reported accompanied by substantial magnetoelectric coupling.

Bulk BiFeO$_3$ has long been known to be ferroelectric with a Curie temperature of about 1100 K. The structure of the ferroelectric phase, resolved experimentally using both X-ray and neutron diffraction, can be understood as highly-distorted perovskite with rhombohedral symmetry and space group $R\bar{3}c$. The primitive unit cell contains two formula units (10 atoms) as shown in Fig. 1. The $R\bar{3}c$ symmetry permits the development of a spontaneous polarization along [111], and Bi, Fe, and O are displaced relative to one another along this 3-fold axis. The largest relative displacements are those of Bi relative to O, consistent with a stereochemically-active Bi lone pair. The polar displacements (relative to cubic perovskite) are noticeably extreme when compared with those in non-lone-pair-active perovskite ferroelectrics such as BaTiO$_3$ or KNbO$_3$, but are consistent with those observed in other Bi-based perovskites. The observed counter-rotations of neighboring octahedra about [111] are consistent with a tolerance factor somewhat less than unity. The crystal structure of the paraelectric phase has not been conclusively determined.

Surprisingly, given the large atomic displacements relative to the centrosymmetric cubic perovskite structure, and the high ferroelectric Curie temperature, early measurements on bulk single crystals yielded rather small polarizations. Teague et al.13 initially reported a polarization along [111] of just 6.1 μC/cm2; although these authors state that their hysteresis loops were not saturated, their measurements were supported by more recent studies of both BiFeO$_3$/BaTiO$_3$ alloy films and pure BiFeO$_3$ polycrystalline films. The small values are in sharp contrast with recent experiments on epitaxial thin film samples of BiFeO$_3$, which were found to possess large polarizations. The first thin film measurements yielded values of 50-90 μC/cm2 on (100) aligned substrates, in-
There are several plausible explanations for the spread of experimental values. First, the original reports of giant polarization which is the highest value ever measured for a ferroelectric. The intriguing magnetic properties are discussed in a separate study.22

There are several plausible explanations for the spread of experimental values. First, the original reports of giant polarization which is the highest value ever measured for a ferroelectric.

There are several plausible explanations for the spread of experimental values. First, the original reports of giant polarization which is the highest value ever measured for a ferroelectric.
Hubbard parameter $U_{\text{eff}} = U - J$ enters the Hamiltonian. The magnitude of U_{eff} is varied between 0 eV and 7 eV for the Fe d states (the standard LSDA result corresponds to $U_{\text{eff}} = 0$ eV). These calculations are performed with a Γ centered $5 \times 5 \times 5$ Monkhorst-Pack k-point mesh and a slightly lower plane-wave cutoff of 400 eV. The tetrahedron method is used for Brillouin zone integrations.

Rock salt, or G-type, antiferromagnetic (AFM) order is assumed for all calculations, as well as a homogeneous and collinear spin arrangement. This assumption is well justified, since in practice BiFeO$_3$ is observed to be nearly G-type AFM. However, experiments also report a long wavelength spiral spin structure and possibly a small out-of-plane canting due to weak ferromagnetism. Since the noncollinearity is quite minimal, the simplification to a collinear magnetic structure is acceptable. Detailed calculations of the effects of noncollinearity and spin-orbit coupling on the magnetic properties of BiFeO$_3$ appear separately.

The electronic contribution to the polarization is calculated as a Berry phase using the method first developed by King-Smith and Vanderbilt, (see also Ref. [21]), the so-called “modern” theory of polarization. In this approach, the total polarization P for a given crystalline geometry can be calculated as the sum of ionic and electronic contributions. The ionic contribution is obtained by summing the product of the position of each ion in the unit cell (with a given choice of basis vectors) with the nominal charge of its rigid core. The electronic contribution to P is determined by evaluating the phase of the product of overlaps between cell-periodic Bloch functions along a densely-sampled string of neighboring points in k-space. Here we use 4 symmetrized strings consisting of 15 k points to obtain the electronic contribution to the polarization, which is calculated separately for each spin channel; the total polarization is then the sum of the two spin contributions and the ionic contribution.

III. RESULTS AND DISCUSSION

A. Structure

In Table II we report structural parameters obtained by relaxing the cell volume Ω, rhombohedral angle α, and atomic positions within the $R3c$ space group, which are all in good agreement with the experimental values of Kubel and Schmid. The lattice constant is underestimated by roughly 3%, a large but not atypical consequence of the LSDA. The internal atomic coordinates are reproduced very well. Both the experimental and the theoretical value are very close to 60° which would correspond to perfectly cubic lattice vectors. The calculated rhombohedral angle is slightly larger than experiment; since it is found to increase with decreasing volume, we attribute this to the underestimated volume of the LSDA ground state. Our calculations of the total energy for other selected symmetries, including $P4mm$, $R\bar{3}c$, and $R3m$, corroborate $R3c$ as the ground state.

<table>
<thead>
<tr>
<th></th>
<th>LSDA</th>
<th>Exp. (Ref. 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi (2a) x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe (2a) x</td>
<td>0.231</td>
<td>0.221</td>
</tr>
<tr>
<td>O (6b) x</td>
<td>0.542</td>
<td>0.538</td>
</tr>
<tr>
<td>y</td>
<td>0.943</td>
<td>0.933</td>
</tr>
<tr>
<td>z</td>
<td>0.408</td>
<td>0.395</td>
</tr>
<tr>
<td>a_{rh} (Å)</td>
<td>5.46</td>
<td>5.63</td>
</tr>
<tr>
<td>α (°)</td>
<td>60.36</td>
<td>59.35</td>
</tr>
<tr>
<td>Ω (Å3)</td>
<td>115.98</td>
<td>124.60</td>
</tr>
</tbody>
</table>

In $R3c$, the Bi site is strongly distorted such that only 6 of the 12 oxygens surrounding Bi can still be considered nearest neighbors; three co-planar oxygens lie above Bi along [111] at 2.30 Å, and three sit below at 2.41 Å. Likewise, the Fe site is displaced relative to the center of its surrounding octahedron, which is also distorted, with 3 oxygen neighbors at 1.92 Å and 3 others at 2.07 Å. The O-Fe-O bond angle in this system, which would be an ideal 180° in a cubic perovskite structure, buckles to a value of 165° in $R3c$. Indeed $R3c$ BiFeO$_3$ is structurally similar to ferroelectric LiNbO$_3$, which also has $R3c$ symmetry, off-centering of the Li and Nb cations, and large rotations of the oxygen octahedra resulting in a 6-fold coordinated site for the large cation.

The structural relationship between cubic perovskite and $R3c$ can be understood with just two rather simple distortions from the cubic geometry: (i) counterrotations of adjacent oxygen octahedra about [111], and (ii) relative ionic displacements along [111]. Freezing in the counterrotations alone results in a nonpolar insulator with $R3c$ symmetry, a structural phase of BiFeO$_3$ that, by analogy to LiNbO$_3$, is a possible candidate for its high-temperature paraelectric phase. Freezing in only the polar mode produces a ferroelectric with $R3m$ symmetry.

B. Electronic and magnetic properties

In this section, we present the electronic structure of BiFeO$_3$ computed in the ferroelectric $R3c$ structure. We also briefly discuss results obtained for the cubic perovskite and centrosymmetric $R3c$ structures; both are possible paraelectric high-temperature phases.

The single-particle density of states (DOS) for a single spin channel and the DOS of the local Fe d states for both
spin channels, calculated within the LSDA, are shown in Fig. 2a and b for BiFeO$_3$ in the $R3c$ structure. Both spin channels exhibit identical total DOS, as required for an AFM. The structure is insulating, with a small gap of 0.4 eV in the LSDA calculation. This gap is significantly enhanced after application of the LSDA+U method, as seen from Fig. 2b; for the small value $U_{\text{eff}}=2$ eV, the gap is 1.3 eV; for $U_{\text{eff}}=4$ eV (Fig. 2b) it further increases to 1.9 eV. The narrow bands around the Fermi energy arise predominantly from the Fe 3d states (with some oxygen hybridization) and are divided into t_{2g} and e_g manifolds, as expected from their octahedral coordination. Lying below and hybridized with the Fe states is the broad predominantly oxygen 2p valence band, which also contains a significant amount of Bi 6p character. The lowest band shown, at ~ 9.5 eV below the valence band maximum, is the Bi 6s band. The large amount of occupied Bi 6p states is consistent with the picture of the Bi lone pair as the driving force of the ferroelectric distortion in this class of materials.

Fig. 3 shows the dispersion of the bands in the energy range around the gap. As can be seen in the figure, the band gap is indirect for LSDA ($U_{\text{eff}}=0$ eV) and $U_{\text{eff}}=2$ eV, with the bottom of the conduction band located at the point Z in the rhombohedral Brillouin zone and the top of the valence band between Γ and Z. For a higher value of $U_{\text{eff}}=4$ eV, the gap remains indirect but the top of the valence band shifts to a location between Γ and F. Photoemission spectroscopy would be of use to determine the value of U_{eff} best describing the electronic structure of BiFeO$_3$.

The LSDA local magnetic moment at the Fe atoms (integrated within a sphere of radius 1.4 Å) is ~ 3.3 μ_B, in reasonable agreement with the experimental value of 3.75 μ_B (Ref. 10). It is reduced from the formal value of 5 μ_B for high spin Fe$^{3+}$ because of the finite bandwidth of the 3d states. Use of the LSDA+U method improves the agreement with the experiment, enhancing the Fe magnetic moment to a value of 3.8 μ_B for $U_{\text{eff}}=2$ eV and 4.0 μ_B for $U_{\text{eff}}=4$ eV.

For comparison and to discuss the origin of the ferroelectric instability, we provide corresponding results for the high symmetry cubic perovskite structure. A primitive lattice constant of 3.87 Å is used for all calculations and corresponds to a volume per formula unit equal to that of the bulk $R3c$ phase; the unit cell is doubled along [111] to accommodate the opposite spin polarization of the two Fe ions. The single-particle total density of states (DOS), calculated within the LSDA, is shown for one spin channel in Fig. 4a, along with the local density of states for both spin channels on one of the Fe ions (Fig. 4b). Strikingly, BiFeO$_3$ is metallic in this structure within the LSDA, with the Fermi energy cutting through the narrow band composed of up-spin e_g states and down-spin t_{2g} states.

As discussed in Sec. 11 the LSDA often fails to describe such narrow d bands correctly. Fig. 4c and d show the site-projected local DOS for Fe obtained within the
FIG. 4: Calculated densities of states (DOS) for cubic BiFeO₃. Upper panels (a) and (b) show the total DOS for one spin channel and the local Fe DOS for both spin channels respectively (minority spin states are shown with a negative sign), both calculated within the LSDA. Lower panels (c) and (d) show the local Fe DOS obtained using the LSDA+U method, with \(U_{\text{eff}} \) values of 2 eV and 5 eV. The zero is set to the Fermi energy (a,b) or valence band maximum (c,d).

The LSDA+U method for two different values of \(U_{\text{eff}} \). Including an effective Coulomb repulsion parameter pushes the Fe majority \(d \)-bands down and the Fe minority \(d \)-bands up in energy, leading to a gap of \(\sim 0.5 \) eV for a relatively small \(U_{\text{eff}} \) of 2 eV. The fully-gapped insulating phase is accompanied by a marked increase in the local Fe magnetic moment from \(\sim 1.9 \mu_B \) to \(\sim 3.9 \mu_B \) (indicating a low-to-high-spin transition). Typical values for \(U_{\text{eff}} \) in other Fe compounds range between \(U_{\text{eff}}=3 \) eV and 5 eV, supporting the fact that such a small \(U_{\text{eff}} \) opens a gap supports the notion that inadequate treatment of strong correlation in LSDA results in a metallic state for cubic BiFeO₃.

Finally, we remark that the centrosymmetric \(R\bar{3}c \) structure, mentioned briefly in Section III A, is a possible candidate paraelectric phase, is already insulating within the LSDA, albeit with a small gap whose magnitude is found to be extremely sensitive to input parameters. As with the cubic perovskite phase, a stable insulating solution can be obtained even for small values of \(U_{\text{eff}} \). We perform a full structural relaxation imposing \(R\bar{3}c \) symmetry within the LSDA, and the structural parameters resulting from this relaxation are summarized in Table III. Briefly, compared with \(R\bar{3}c \), this arrangement is found to possess a smaller volume and a larger rhombohedral angle. The environment of the A site is drastically changed relative to cubic perovskite: each Bi site has 3 oxygen neighbors at 2.30 Å, 6 at 2.71 Å, and 3 more at 3.21 Å. However the local octahedral environment of the B site is preserved: each Fe site is octahedrally coordinated with 6 O neighbors at a distance of 1.97 Å.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.417</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{\text{rh}}) (Å)</td>
<td>5.35</td>
</tr>
<tr>
<td>(\alpha) (°)</td>
<td>61.93</td>
</tr>
<tr>
<td>(\Omega) (Å³)</td>
<td>113.12</td>
</tr>
</tbody>
</table>

C. Spontaneous polarization

1. Estimate using Born effective charges

As discussed above, recent reports of ferroelectric polarizations in high quality BiFeO₃ thin films exceed previous measurements on bulk samples by an order of magnitude. The polarizations measured in thin film samples are consistent with the observed large atomic distortions but apparently inconsistent with an earlier study of bulk BiFeO₃ which reported a modest polarization along [111] of just 6.1 μC/cm².

In an effort to shed light on this issue, we examine the spontaneous polarization, \(P \), of BiFeO₃ in its \(R\bar{3}c \) ground state from first principles. Experimentally, \(P \) corresponds to half the polarization change as the applied field is swept through zero from positive to negative. For prototypical perovskite ferroelectrics, it has been standard to estimate this value by simply summing the product of atomic displacements (from a centrosymmetric reference structure) and their corresponding Born effective charges (BECs). This estimate corresponds to computing the Cartesian components of the polarization \(\Delta P_\alpha \) to linear order in the atomic displacements, i.e.

\[
\Delta P_\alpha \approx \sum_{j,\beta} \frac{\partial P_\alpha}{\partial u_{j\beta}} (u_{j\beta} - u_{0j\beta}) = \frac{e}{\Omega} \sum_{j,\beta} Z_{j\alpha\beta}^* \Delta u_{j\beta}, \tag{1}
\]

where \(\Delta u_{j\beta} \) is the displacement of ion \(j \) in Cartesian direction \(\beta \), \(Z_{j\alpha\beta}^* \) is its Born effective charge tensor, and \(\Omega \) is the unit cell volume. The zero subscript generally refers to an insulating centrosymmetric reference structure (in this case, either cubic perovskite or \(R\bar{3}c \)). The
spontaneous polarization is obtained from Eq. (1) by considering a specific structural (or switching) pathway parametrized by the change in atomic displacements connecting a centrosymmetric reference structure and $R3c$.

Table IV summarizes our calculated BECs for the three different structures studied in this work. The BECs are calculated by finite differences: the ions are displaced slightly along [111] from their equilibrium positions, and the resulting change in polarization is calculated using the Berry-phase method described in Sec. II. The displacements are chosen to be small enough to ensure the validity of the linear treatment in Eq. (1). (Typical displacements used here are of the order of 0.01 Å.) For the LSDA+U calculations we use $U_{\text{eff}}=2$ eV, since this value gives an insulating solution for all systems. (Higher values of U_{eff} would result only in small quantitative changes).

The highly anomalous values of the BECs computed in the cubic structure, and the reduction of these values after freezing in the structural distortions, are in agreement with former observations in other ferroelectric materials. In particular, the large values of the Bi BECs emphasize the important role of this ion as driving force of the ferroelectric distortion. This is in some contrast to the Li ion in the related compound LiNbO$_3$, whose effective charge is found not to deviate appreciably from its nominal value.

In Table IV we also report the polarization difference between the cubic (or $R3c$) centrosymmetric structures and $R3c$. Using Eq. (1) and the $R3c$ LSDA BECs, 84.2 μC/cm2 is obtained along [111] a value consistent with the large displacements and BECs. Yet since Eq. (1) is only valid for small displacements and because the BECs are found to change considerably along the path (compare the LSDA+U results for cubic, $R3c$, and $R3c$ in Table IV), this value is only a rough estimate of the polarization in BiFeO$_3$. This can be clearly seen from the larger values of 123.1 and 101.2 μC/cm2 for ΔP, also given in Table IV, obtained using the cubic perovskite and $R3c$ BECs, respectively. The accuracy could be improved by breaking the path into shorter segments and recomputing the BECs at intermediate points on the path. However, it is more efficient to compute the polarization directly from the Berry-phase theory, as will be described in the next section.

2. Modern theory of polarization

An accurate quantitative method for computing the polarization to all orders in displacement is the so-called Berry phase (or "modern") theory of polarization discussed in Sec. II. In this approach, the electronic contribution to the polarization is calculated as a geometric phase, formally equivalent to the sum of Wannier centers of the occupied bands (where each center is assigned a charge e). Because of the Born-von Karman periodic boundary conditions employed here, there is an ambiguity in the choice of unit cell and the total polarization may only be determined up to an integer multiple of the polarization quantum $e\mathbf{R}/\Omega$, where e is the charge of the electron, \mathbf{R} is a lattice vector in the direction of polarization, and Ω is the volume of the unit cell. Thus for a given structure, the theory yields a lattice of values. The difference in polarization between two structures (e.g., a polar structure and its enantiomorph) is therefore determined only up to an integer multiple of the polarization quantum. To predict which of the values would be obtained in a Sawyer-Tower or CV experiment, it is also necessary to specify a switching path along which the system stays insulating in all intermediate structural states.

In the case of BiFeO$_3$ the polarization lattice of the $R3c$ ground state is computed to be (6.6 + $n \cdot 184.2$) μC/cm2 along [111] within the LSDA, where n is an integer and $|e\mathbf{R}/\Omega|=184.2$ μC/cm2 is the polarization quantum. Similar results are obtained with LSDA+U (see Table V), though a slight shift in polarization with increasing U_{eff} is observed. If the point $n=0$ is selected, near-perfect agreement is obtained with the measurement of 6.1 μC/cm2 by Teague et al. over thirty years ago. However, it is initially puzzling that none of the allowed values are at all close to the estimate of 84.2 μC/cm2 made in the previous section, using Eq. (1) and based on paths involving nearby centrosymmetric structures.

This discrepancy is immediately resolved by computing the allowed values of the polarization difference between

| Table IV: Born effective charges (BECs) for displacements along [111] for BiFeO$_3$ in the cubic perovskite, $R3c$, and $R3c$ structures. LSDA+U results are obtained using $U_{\text{eff}}=2$ eV. Since cubic perovskite is metallic within LSDA and the $R3c$ structure is nearly so, LSDA values are given only for the $R3c$ structure. ΔP, calculated using Eq. (1) along a path from the cubic structure to $R3c$, is given for each set of BECs.

<table>
<thead>
<tr>
<th>Z_j^c</th>
<th>Bi</th>
<th>Fe</th>
<th>O</th>
<th>Z_j^{R3c}</th>
<th>Bi</th>
<th>Fe</th>
<th>O</th>
<th>ΔP (μC/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R3c$</td>
<td>6.32</td>
<td>4.55</td>
<td>-3.06</td>
<td>123.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔP (μC/cm2)</td>
<td>4.92</td>
<td>4.25</td>
<td>-3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R3c$</td>
<td>101.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔP (μC/cm2)</td>
<td>84.2</td>
<td>3.26</td>
<td>-2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔP (μC/cm2)</td>
<td>87.3</td>
<td>3.49</td>
<td>-2.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Table V: Minimum value of the polarization lattice corresponding to the $R3c$ structure, computed with different values of U_{eff}. All values are given modulo the polarization quantum. |

<table>
<thead>
<tr>
<th>U_{eff} [eV]</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P [μC/cm2]</td>
<td>6.6</td>
<td>2.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>
between a centrosymmetric structure and \(R3c \). In this case it turns out that the centrosymmetric \(R3c \) and cubic perovskite structures have a polarization not of zero (modulo the polarization quantum) but of half of a polarization quantum \((92.1+\nu\cdot184.2)\ \mu C/cm^2\) along [111]. Thus one of the allowed values for the polarization difference between \(R3c \) and the centrosymmetric reference structures, computed with the Berry-phase theory, is \(94.7 \mu C/cm^2\) \((U_{\text{eff}}=2\ \text{eV})\), agreeing well with the linear estimate of the previous section. That the centrosymmetric structure has a non-zero value of polarization may at first seem counterintuitive. However, it is readily understood using the Wannier function reformulation of the Berry-phase expression. Making the conservative assumption that the Wannier functions are centered on atoms with multiplicity consistent with formal valences of +3 for Bi and Fe and −2 for oxygen: taking the origin at a Bi atom; and choosing as the additional basis atoms the Fe in the center of the ideal cubic perovskite unit cell and the three oxygens at the centers of the faces, the Wannier sum yields a polarization of 92.1 \(\mu C/cm^2 \) along [111] for the doubled unit cell (using the \(R3c \) volume). This value is exactly half of a polarization quantum, the only non-zero value allowed by symmetry for a centrosymmetric structure and also exactly the same value that is obtained by the exact calculation of the polarization for both centrosymmetric structures (cubic perovskite and \(R3c \)). Alternate choices of origin and basis could result in other points on the polarization lattice, all differing by a polarization quantum, but would never produce zero for these BECs.

To connect the allowed polarization difference of 94.7 \(\mu C/cm^2 \) to a specific path in structural space, we compute the polarization from the Berry-phase theory for the endpoints and several intermediate structures along an idealized “switching path” connecting the positively-oriented \(+ (R3c)\) with its enantiomorphic counterpart, the negatively-oriented \(-(R3c)\) structure with opposite polarization, through the centrosymmetric cubic perovskite structure. Although the actual displacements associated with switching will obviously be more complex, the atomic positions are assumed to travel smoothly from positive to negative orientation through the cubic arrangement. Also, for simplicity these calculations assume a rhombohedral angle \(\alpha=60^\circ\) for \(R3c \), which slightly shifts the polarization quantum to 185.5 \(\mu C/cm^2 \) and the Berry phase polarizations by a few percent. Since the cubic perovskite structure is metallic within LSDA, we use the results obtained for \(U_{\text{eff}} = 2 \text{ eV} \). The results are shown in Fig. 5. For the specific continuous insulating path connecting the \(-(R3c)\) lattice point corresponding to \(-2.3 \mu C/cm^2\) with the \(+ (R3c)\) point of 187.8 \(\mu C/cm^2\), the polarization is seen to evolve smoothly (but nonlinearly) through the centrosymmetric cubic structure, which has a nonzero polarization. Subtracting the two endpoint values gives a polarization change of 190.1 \(\mu C/cm^2\) and a predicted spontaneous polarization of half that value, or 95.05 \(\mu C/cm^2\).

FIG. 5: Change in polarization \(P \) along a path from the original \(R3c \) structure through the centrosymmetric cubic structure to the inverted \(-(R3c)\) structure calculated with the LSDA+U method and \(U_{\text{eff}} = 2 \text{ eV} \). The possible values of \(P \) for fixed distortion differ by multiples of the polarization quantum, here 185.6 \(\mu C/cm^2\) for \(\alpha=60^\circ\).

(The slight difference from the value of 94.7 \(\mu C/cm^2\) reported above is due to the assumption \(\alpha=60^\circ\).) This value is consistent with measurements on \((111)\) oriented thin films as well as our estimate with Eq. (1).

IV. DISCUSSION: POSSIBILITY OF MULTIPLE POLARIZATION PATHS

In the previous section we observed that if the system switches along the path indicated in Fig. 5 (or along one that can be continuously deformed into it) the modern theory of polarization predicts a measured spontaneous polarization of \(-90-100 \mu C/cm^2\), depending on the choice of \(U_{\text{eff}} \). In principle however, an infinite set of polarization differences between the \(+(R3c) \) and \(-(R3c) \) structures is possible, provided that a suitable pathway can be found to connect any two endpoints. For example, if a switching path could be found taking \(+ (R3c)\) to \(-(R3c) \) through an intermediate structure with zero polarization, the measured polarization would be \(2.3 \mu C/cm^2\) \((U_{\text{eff}} = 2 \text{ eV})\), consistent with reports for bulk samples. Thus although the possibility of the small experimental values resulting from poor sample quality cannot be ruled out, it is nonetheless interesting that different reported values for polarization (both lower, \(\approx 6 \mu C/cm^2\), and higher, \(> 150 \mu C/cm^2\)) may be explained by different switching paths.

Specific paths connecting the smallest \(+ (R3c)\) polarization value with the smallest \(- (R3c)\) value have yet to be determined. One approach to finding such a path would be to identify a centrosymmetric reference structure with zero polarization (modulo a quantum), the path then being the atomic displacements from \(R3c \) to this structure. To get a zero (or integer-quantum) polarization from only a small distortion of the perovskite structure would require a somewhat drastic rearrangement of
the centers of the Wannier functions. In the present case this may be facilitated by the known multiple valences possible for Bi and Fe. For example if the Bi ions were to acquire an average formal charge of +4 (likely if a disproportionation to Bi$^{3+}$ and Bi$^{5+}$ occurred, leaving the Fe with a +2 charge), the polarization of the cubic phase would be zero. Further, by combining a forward switching path between $R3c$ enantiomorphs through an integer-polarization structure with another back through a half quantum polarization structure (e.g., $R3c$), the BiFeO$_3$ crystal could be taken to itself with a net transport of electrons across the system. This suggests the intriguing possibility of an insulating crystal with nonzero electronic conductivity.

In constructing paths corresponding to different polarizations, we do not wish to claim knowledge of the actual experimental switching mechanism, which is certainly much more complicated. In reality, switching is thought to occur via domain wall motion, where the key physics is associated with polarization reversal under an applied electric field at interfaces between positively- and negatively-oriented domain walls.45

Finally, an alternative explanation for the different polarizations reported in various film and bulk samples would be that different crystal structures are epitaxially stabilized in the films which in turn possess significantly different polarizations. An alternative tetragonal structure that satisfied this requirement was discussed in a previous paper.3 To clarify these issues further experimental work will be necessary to determine the sensitivity of the structure of thin film BiFeO$_3$ to substrate and growth orientation.

V. CONCLUSIONS

In summary, BiFeO$_3$ is a material of unusual interest both as a potentially useful multiferroic, and with respect to its fundamental polarization behavior. A wide range of measured polarization values have been reported, all of which are apparently permitted within the modern theory of polarization19,20,21 by the lattice character of the polarization. Since some of the observed values of polarization can only be explained by switching through structures in which the ions change their valence states, such behavior, if experimentally verified, might be unique to multiferroics, in which the magnetic transition metals are able to adopt multiple values for d orbital occupancy.

Acknowledgments

We thank M. H. Cohen, R. Ramesh, D. G. Schlom, and D. Vanderbilt for useful discussions. This work is supported by the National Science Foundation through Grants No. DMR-99-81193, NSF-MRSEC DMR-00-80008 (KMR), DMR-03-12407 (NAS) and NSF-MRSEC DMR-00-80034 (CE), and by the Office of Naval Research through N00014-00-1-0261 (KMR).
46 The inversion symmetry-breaking displacements along [111] from cubic perovskite to $R3c$ are the same as those from $R\bar{3}c$ to $R3c$.
47 Here we assume the volume of the centrosymmetric structure is equal to that of $R3c$. In general this will not be the case (see Table III for $R3c$), and the polarization quantum will differ for the two structures. When computing the spontaneous polarization, this discrepancy can be avoided by taking differences between two endpoint phases, as will be done later in this section.