
ar
X

iv
:c

on
d-

m
at

/0
50

31
70

v3
  [

co
nd

-m
at

.s
tr

-e
l]

  1
1 

M
ay

 2
00

5 Thermal entanglement properties of small spinlustersIndrani Bose and Amit Tribedi2nd February 2008Department of PhysisBose Institute93/1, Aharya Prafulla Chandra RoadKolkata - 700 009, IndiaAbstratExhange interations in spin systems an give rise to quantum entan-glement in the ground and thermal states of the systems. In this paper, weonsider a spin tetramer, with spins of magnitude 1
2 , in whih the spins in-terat via nearest-neighbour, diagonal and four-spin interations of strength

J1, J2 and K respetively. The ground and thermal state entanglementproperties of the tetramer are alulated analytially in the various limitingases. Both bipartite and multipartite entanglements are onsidered and asignature of quantum phase transition (QPT), in terms of the entanglementratio, is identi�ed. The �rst order QPT is aompanied by disontinuitiesin the nearest-neighbour and diagonal onurrenes. The magneti proper-ties of a S =
1
2 AFM polyoxovanadate ompound, V 12, are well explainedby tetramers, with J2 = 0, K = 0, in whih the spins interat via theisotropi Heisenberg exhange interation Hamiltonian. Treating the mag-neti suseptibility χ as an entanglement witness (EW), an estimate of thelower bound of the ritial entanglement temperature, Tc, above whih theentanglement between two individual spins disappears in the experimentalompound, is determined. Two other ases onsidered inlude the sym-metri tetramer, i.e. tetrahedron ( J1 = J2, K=0 ) and the symmetritrimer. In both the ases, there is no entanglement between a pair of spinsin the thermal state but multipartite entanglement is present. A seondEW based on energy provides an estimate of the entanglement temperature,

TE , below whih the thermal state is de�nitely entangled. This EW detetsbipartite entanglement in the ase of the tetramer desribing a square ofspins ( the ase of V 12 ) and multipartite entanglement in the ases of thetetrahedron and the symmetri trimer.1
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I. IntrodutionEntanglement is a fundamental property of quantum mehanial systems andgives rise to an exess of orrelations in a system over and above those expetedfrom lassial onsiderations [1℄. A pure state is said to be entangled if it doesnot fatorize , i.e., annot be written as a produt of individual wave funtions.A well -known example of an entangled state is the singlet state of two spin-
1
2
partiles, 1√

2
(|↑↓〉 − |↓↑〉), whih annot be written as a produt of the spinstates of individual spins. Measurement on one omponent of an entangled pair�xes the state of the other implying non-loal orrelations. In the ase of amixed state, entanglement ours if the density matrix is not a onvex sum ofprodut states. The importane of entanglement derives from its essential rolein appliations related to quantum information and ommuniation. Candidatesystems for implementing the appliation protools inlude spin systems in whihexhange interations give rise to entanglement [2, 3, 4, 5℄.Entanglement is a resoure whih an be reated, manipulated and destroyed.It an be of di�erent types, e.g., bipartite, multipartite, loalizable [6℄, zero-temperature, �nite-temperature et. for whih appropriate quanti�ation mea-sures are available. Bipartite (multipartite) entanglement involves two (morethan two) subsystems. The entanglement between a pair of spins belonging toa hain of interating spins provides an example of bipartite entanglement. Bi-partite and to a lesser extent multipartite entanglement properties of a varietyof spin models have been studied so far at both zero and �nite temperatures andinluding an external magneti �eld [7, 8, 9, 10, 11, 12, 13, 14, 15, 16℄. Thesestudies show that the amount of entanglement an be hanged by hanging thetemperature T and/or the external magneti �eld. Sine entanglement involvesnon-loal orrelations of purely quantum origin, an issue of onsiderable interestis whether entanglement develops speial features in the viinity of a quantumphase transition (QPT). A QPT ours at T = 0 and is brought about by tuningsome system parameter, say, the exhange interation strength or an externalvariable like the magneti �eld to a ritial value [17℄. In a QPT, the groundstate of the system undergoes qualitative hanges whih in turn a�ets the en-tanglement properties in the ground state. Some reent studies have exploredthe relation between entanglement and QPT in a variety of spin models and themain onlusion is that ertain entanglement-related quantities exhibit featureslike saling and singularity in the viinity of a quantum ritial point (QCP)[15, 16, 18, 19, 20, 21, 22℄. In the ase of �rst-order QPTs, the ground stateonurrenes may hange disontinuously at the transition point [23, 24, 25, 26℄.The in�uene of quantum ritiality extends also to �nite temperatures so thatmeasurements of appropriate observables provide signatures of QPT. At �nite T ,the system in thermal equilibrium is desribed by the density operator, ρ (T ) =

1
Z
exp

(
− H

kBT

), where H is the Hamiltonian, Z the partition funtion and kB theBoltzmann onstant. A thermal state remains entangled upto a ritial tempera-2



ture Tc beyond whih the state beomes separable, i.e., the entanglement falls tozero. Experimental demonstrations of entanglement are mostly on�ned to themiroworld, i.e., to systems onsisting of a few photons, atoms or ions. Thereis now experimental evidene that entanglement an also a�et the marosopiproperties of solids. This has been shown in the insulating magneti ompound
LiHoxY1−xF4 the spei� heat and the suseptibility data of whih an only beexplained if quantum entanglement of the relevant states is expliitly taken intoaount [27, 28℄. Measures of thermal entanglement based on the thermal den-sity matrix require a knowledge of both the eigenvalues and the eigenvetors of
H . On the other hand, there are suggestions that marosopi thermodynamiobservables an serve as entanglement witnesses so that a measurement of thesequantities an provide the evidene for entanglement [11, 28, 29, 30, 31℄. Anentanglement witness (EW) is an observable the expetation value of whih ispositive in unentangled, i.e., separable states and negative in entangled states[32, 33, 34℄. The thermodynami observables whih have been proposed as EWsinlude internal energy and magnetization and magneti suseptibility [28, 31℄.The latter has been used as an EW in the spin-1

2
alternating bond antiferro-magnet Cu(NO3)22.5D2O(CN). The ompound an be onsidered as a hainof unoupled spin dimers sine the ratio of the inter-dimer to the intra-dimerexhange interation strengths is approximately 0.24, i.e., low. For separable(unentangled) states, the magneti suseptibility obeys the inequality

χ ≥ (gµB)2N

kBT

1

6
(1)where g is the Landé splitting fator, µB the Bohr magneton and N the numberof spins in the system. Entanglement is present in the system if the inequality in

(1) is violated. The intersetion point of the urve representing the EW (equalityin (1) ) and the experimental χ versus T urve de�nes the ritial temperature
Tc below whih entanglement is present in the system. The experimental esti-mate of Tc ≃ 5K is in good agreement with the theoretial value of the ritialtemperature at whih the pairwise thermal entanglement (entanglement betweentwo spins ), as measured by the onurrene, falls to zero.Determination of the entanglement properties of an interating spin system isa theoretial hallenge as the eigenstates and eigenvalues are not known exatlywhen the number of spins is large. Most of the alulations are on�ned to systemsontaining a few spins so that exat diagonalization is possible. Studies on �nitequantum spin systems aquire signi�ant relevane in the ontext of moleularor nanomagnets. In suh magneti systems, the dominant exhange interationsare often on�ned to small spin lusters. The inter-luster exhange intera-tions are muh weaker in omparison so that the ompounds an be assumed toonsist of independent spin lusters. A reent study provides a number of exam-ples of moleular magnets the thermodynami and neutron sattering propertiesof whih an be well desribed by small spin lusters like dimers, trimers and3



tetramers [35℄. As in Ref. [28℄, one an study the entanglement properties ofthe moleular magnets by treating the suseptibility χ as an EW. The earlierwork dealt with spin dimers for whih only pairwise entanglement is possible.In this paper, we onsider lusters of three (trimer) and four (tetramer) spinsin whih pairwise entanglement between individual spins does not exhaust thetotal entanglement. The tetramer Hamiltonian ontains both bilinear and four-spin interations. The ground state and thermal entanglement properties of thetetramers are determined analytially. The in�uene of multispin interationson entanglement is further determined. The system exhibits QPTs at speialvalues of the exhange interation strengths. A signature of the QPT via theso-alled entanglement ratio is identi�ed. A distint signature of �rst order QPTis provided by jumps in the amounts of entanglement assoiated with n.n. anddiagonal spin pairs. The magneti properties of the polyoxovanadate ompound,
(NHEt)3

[
V IV

8 V V
4 As8O40 (H2O)

]
.H2O (designated as V 12 ) are well explainedby spin−1

2
AFM tetramers, with only nearest-neighbour (n.n.) interations, anddesribed by the isotropi Heisenberg exhange interation Hamiltonian [35, 36℄.The experimental data on the magneti suseptibility of this ompound are avail-able. Treating χ as an EW, the ritial entanglement temperature, Tc, belowwhih entanglement is ertainly present in the system, is determined. The asesof the S = 1
2
AFM symmetri trimer and tetrahedron are also onsidered.Dowling et al.[33℄ have introdued the onept of the entanglement gap, de-�ned to be the di�erene in the energies of the minimum energy, Esep, that aseparable state may attain and the ground state energy E0. If the energy of thesystem falls within the entanglement gap, the state of the system is entangled.The entanglement gap temperature, TE , is de�ned to be the temperature at whihthe thermal energy U(TE) = Esep, the minimum separable energy. Below TE , thethermal state of the system is bound to be entangled. We obtain an estimateof TE in the ases of a single square of spins (the ase of V 12), a tetrahedronand a symmetri trimer. In the last two ases the ritial entanglement temper-ature Tc, determined by using χ as an EW, is idential to the entanglement gaptemperature TE .II. Entanglement properties of S =

1
2
AFM tetramerWe onsider a tetramer of spins of magnitude 1

2
(Fig. 1) desribed by the AFMHeisenberg exhange interation Hamiltonian

H = J1 (S1.S2 + S2.S3 + S3.S4 + S4.S1) + J2(S1.S3 + S2.S4)
+K1(S1.S2)(S3.S4) +K1(S2.S3)(S1.S4) +K2(S1.S3)(S2.S4)

(2)where Si is the spin operator at the ith site of the square plaquette, J1 is thestrength of the n.n. exhange interation, J2 that of the diagonal exhange in-teration and K1, K2 are the strengths of the four-spin exhange interations.4
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34Figure 1: A tetramer of spins of magnitude 1
2
. J1 and J2 denote the strengths ofthe n.n. and diagonal exhange interations. The four-spin interations are notshown.The entanglement properties of the four-spin luster have earlier been studiedanalytially only for J1 6= 0 [37℄ and numerially for both J1 6= 0, J2 6= 0 [38℄. Wenow determine the entanglement properties analytially for the general ase inEq. (2). The z-omponent of the total spin, Stot
z , is a onserved quantity so thatthe eigenvalue problem an be solved in the separate subspaes orrespondingto the di�erent values of Stot

z . The results are displayed in the following (Ei ,
i = 1, ...., 16, is the energy eigenvalue):

Stot
z = +2

ψ1 = |↑↑↑↑〉
E1 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (3)
Stot

z + 1

ψ2 = 1√
2
(|↑↑↑↓〉 − |↑↓↑↑〉)

E2 = −
(

J2

2
+ K1

8
+ 3K2

16

) (4)
ψ3 = 1√

2
(|↑↑↓↑〉 − |↓↑↑↑〉)

E3 = −
(

J2

2
+ K1

8
+ 3K2

16

) (5)
ψ4 = 1√

4
(|↑↑↑↓〉 + |↑↑↓↑〉 + |↑↓↑↑〉 + |↓↑↑↑〉)
E4 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (6)
ψ5 = 1√

4
(|↑↑↑↓〉 + |↑↓↑↑〉 − |↑↑↓↑〉 − |↓↑↑↑〉)
E5 =

(
−J1 + J2

2
− 3K1

8
+ K2

16

) (7)
Stot

z = 0

ψ6 = 1√
2
(|↑↑↓↓〉 − |↓↓↑↑〉)

E6 = −
(

J2

2
+ K1

8
+ 3K2

16

) (8)5



ψ7 = 1√
2
(|↑↓↓↑〉 − |↓↑↑↓〉)

E7 = −
(

J2

2
+ K1

8
+ 3K2

16

) (9)
ψ8 = 1√

2
(|↑↓↑↓〉 − |↓↑↓↑〉)

E8 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

) (10)
ψ9 = 1√

6
(|↑↑↓↓〉 + |↑↓↓↑〉 + |↓↓↑↑〉 + |↓↑↑↓〉 + |↑↓↑↓〉 + |↓↑↓↑〉)

E9 =
(
J1 + J2

2
+ K1

8
+ K2

16

) (11)
ψ10 = 1√

4
(|↑↑↓↓〉 + |↓↓↑↑〉 − |↑↓↓↑〉 − |↓↑↑↓〉)
E10 =

(
−3J2

2
+ 3K1

8
+ 9K2

16

) (12)
ψ11 = 1√

12
(2 |↑↓↑↓〉 + 2 |↓↑↓↑〉 − |↑↑↓↓〉 − |↑↓↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉)

E11 =
(
−2J1 + J2

2
+ 7K1

8
+ K2

16

) (13)
Stot

z = −1

ψ12 = 1√
2
(|↓↓↓↑〉 − |↓↑↓↓〉)

E12 = −
(

J2

2
+ K1

8
+ 3K2

16

) (14)
ψ13 = 1√

2
(|↓↓↑↓〉 − |↑↓↓↓〉)

E13 = −(J2

2
+ K1

8
+ 3K2

16
)

(15)
ψ14 = 1√

4
(|↓↓↓↑〉 + |↓↓↑↓〉 + |↓↑↓↓〉 + |↑↓↓↓〉)
E14 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (16)
ψ15 = 1√

4
(|↓↓↓↑〉 + |↓↑↓↓〉 − |↓↓↑↓〉 − |↑↓↓↓〉)

E15 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

) (17)
Stot

z = −2

ψ16 = |↓↓↓↓〉
E16 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (18)We �rst disuss the ground state (T = 0) entanglement properties. There are�ve distint eigenvalues:
e1 = E1 = E4 = E9 = E14 = E16 = (J1 + J2

2
+ K1

8
+ K2

16
)

e2 = E2 = E3 = E6 = E7 = E12 = E13 = −
(

J2

2
+ K1

8
+ 3K2

16

)

e3 = E5 = E8 = E15 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

)

e4 = E10 =
(
−3J2

2
+ 3K1

8
+ 9K2

16

)

e5 = E11 =
(
−2J1 + J2

2
+ 7K1

8
+ K2

16

)

(19)
6



Figure 2: The two resonating valene bond (RVB) states, ψRV B1( + sign) and
ψRV B2( - sign). A solid line represents a singlet spin on�guration. The arrowonvention is explained in the textFor simpliity, let us put K1 = K2 = K. When J2 < J1 and K < 4J1

5
, the groundstate is non-degenerate with eigenvalue e5. When J2 < J1 and K > 4J1

5
, theground state is three-fold degenerate with eigenvalue e3. Thus K = 4J1

5
(J2 < J1)is a QCP. When J1 < J2 and K < 4J2

5
, the ground state is non-degeneratewith eigenvalue e4. When J1 < J2 and K > 4J2

5
, the ground state is six-folddegenerate with eigenvalue e2 . In this ase a QPT ours at K = 4J2

5
. With

K < 4J1

5
, a QPT ours at J1 = J2 when the ground state hanges from ψ11to ψ10. In this paper, we fous our attention on this last QPT. The states ψ11and ψ10 desribe two resonating valene bond (RVB) states, ψRV B1 and ψRV B2respetively. Figure 2 gives a pitorial representation of ψRV B1 and ψRV B2. Thesolid lines represent singlets (valene bonds) and the arrow signs follow the phaseonvention that a VB between the sites i and j represents the spin on�guration

1√
2
[|↑ (i) ↓ (j)〉 − |↓ (i) ↑ (j)〉] , if the arrow points away from the site i.A measure of entanglement between the spins at sites i and j is given by on-urrene [7, 8℄. To alulate this, a knowledge of the redued density matrix ρijis required. This is obtained from the ground state wave funtion by traing outall the spin degrees of freedom exept those of the spins at the sites i and j. Let

ρij be de�ned as a matrix in the standard basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} . One ande�ne the spin-reversed density matrix as ρ̃ = (σy ⊗ σy) ρ
∗ (σy ⊗ σy), where σy isthe Pauli matrix. The onurrene C is given by C = max {λ1 − λ2 − λ3 − λ4, 0},where the λi's are the square roots of the eigenvalues of the matrix ρρ̃ in desend-ing order. C = 0 implies an unentangled state whereas C = 1 orresponds tomaximum entanglement. The redued density matrix in the standard basis hasthe struture

ρij =




u 0 0 0
0 ω1 y∗ 0
0 y ω2 0
0 0 0 v


 (20)and the onurrene Cij has the simple form7



Cij = 2 max
(
0, |y| −

√
uv

) (21)If the ground state is degenerate, the T = 0 ensemble is desribed by a densitymatrix whih is an equal mixture of ontributions from all possible ground states.The density matrix is a limiting ase of the thermal density matrix as T → 0. Thestate ψRV B1 is the ground state for J2 < J1 and K < 4J1

5
. In this ase, the n.n.onurrenes C12 = C23 = C34 = C41 = 0.5, i.e., the n.n. spin pairs are entangledin equal amounts. The magnitude of the onurrene is independent of J1, J2 and

K as long as ψRV B1 remains the ground state. The onurrenes C13 and C24 arezero, i.e., the spins at the ends of a diagonal are unentangled. At the QCP, J1 =
J2 = J (K < 4J

5
), the onurrenes C12, C23, C34, C41 and C13, C24 are all equalto zero. The ground state at this point is doubly degenerate with wave funtions

ψRV B1 and ψRV B2. For J2 > J1 and K < 4J2

5
, the ground state is given by

ψRV B2. The n.n. onurrenes C12, C23, C34 and C41 are now zero whereas C13 =
C24 = 1. The spin on�guration desribed by ψRV B2 (Fig. 2) an alternativelybe desribed as onsisting of VBs, i.e., singlets aross the diagonals. Sine asinglet is maximally entangled, C13 = C24 = 1. The entanglement properties ofa system an further be analyzed in terms of a quantity known as the one-tangle
τ1 whih is a measure of the entanglement between a spin and the remainderof the system [39, 40, 41℄. It is given as τ1 = 4detρ(1) where ρ(1) is the single-site redued density matrix. In a translationally invariant system, τ1 providesa global estimate of the entanglement present whereas the onurrene gives ameasure of the pairwise entanglement between two individual spins. When τ1 = 0,there is no entanglement in the ground state, i.e., the state beomes separable.The Co�man-Kundu-Wootters (CKW) onjeture [39℄, originally proposed for athree-qubit system, an be generalized to yield the inequality

τ1 ≥ τ2 =
∑

j 6=i

C2
ij (22)where τ1 represents the one-tangle orresponding to the entanglement betweenthe ith qubit (spin) and the rest of the system and C2

ij is the square of theonurrene assoiated with the pairwise entanglement between the ith and jthqubits. The inequality in (22) shows that the pairwise entanglement is not thesole entanglement in the system. For the four-spin luster, τ 1 has the value 1when ψRV B1 and/or ψRV B2 are the ground states. The ratio R = τ2
τ1
quanti�es therelative ontribution of the pairwise entanglement and has values 1

2
and 1 in theground states ψRV B1 and ψRV B2 respetively. Rosilde et al. [40, 41℄ have shownthat the value of R reahes a minimum (not zero) at the QCP of S = 1

2
XYXAFMs in an external magneti �eld. In the present ase, we have a �rst orderQPT. At the transition point J1=J2=J (K < 4J

5
), the ground state is doublydegenerate so that the system is in a mixed state. The entanglement measure τ1,de�ned for pure states, needs to be generalized to the ase of mixed states. This8



is done [39℄ by onsidering all possible pure state deompositions of the densitymatrix ρ. For eah of the deompositions, one an determine the average valueof τ1. The minimum of the average over all deompositions is taken to be τmin
1whih replaes τ1 in the CKW inequality in Eq. (22). While alulation of τmin
1is di�ult, one an readily see that R (R = τ2

τmin

1
) at the QPT point either hasthe value zero (τ 2=0, τmin

1 6=0) or is unde�ned (τ 2=0, τmin
1 =0) . In the formerase, the value of R reahes a minimum at the transition point. In both the ases

R has distint values on both sides of the transition point. In ψRV B1, two-spinentanglements exhaust the one-tangle whereas the opposite is true in the aseof ψRV B2. A learer signature of �rst order QPT is provided by the jumps inboth the n.n. and diagonal onurrenes [18, 23℄. In the present model, the n.n.onurrenes C12, C23, C34 and C14 are equal to 0.5 in the ground state ψRV B1 andzero at the transition point as well as in the ground state ψRV B2. The diagonalonurrenes C13 and C24 are equal to 1 in ψRV B2 and zero at the transition pointas well as in the state ψRV B1. The jumps in the magnitudes of the onurrenesare assoiated with the jumps in the density matrix elements, a typial featureof �rst order QPTs [18℄.We now disuss the �nite temperature entanglement properties of the spintetramer. The thermal density matrix, ρ(T ) = 1
Z
exp(−βH) (β = 1

kBT
), nowreplaes the ground state density matrix with Z denoting the partition funtionof the system. The redued thermal density matrix ρij(T ) has the same form asin (20) with Cij(T ) given by

Cij(T ) =
2

Z
max

(
0, |y(T )| −

√
u(T )v(T )

) (23)For the four-spin luster, the thermal density matrix is
ρ(T ) =

1

Z

16∑

k=1

exp(−βEk) |ψk〉 〈ψk| (24)where the |ψk〉′s and the Ek
′s are given in equations (3)-(18). The matrix elements

u, v and y of the redued thermal density matrix ρ12(T ) are
u = v = 5

3
e−βe1 + 3

2
e−βe2 + 1

2
e−βe3 + 1

4
e−βe4 + 1

12
e−βe5

y = 5
6
e−βe1 − 1

2
e−βe3 − 1

3
e−βe5

(25)where the eigenvalues ei
′s (i = 1, 2, ..., 5) are given in Eq. (19). Due to trans-lational invariane, the redued density matries for the other n.n. spin pairshave the same matrix elements as in the ase of ρ12(T ). Figure 3 shows C12 as afuntion of kBT

J1
for J2

J1
= 0.5 and for r = K

J1
(K1 = K2 = K) = 0.4 (a), 0.2 (b) and

0.0 (c). Inrease in the strength of the four-spin interation redues the magni-tude of the n.n. onurrene. The value of the onurrene is non-zero provided
|y| − √

uv (Eq.(23)) is > 0. One an de�ne a ritial temperature Tc beyondwhih the entanglement between n.n. spins disappears [37, 42℄. One an show9
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Figure 3: Conurrene C12 as a funtion of kBT
J1

for J2

J1
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Figure 4: A plot of kBTc

J1
, where Tc is the ritial entanglement temperature, versus

J2

J1
, for r = 0.4 (a), 0.2 (b) and 0.0 (c)that in the parameter regime of interest, the thermal entanglement between thediagonal spins is zero so that Tc an be taken as the ritial temperature beyondwhih the entanglement between any two spins is zero. The ritial temperature

Tc is obtained from |y| − √
uv = 0 (Eq. (23)), i.e., as a solution of the equation

z3− 3r2
4 − 6z1+r1+

r2
2 − z1+2r1− 3r2

4 − 10 = 0 (26)where z = e
J1

kBT , r1 = J2

J1
and r2 = K

J1
. Figure 4 shows a plot of kBTc

J1
versus J2

J1
for

r = 0.4 (a), 0.2 (b) and 0.0 (c). For a �xed value of J2

J1
, the ritial entanglementtemperature Tc dereases as the strength of the four-spin interation inreases.

Tc tends to zero as J2

J1
approahes the QCP J2

J1
= 1. For J2 > J1 (with K < 4J2

5
),the n.n. onurrenes are zero.We next alulate the onurrene for pairwise entanglement between thespins loated at the ends of a diagonal. The matrix elements u, v and y of theredued thermal density matrix ρ13(T ) are given by10
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Figure 5: Conurrene C13 as a funtion of kBT
J2

for J2

J1
= 0.5 and for r = K

J1
(K1 =

K2 = K) = 0.4 (a), 0.2 (b) and 0.0 (c).
u = v = 5

3
e−βe1 + e−βe2 + e−βe3 + 1

3
e−βe5

y = 5
6
e−βe1 − e−βe2 + 1

2
e−βe3 − 1

2
e−βe4 + 1

6
e−βe5

(27)where the eigenvalues ei
′s are given in Eq. (19). The redued density matrix

ρ24(T ) has the same elements as in the ase of ρ13(T ). Figure 5 shows C13 asa funtion of kBT
J2

for J1

J2
= 0.5 and for r = K

J2
(K1 = K2 = K) = 0.4 (a), 0.2

(b) and 0.0 (c). Again, at a �xed value of J1

J2
, the magnitude of C13 dereasesas the strength of the four-spin interation inreases. The ritial entanglementtemperature Tc, beyond whih the entanglement between spins loated at theends of a diagonal disappears, is also the temperature beyond whih the pairwiseentanglement between any two spins vanishes sine in the parameter regime ofinterest the n.n. onurrenes are zero at all T . The ritial temperature Tc isobtained as a solution of the equation

z2+r1− 3r2
4 − 3z2r1+

r2
2 − z3r1− 3r2

4 − 5 = 0 (28)where z = e
J2

kBT , r1 = J1

J2
and r2 = K

J2
. Figure 6 shows a plot of kBTc

J2
versus J1

J2
for

r = 0.4 (a), 0.2 (b) and 0.0 (c). For a �xed value of J1

J2
, the ritial entanglementtemperature Tc dereases as the strength of the four-spin interation K inreases.

Tc approahes zero as J1

J2
approahes the QCP J1

J2
= 1. The major onlusion onearrives at from an examination of Figs. (3)-(6), is that, as in the T = 0 ase,the two sets of onurrenes (i) C12, C23, C34, C41 and (ii) C13,, C24 are mutuallyexlusive. For �nite values of the onurrenes belonging to the �rst set, thevalues of the onurrenes belonging to the seond set are zero and vie versa.

11
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Figure 6: A plot of kBTc

J2
, where Tc is the ritial entanglement temperature, versus

J1

J2
, for r = 0.4 (a), 0.2 (b) and 0.0 (c).III. Entanglement WitnessWe now onsider the S = 1

2
polyoxovanadate AFM ompound V 12 and show thatthe magneti suseptibility χ serves as an EW for this ompound. The magnetiproperties of this system are well desribed by onsidering only the entral squareof loalized V 4+ions [36℄. These ions form a square plaquette of S = 1

2
loalizedspins desribed by the isotropi Heisenberg AFM Hamiltonian with only n.n.interations (J2 = K1 = K2 = 0 in equation (2)). As shown in Ref. [36℄, the

V 12 ompound an be treated as a olletion of independent S = 1
2
tetramerswith AFM n.n. interations of strength J1

kB

≃ 17.6 K. In fat, the theoretialexpression for the magneti suseptibility χ of a tetramer gives a good �t (Nindependent tetramers are to be onsidered in alulating χ) to the experimentaldata for V 12 (Fig. 2 of Ref. [36℄). The suseptibility for a spin tetramer withonly n.n. interation of strength J1 is given by
χ

(gµB)2/J1
= βJ1

10e−3βJ1 + 4e−2βJ1 + 2e−βJ1

1 + e−2βJ1 + 3e−βJ1 + 6e−2βJ1 + 5e−3βJ1
(29)Following Ref. [28℄, the magneti suseptibility, χα, along the diretion α (α =

x, y, z) an be written as
χα =

(gµB)2

kBT

〈
(Mα)2

〉 (30)where Mα =
∑

j S
α
j denotes the magnetization along α. The expression in(30) holds true when the external magneti �eld is zero and the Hamiltonianis isotropi in spin spae. The angular brakets in (30) denote the thermal ex-petation value. The suseptibility χα an further be written as

12



χα =
(gµB)2

kBT

∑

i,j

〈
Sα

i S
α
j

〉 (31)Due to the isotropy of the Hamiltonian, χx = χy = χz = χ and we an write
χ =

(gµB)2

kBT
[
N

4
+

2

3

∑

i<j

〈Si.Sj〉] (32)where N is the total number of interating spins. The summation of expetationvalues in (32) an be onsidered as the expetation value of the sum HS ofinteration terms desribing all-to-all spin ouplings. The expetation value ofHShas an overall negative ontribution to χ beause of AFM orrelations. HS hasthe nature of a Hamiltonian and the maximum negative expetation value is givenby the ground state energy of HS. For separable states, the energy minimum isgiven by the ground state energy of the equivalent lassial Hamiltonian [32, 33℄.For all-to-all spin ouplings, the minimum energy separable state is desribed byany spin on�guration with total spin vetor zero. For N=4 (spin tetramer), thelassial ground state is given by the Néel state and 〈HS〉 = −1
2
. For generalseparable states, 〈HS〉 has a lesser negative ontribution to χ and one an writedown the inequality

χ ≥ (gµB)2

kBT

2

3
(33)for separable, i.e., unentangled states. Figure 7 shows a plot of χ

n(gµB)2/J1
versus

T (Curve a ) for n independent tetramers, the ase of V 12. The expression forthe suseptibility of a single tetramer is given in (29). Curve b represents the χversus T urve desribing the equality in (33). In plotting the urves, the value of
J1

kB

is taken as 17.6 K, the experimental estimate for V 12. The intersetion pointof the two urves provides an estimate, Tc ≃ 25.4 K, of the ritial entanglementtemperature below whih entanglement is present in V 12. The theoretial valueof the ritial temperature, above whih the two-spin entanglement disappears isobtained from Eq. (26), with r1 = r2 = 0, as T (1)
c ≃ 15.2 K. Sine Tc > T (1)

c ,only multipartite entanglement is present in the thermal state of the tetramer for
T (1)

c < T < Tc .We now examine whether four-spin entanglement exists in the thermal state ofthe tetramer. This is done by alulating the state preparation �delity F de�nedas
F (ρ) = 〈ψGHZ | ρ(T ) |ψGHZ〉 (34)where |ψGHZ〉 = 1√

2
(|↑↓↑↓〉 + |↓↑↓↑〉) is the four-spin Greenberger-Horne-Zeilinger(GHZ) state [37℄. The su�ient ondition for the four-partile (N = 4 ) entan-13
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Figure 7: A plot of χ

n(gµB)2/J1
( dimensionless unit ) versus T (Curve a ) for nindependent tetramers, as is the ase of V 12. Curve b represents the χ versus Turve desribing the equality in (33). The intersetion point of the two urvesrepresents the ritial entanglement temperature Tc ≃ 25.4 K with J1

kB

≃ 17.6 K.glement is given by
F (ρ) >

1

2
(35)For a tetramer with only n.n. interations of strength J1, F (ρ) is alulated as

F (ρ) =
1
3
e−βJ1 + 2

3
e2βJ1

5e−βJ1 + 7 + 3eβJ1 + e2βJ1
(36)

F (ρ) = 2
3
,i.e., > 1

2
as T → 0 indiating the presene of four-spin entanglement inthe ground state of the tetramer. The ritial entanglement temperature, T (4)

c ,beyond whih the four-spin entanglement vanishes is obtained from a solutionof the equation F (ρ) = 1
2
. The value obtained is kBT

(4)
c

J1
≃ 0.417 from whih

T (4)
c ≃ 7.4 K, assuming J1

kB

≃ 17.6 K as in the ase of the ompound V 12. One�nds that T (4)
c is less than the ritial temperature T (1)

c ≃ 15.2 K. We nextonsider a tetramer with n.n., diagonal and four-spin exhange interations ofstrength J1, J2 and K1 = K2 = K respetively. Fig. 8 shows a plot of kBT
(4)
c

J1versus J2

J1
for r = K

J1
= 0.4 (a), 0.2 (b) and 0.0 () respetively. For a �xedvalue of J2

J1
, the ritial temperature for four-spin entanglement dereases as thestrength of the four-spin interation inreases.The tetramer with J1 = J2 = J and K = 0, alternatively desribed as thetetrahedron, provides an interesting example of the magneti suseptibility χserving as a witness for entanglement other than the entanglement between in-dividual spins. The two-spin entanglement vanishes in the thermal state of thetetrahedron. The same is true when T = 0 and the system is at the QCP J1 = J2.Figure 9 shows the EW urves for χ (the same inequality bound as in (33) holdstrue) whih interset at a �nite temperature kBTc

J
≃ 1.9 showing that the thermal14
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Figure 8: Plot of kBT
(4)
c

J1
versus J2

J1
for r = K

J1
= 0.4 (a), 0.2 (b) and 0.0 (c). T (4)

c isthe ritial entanglement temperature above whih the four-spin entanglement iszero.states are entangled below the ritial temperature orresponding to the inter-setion point. The entanglement is exlusively multipartite in nature. Figure 10shows the EW urves for χ in the ase of a symmetri trimer desribed by the
S = 1

2
Heisenberg AFM Hamiltonian

Htrimer = J(S1.S2 + S2.S3 + S3.S1) (37)In this ase, it is well-known [37, 43℄ that there is no pairwise entanglement bothat T = 0 and at �nite temperatures. In the inequality for χ (Eq.(33)), the fator
2
3
is replaed by the fator 1

2
. In the lassial ground state of HS, the interatingspins form angles of 2π

3
with eah other. The ritial temperature is given by

kBTc

J
≃ 1.4 . Again, only multipartite entanglement is present in the thermalstate of the symmetri trimer.Another EW, whih provides an estimate of ritial entanglement temperature

Tc, is based on energy [32, 33℄. The entanglement gap GE is de�ned as
GE = Esep − E0 (38)where E0 is the ground state energy of the Hamiltonian H desribing the systemand Esep is the minimum energy of the separable states. If GE is > 0, a �nite en-ergy range exists over whih all states are entangled. For a positive entanglementgap GE > 0, one an de�ne an EW
ZEW = H − EsepI (39)where I represents the identity on the full Hilbert spae. For any separable state,

Tr(ZEWρsep)) ≥ 0. If the state is entangled, Tr(ZEWρent)) is < 0. For example, ifthe state belongs to the ground state manifold, Tr(ZEWρ0) = E0−Esep < 0. ZEWthus ats as an EW.The entanglement gap temperature TE is given by U(TE) =15
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Figure 9: The EW urves for χ in the ase of a symmetri tetrahedron with
J1 = J2 = J and K = 0.
Esep, where U(T ) (= 〈H〉 = − 1

Z
∂Z
∂β

) is the thermal energy at temperature T.For T < TE , the thermal state is entangled and hene TE is a measure of theritial entanglement temperature. Esep is given by the ground state energy ofthe orresponding lassial spin model [32, 33℄. For a square of spins, Esep = −J1,as the lassial ground state is given by the Néel state. The expression for U(T )is obtained from the partition funtion Z of the square of spins As shown in[33℄, in the ase of bipartite graphs and latties, the EW detets only bipartiteentanglement. Thus TE for the square of spins has an idential magnitude asthat of T (1)
c at and above whih suh entanglement vanishes. In the ase ofnon-bipartite graphs and latties, the EW an detet multipartite entanglement.The tetrahedron and the symmetri trimer are examples of non-bipartite graphs.

Esep in these two ases an readily be alulated as Esep = −0.5J (tetrahedron)and Esep = −3
8
J (symmetri trimer). The entanglement temperature TE has themagnitude kBTE

J
≃ 1.9 (tetrahedron) and kBTE

J
≃ 1.4 (symmetri trimer). In boththe ases, two-spin entanglements are absent and the entanglement present in thesystem for T < TE is multipartite in nature.IV. Summary and DisussionIn this paper, we onsider a spin tetramer (S = 1

2
) with n.n., diagonal and four-spin AFM exhange interations of strength J1, J2 andK1 = K2 = K respetively.The signi�ane of the inlusion of three-spin and four-spin interations in spinHamiltonians of interest has been pointed out earlier [44, 45℄. We study theground state and thermal entanglement properties of the tetramer in the variouslimiting ases. At T = 0, QPTs our as the exhange interation strengths aretuned to ertain ritial values.We fous on a partiular QPT at J1 = J2 = J

(K < 4
5
J) as the other QPTs exhibit similar features. The QPT point separatestwo RVB ground states, ψRV B1 and ψRV B2. The entanglement between two spins16
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Figure 10: The EW urves for χ in the ase of the symmetri trimer.is determined by alulating the onurrenes C12, C23, C34, C41 and C13, C24. Then.n. onurrenes are non-zero only in ψRV B1 and the other two onurrenes as-soiated with diagonal spins are non-zero only in ψRV B2. The 1−tangle τ1, ameasure of the global entanglement, has the value 1 in both ψRV B1 and ψRV B2.The entanglement measure τ1, de�ned for pure states, has to be generalized to
τmin
1 at the QPT point where the ground state is doubly degenerate. The entan-glement ratio R = τ2

τmin

1
has the value zero at the transition point if τmin

1 6= 0 andis unde�ned otherwise. Away from the transition point, R = 0.5 in the groundstate ψRV B1 and 1.0 in the ground state ψRV B2. A better evidene of the �rstorder QPT is provided by the jumps in both the n.n. and diagonal onurrenes[18, 23℄.The study of �nite temperature entanglement properties again shows the ex-istene of two distintive parameter regimes. The n.n. onurrenes are non-zeroonly when J2 < J1(K < 4J1

5
) and the onurrenes assoiated with diagonal spinsare non-zero only when J1 < J2(K < 4J2

5
). At J1 = J2, all the six onurrenesare zero. The ritial entanglement temperature, Tc, beyond whih entanglementbetween two spins disappears, is omputed. The magnitude of Tc is highest when

J2 = 0 and K = 0. For �xed values of J1 and J2, Tc dereases as the strength ofthe four-spin interation inreases. A measure of the four-spin entanglement inthe thermal state of the tetramer is obtained by alulating the �delity F (ρ). Theritial temperature, T (4)
c , beyond whih the four-spin entanglement disappearsis alulated and one �nds that at �xed values of J1 and J2, the magnitude of

T (4)
c dereases as the strength K of the four-spin interation inreases.Moleular or nanomagnets provide examples of spin systems in whih thedominant exhange interations are on�ned to small spin lusters like dimers,trimers and tetramers. In several ases, the magneti properties an be wellexplained by treating the solid to onsist of independent spin lusters. We on-sider one suh ompound, V 12, whih is a olletion of spin tetramers with onlyn.n. exhange interations. Treating the magneti suseptibility χ as an EW,17



the ritial temperature, Tc, below whih entanglement is present in the sys-tem, is estimated from the experimental data on χ. The entanglement inludesboth bipartite and multipartite entanglement with Tc ≃ 25.4 K in the ase of
V 12 ( J

kB

≃ 17.6 K). From theoretial alulations, the ritial temperature T (1)
c ,beyond whih bipartite entanglement vanishes is given by T (1)

c ≃ 15.2 K. Sine
T (1)

c < Tc, multipartite entanglement in the system persists upto a higher tem-perature. The entanglement ontents of the thermal states of the tetrahedronand the symmetri trimer are shown to be exlusively multipartite in nature. AnEW based on energy provides evidene of bipartite entanglement in the ase ofa square of spins (relevant for V 12) and multipartite entanglement in the asesof the tetrahedron and the symmetri trimer. The EW based on suseptibility
χ an detet both bipartite and multipartite entanglement. The EW based onenergy detets only bipartite entanglement when the spin system is de�ned on abipartite graph or lattie. The latter EW an detet multipartite entanglementonly in the ase of a non-bipartite graph or lattie. The ritial entanglementtemperature Tc and the entanglement gap temperature TE have idential valuesif the orresponding EWs both detet entanglement.After our work was ompleted, we learnt of a new inequality for suseptibilityserving as an EW [47, 48℄. The inequality an be derived using the sum uner-tainty relation for spin−1

2
operators [47, 49℄. When χx = χy = χz = χ, theseparability riterion for a single luster of N spins is given by

χ ≥ (gµB)2

kBT

N

6
(40)The results reported by us, using slightly di�erent arguments, are speial asesof the general ondition (40) for N = 3 and 4. We an generalize our derivationin the following manner to obtain (40). We start with the identity

HS =
∑

i<j

SiSj =
1

2
(S2 −

N∑

i=1

S2
i ) (41)where S is the total spin vetor. The maximum negative ontribution to χ isobtained for S =0. Thus for separable states with 〈S2
i 〉 = 1

4
, Eq.(32) redues tothe inequality in (40). There is now a wealth of experimental data on moleularmagnets and other magneti systems whih are yet to be analyzed in terms of theentanglement properties of the systems [35, 46℄. Appropriate �nite temperaturemeasures of the di�erent types of entanglement need to be developed so thatontat between theory and experiments an be made. A hallenging task aheadis to develop suitable EWs whih provide signatures of the di�erent types ofentanglement in the experimental data.Aknowledgment. Amit Tribedi is supported by the Counil of Sienti� andIndustrial Researh, India under Grant No. 9/15 (306)/ 2004-EMR-I.18
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