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Abstract

Exchange interactions in spin systems can give rise to quantum entan-
glement in the ground and thermal states of the systems. In this paper, we
consider a spin tetramer, with spins of magnitude %, in which the spins in-
teract via nearest-neighbour, diagonal and four-spin interactions of strength
Ji, Jo and K respectively. The ground and thermal state entanglement
properties of the tetramer are calculated analytically in the various limiting
cases. Both bipartite and multipartite entanglements are considered and a
signature of quantum phase transition (QPT), in terms of the entanglement
ratio, is identified. The first order QPT is accompanied by discontinuities
in the nearest-neighbour and diagonal concurrences. The magnetic proper-
ties of a S = % AFM polyoxovanadate compound, V12, are well explained
by tetramers, with J, = 0, K = 0, in which the spins interact via the
isotropic Heisenberg exchange interaction Hamiltonian. Treating the mag-
netic susceptibility x as an entanglement witness (EW), an estimate of the
lower bound of the critical entanglement temperature, T,, above which the
entanglement between two individual spins disappears in the experimental
compound, is determined. Two other cases considered include the sym-
metric tetramer, i.e. tetrahedron ( J; = Jo, K=0 ) and the symmetric
trimer. In both the cases, there is no entanglement between a pair of spins
in the thermal state but multipartite entanglement is present. A second
EW based on energy provides an estimate of the entanglement temperature,
T, below which the thermal state is definitely entangled. This EW detects
bipartite entanglement in the case of the tetramer describing a square of
spins ( the case of V12 ) and multipartite entanglement in the cases of the
tetrahedron and the symmetric trimer.
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I. Introduction

Entanglement is a fundamental property of quantum mechanical systems and
gives rise to an excess of correlations in a system over and above those expected
from classical considerations [I]. A pure state is said to be entangled if it does
not factorize , i.e., cannot be written as a product of individual wave functions.
A well -known example of an entangled state is the singlet state of two spin-
% particles, % (IT1) = 111)), which cannot be written as a product of the spin
states of individual spins. Measurement on one component of an entangled pair
fixes the state of the other implying non-local correlations. In the case of a
mixed state, entanglement occurs if the density matrix is not a convex sum of
product states. The importance of entanglement derives from its essential role
in applications related to quantum information and communication. Candidate
systems for implementing the application protocols include spin systems in which
exchange interactions give rise to entanglement |2l 3], 4, 5.

Entanglement is a resource which can be created, manipulated and destroyed.
It can be of different types, e.g., bipartite, multipartite, localizable [6], zero-
temperature, finite-temperature etc. for which appropriate quantification mea-
sures are available. Bipartite (multipartite) entanglement involves two (more
than two) subsystems. The entanglement between a pair of spins belonging to
a chain of interacting spins provides an example of bipartite entanglement. Bi-
partite and to a lesser extent multipartite entanglement properties of a variety
of spin models have been studied so far at both zero and finite temperatures and
including an external magnetic field [, 8, 9, [0, 1T}, 12, 13, T4, 15, 16]. These
studies show that the amount of entanglement can be changed by changing the
temperature T and/or the external magnetic field. Since entanglement involves
non-local correlations of purely quantum origin, an issue of considerable interest
is whether entanglement develops special features in the vicinity of a quantum
phase transition (QPT). A QPT occurs at 7' = 0 and is brought about by tuning
some system parameter, say, the exchange interaction strength or an external
variable like the magnetic field to a critical value [I7]. In a QPT, the ground
state of the system undergoes qualitative changes which in turn affects the en-
tanglement properties in the ground state. Some recent studies have explored
the relation between entanglement and QPT in a variety of spin models and the
main conclusion is that certain entanglement-related quantities exhibit features
like scaling and singularity in the vicinity of a quantum critical point (QCP)
15, 16, M8, M9, 20, 21, 22]. In the case of first-order QPTs, the ground state
concurrences may change discontinuously at the transition point |23, 241 [25] 26].
The influence of quantum criticality extends also to finite temperatures so that
measurements of appropriate observables provide signatures of QPT. At finite 7',
the system in thermal equilibrium is described by the density operator, p (T') =
%exp (—kBLT), where H is the Hamiltonian, Z the partition function and kg the
Boltzmann constant. A thermal state remains entangled upto a critical tempera-



ture T, beyond which the state becomes separable, i.e., the entanglement falls to
zero. Experimental demonstrations of entanglement are mostly confined to the
microworld, i.e., to systems consisting of a few photons, atoms or ions. There
is now experimental evidence that entanglement can also affect the macroscopic
properties of solids. This has been shown in the insulating magnetic compound
LiHo,Y,_,F, the specific heat and the susceptibility data of which can only be
explained if quantum entanglement of the relevant states is explicitly taken into
account |27, 28|. Measures of thermal entanglement based on the thermal den-
sity matrix require a knowledge of both the eigenvalues and the eigenvectors of
H. On the other hand, there are suggestions that macroscopic thermodynamic
observables can serve as entanglement witnesses so that a measurement of these
quantities can provide the evidence for entanglement [I1, 28, 29, B0, BT]. An
entanglement witness (EW) is an observable the expectation value of which is
positive in unentangled, i.e., separable states and negative in entangled states
32, B3, B4]. The thermodynamic observables which have been proposed as EWs
include internal energy and magnetization and magnetic susceptibility [28, B1J.
The latter has been used as an EW in the spin—% alternating bond antiferro-
magnet Cu(NO3)22.5D,0(CN). The compound can be considered as a chain
of uncoupled spin dimers since the ratio of the inter-dimer to the intra-dimer
exchange interaction strengths is approximately 0.24, i.e., low. For separable
(unentangled) states, the magnetic susceptibility obeys the inequality

2
kgT 6

where g is the Landé splitting factor, up the Bohr magneton and N the number
of spins in the system. Entanglement is present in the system if the inequality in
(1) is violated. The intersection point of the curve representing the EW (equality
in (1) ) and the experimental x versus 7' curve defines the critical temperature
T. below which entanglement is present in the system. The experimental esti-
mate of T, ~ 5K is in good agreement with the theoretical value of the critical
temperature at which the pairwise thermal entanglement (entanglement between
two spins ), as measured by the concurrence, falls to zero.

Determination of the entanglement properties of an interacting spin system is
a theoretical challenge as the eigenstates and eigenvalues are not known exactly
when the number of spins is large. Most of the calculations are confined to systems
containing a few spins so that exact diagonalization is possible. Studies on finite
quantum spin systems acquire significant relevance in the context of molecular
or nanomagnets. In such magnetic systems, the dominant exchange interactions
are often confined to small spin clusters. The inter-cluster exchange interac-
tions are much weaker in comparison so that the compounds can be assumed to
consist of independent spin clusters. A recent study provides a number of exam-
ples of molecular magnets the thermodynamic and neutron scattering properties
of which can be well described by small spin clusters like dimers, trimers and



tetramers [35]. As in Ref. [28], one can study the entanglement properties of
the molecular magnets by treating the susceptibility x as an EW. The earlier
work dealt with spin dimers for which only pairwise entanglement is possible.
In this paper, we consider clusters of three (trimer) and four (tetramer) spins
in which pairwise entanglement between individual spins does not exhaust the
total entanglement. The tetramer Hamiltonian contains both bilinear and four-
spin interactions. The ground state and thermal entanglement properties of the
tetramers are determined analytically. The influence of multispin interactions
on entanglement is further determined. The system exhibits QPTs at special
values of the exchange interaction strengths. A signature of the QPT via the
so-called entanglement ratio is identified. A distinct signature of first order QPT
is provided by jumps in the amounts of entanglement associated with n.n. and
diagonal spin pairs. The magnetic properties of the polyoxovanadate compound,
(NHEY), [V8WV4VA58040 (HQO):| .H,O (designated as V12 ) are well explained
by spin—% AFM tetramers, with only nearest-neighbour (n.n.) interactions, and
described by the isotropic Heisenberg exchange interaction Hamiltonian |35, 36).
The experimental data on the magnetic susceptibility of this compound are avail-
able. Treating x as an EW, the critical entanglement temperature, 7., below
which entanglement is certainly present in the system, is determined. The cases
of the §' = % AFM symmetric trimer and tetrahedron are also considered.

Dowling et al.[33] have introduced the concept of the entanglement gap, de-
fined to be the difference in the energies of the minimum energy, Ej.,, that a
separable state may attain and the ground state energy FEjy. If the energy of the
system falls within the entanglement gap, the state of the system is entangled.
The entanglement gap temperature, T, is defined to be the temperature at which
the thermal energy U(Tg) = Ej.p, the minimum separable energy. Below T, the
thermal state of the system is bound to be entangled. We obtain an estimate
of T in the cases of a single square of spins (the case of V12), a tetrahedron
and a symmetric trimer. In the last two cases the critical entanglement temper-
ature 7., determined by using x as an EW, is identical to the entanglement gap
temperature 1.

II. Entanglement properties of S = % AFM tetramer

We consider a tetramer of spins of magnitude § (Fig. 1) described by the AFM
Heisenberg exchange interaction Hamiltonian

H = J;(51.53 + S3.53 + 53.54 + S4.51) + J2(S1.55 + S2.54) 2)
+K1(51.52)(55.54) + K1(S2.53)(51.54) + Ko(S51.55)(S2.54)

where S; is the spin operator at the ith site of the square plaquette, .J; is the
strength of the n.n. exchange interaction, J; that of the diagonal exchange in-
teraction and K, K, are the strengths of the four-spin exchange interactions.
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Figure 1: A tetramer of spins of magnitude % J1 and J, denote the strengths of
the n.n. and diagonal exchange interactions. The four-spin interactions are not
shown.

The entanglement properties of the four-spin cluster have earlier been studied
analytically only for J; # 0 [37] and numerically for both J; # 0, J5 # 0 [38]. We
now determine the entanglement properties analytically for the general case in
Eq. (2). The z-component of the total spin, S is a conserved quantity so that
the eigenvalue problem can be solved in the separate subspaces corresponding
to the different values of S'*. The results are displayed in the following (E; ,

i=1,....,16, is the energy eigenvalue):
Stot = 4.2
Y1 =1111)
=(h+2+8+5) 3)
Stet +1
vo = 25 (I11111) = [T111))
;72 _\/_5 (% K1 + 3K2) (4)
vs = 5 ([TTU1) = [1111))
E33 :\/_5 ( K1 + 3K2) (5)
=7 (ITTTl> TN T +L111) ©)
Ey=(h+%+ %5+ %)
= (T + [T = 11111 = [11171)) )
", - (- +% -84 L)
Sttt =
75 (TTL) = [1L11)
V2
Bo=—(%+%+ %) o

5



1

(ITLT = [LTT1))
(J2+K1 —I—%) (9)

= L (LT = [1111))
E8 (= + 2 -4 &)

7 (ITTLL) + |TllT> [LTD) + [IT0 + 111D + [LTLT) .
=(h+2+545) 1)

|§|

(10)

27 (ITTLL) L) = [1L01) = [1111))
" B = (—32 4 3 4 2) (12)
Ui = o5 2T + 20111 = 1111 = [TLLD) = (L) = [1111)) (13)
Siot = —1
1
= 5 (LT = [1T10)
By =— (£ + 5 4 32) (14
Q/’13 = L2 (lllTl) - |Tlll>) (15)
By = —(% + £ 382)
Yra= o7 (L) + [LIT0) + [UTLD) + [TLLL) (16)
E14:(J1+%+%+}f—g)
dis = oz (L) + (1100 = [LITD) = [TLLD) (17)
E15: (—J1+%—%+%)
Siet = —2
s = |1LLL) )

Bio=(h+2+5 4+ 5)

We first discuss the ground state (7" = 0) entanglement properties. There are
five distinct eigenvalues:

eo=E=E =FEy=FEy=FE;=(Ji+%+5 +5%)

02 = By = By = By = By = By = By = — (% + K2 1 3)
e = Bs = By = Fis = (=i + 3 — 50+ 2) (19)

— Buo— (~% + 28 + 42
65:E11:(—2J1+%+%+%>
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Figure 2: The two resonating valence bond (RVB) states, gy p1( + sign) and
Yryp2( - sign). A solid line represents a singlet spin configuration. The arrow
convention is explained in the text

For simplicity, let us put K; = Ky = K. When J; < J; and K < %, the ground
state is non-degenerate with eigenvalue e;. When Jo < J; and K > %, the
ground state is three-fold degenerate with eigenvalue e3. Thus K = 22 (J, < J;)
is a QCP. When J; < Jy and K < %, the ground state is non-degenerate
with eigenvalue e,. When J; < Jy; and K > %, the ground state is six-fold
degenerate with eigenvalue e; . In this case a QPT occurs at K = %. With
K < %, a QPT occurs at J; = J, when the ground state changes from
to 119. In this paper, we focus our attention on this last QPT. The states 11
and 1o describe two resonating valence bond (RVB) states, ¢¥ryp1 and ¥ry po
respectively. Figure 2 gives a pictorial representation of ¥ry g1 and gy gs. The
solid lines represent singlets (valence bonds) and the arrow signs follow the phase
convention that a VB between the sites ¢ and j represents the spin configuration
% 07T G@) L (5) =L (@) 7T (4))], if the arrow points away from the site i.

A measure of entanglement between the spins at sites ¢ and j is given by con-
currence [7, 8]. To calculate this, a knowledge of the reduced density matrix p;;
is required. This is obtained from the ground state wave function by tracing out
all the spin degrees of freedom except those of the spins at the sites ¢ and j. Let
pi; be defined as a matrix in the standard basis {|11),[T]),[l1),]l])}. One can
define the spin-reversed density matrix as p = (o, ® 0y) p* (0, ® 0,), where o, is
the Pauli matrix. The concurrence C'is given by C' = max {\; — Ay — A3 — Ay, 0},
where the \;’s are the square roots of the eigenvalues of the matrix pp in descend-
ing order. C' = 0 implies an unentangled state whereas C' = 1 corresponds to
maximum entanglement. The reduced density matrix in the standard basis has

the structure

u 0 0 0
0wy O

Pij = 0 TR 0 (20)
0 0 0 v

and the concurrence C;; has the simple form



Cij = 2 max (0, ly| — \/%) (21)

If the ground state is degenerate, the T" = 0 ensemble is described by a density
matrix which is an equal mixture of contributions from all possible ground states.
The density matrix is a limiting case of the thermal density matrix as 7' — 0. The
state ¥ gy g1 is the ground state for J, < J; and K < %. In this case, the n.n.
concurrences Co = Cy3 = C34 = Cyy = 0.5, i.e., the n.n. spin pairs are entangled
in equal amounts. The magnitude of the concurrence is independent of .J;, Jo and
K as long as ¥y p1 remains the ground state. The concurrences C13 and Cyy are
zero, i.e., the spins at the ends of a diagonal are unentangled. At the QCP, J; =
Jo=J (K < %), the concurrences C'o, Cas, C3y, Cy1 and Cyz, Cyy are all equal
to zero. The ground state at this point is doubly degenerate with wave functions
Yrver and Yrype. For Jo, > J; and K < %, the ground state is given by
Yrv 2. The n.n. concurrences Co, Css, C34 and Cyy are now zero whereas C3 =
Cyy = 1. The spin configuration described by ¥ryps (Fig. 2) can alternatively
be described as consisting of VBs, i.e., singlets across the diagonals. Since a
singlet is maximally entangled, Ci3 = Cy = 1. The entanglement properties of
a system can further be analyzed in terms of a quantity known as the one-tangle
71 which is a measure of the entanglement between a spin and the remainder
of the system [39, B0, BT]. It is given as 7, = 4detp™) where p(!) is the single-
site reduced density matrix. In a translationally invariant system, 7; provides
a global estimate of the entanglement present whereas the concurrence gives a
measure of the pairwise entanglement between two individual spins. When 7 = 0,
there is no entanglement in the ground state, i.e., the state becomes separable.
The Coffman-Kundu-Wootters (CKW) conjecture [39], originally proposed for a
three-qubit system, can be generalized to yield the inequality

T Z Ty — Z CZZJ (22)
JF#

where 71 represents the one-tangle corresponding to the entanglement between
the ith qubit (spin) and the rest of the system and C’fj is the square of the
concurrence associated with the pairwise entanglement between the ¢th and jth
qubits. The inequality in (22) shows that the pairwise entanglement is not the
sole entanglement in the system. For the four-spin cluster, 7; has the value 1
when ¥ry g1 and/or gy go are the ground states. The ratio R = :—f quantifies the
relative contribution of the pairwise entanglement and has values % and 1 in the
ground states gy g1 and ¥ry o respectively. Roscilde et al. [A0, BT] have shown
that the value of R reaches a minimum (not zero) at the QCP of S =  XYX
AFMs in an external magnetic field. In the present case, we have a first order
QPT. At the transition point J;=J,=J (K < %Z), the ground state is doubly
degenerate so that the system is in a mixed state. The entanglement measure 77,
defined for pure states, needs to be generalized to the case of mixed states. This



is done [39] by considering all possible pure state decompositions of the density
matrix p. For each of the decompositions, one can determine the average value
of 71. The minimum of the average over all decompositions is taken to be 7"
which replaces 7; in the CKW inequality in Eq. (22). While calculation of 7"
is difficult, one can readily see that R (R = %) at the QPT point either has

the value zero (75=0, 77""#£0) or is undefined (75,=0, 7{""=0) . In the former
case, the value of R reaches a minimum at the transition point. In both the cases
R has distinct values on both sides of the transition point. In ¥gy g1, two-spin
entanglements exhaust the one-tangle whereas the opposite is true in the case
of Yrypa. A clearer signature of first order QPT is provided by the jumps in
both the n.n. and diagonal concurrences [I8, 23|. In the present model, the n.n.
concurrences C1o, Cos, C34 and Ch4 are equal to 0.5 in the ground state ¥ gy g1 and
zero at the transition point as well as in the ground state 1)y ps. The diagonal
concurrences C3 and Cyy are equal to 1 in ¥y g2 and zero at the transition point
as well as in the state ¥ gyp;. The jumps in the magnitudes of the concurrences
are associated with the jumps in the density matrix elements, a typical feature
of first order QPTs [I8].

We now discuss the finite temperature entanglement properties of the spin
tetramer. The thermal density matrix, p(T) = Lexp(—BH) (3 = kBLT), now
replaces the ground state density matrix with Z denoting the partition function
of the system. The reduced thermal density matrix p;;(7") has the same form as
in (20) with C;;(T") given by

C(T) = Zmaz (0,1y(T)] — \fu(T)e(T) (23)

For the four-spin cluster, the thermal density matrix is

pAT) = 3 cap(=BEs) ) (o (24)

where the |1))’'s and the E}'s are given in equations (3)-(18). The matrix elements
u,v and y of the reduced thermal density matrix pio(7") are

— = 5,08 3,8 1,-8 1,-8 1 —fBes
u=uv=ge 74 5e "2+ e 7P f e - e

y = Befer — Le-Pes _ Lo-fes (25)

where the eigenvalues e;/s (i = 1,2,...,5) are given in Eq. (19). Due to trans-
lational invariance, the reduced density matrices for the other n.n. spin pairs
have the same matrix elements as in the case of p12(T'). Figure 3 shows Cis as a
function of % for i—f = 0.5 and for r = JKI (K1 =Ky =K) =04 (a), 0.2 (b) and
0.0 (¢). Increase in the strength of the four-spin interaction reduces the magni-
tude of the n.n. concurrence. The value of the concurrence is non-zero provided
ly| = vuv (Eq.(23)) is > 0. One can define a critical temperature 7, beyond
which the entanglement between n.n. spins disappears [37, 42]. One can show



Figure 3: Concurrence C5 as a function of % for % = 0.5 and for r = %(Kl =
Ky =K) =04 (a), 0.2 (b) and 0.0 (c).

kgTc/J1

Figure 4: A plot of k?—ipc, where T, is the critical entanglement temperature, versus
%, for r = 0.4 (a), 0.2 (b) and 0.0 (¢)

that in the parameter regime of interest, the thermal entanglement between the
diagonal spins is zero so that 7, can be taken as the critical temperature beyond
which the entanglement between any two spins is zero. The critical temperature
T. is obtained from |y| — v/uv = 0 (Eq. (23)), i.e., as a solution of the equation

_3ry g _3ry
2T 6T T _10=0 (26)
= J K kpT. J
_ L EgT — J2 — K kpTe Ja
where z = e*s”, 7 = 42 and rp = 7. Figure 4 shows a plot of L versus for

r=0.4 (a), 0.2 (b) and 0.0 (¢). For a fixed value of %, the critical entanglement
temperature 7, decreases as the strength of the four-spin interaction increases.
T, tends to zero as j—j approaches the QCP j—f = 1. For J, > J; (with K < %),
the n.n. concurrences are zero.

We next calculate the concurrence for pairwise entanglement between the
spins located at the ends of a diagonal. The matrix elements u,v and y of the
reduced thermal density matrix p13(7") are given by
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kgT/J2

Figure 5: Concurrence C\3 as a function of % for % = 0.5 and for r = %(Kl =
Ky =K) =04 (a), 0.2 (b) and 0.0 (c).

u=1v= ge_ﬁel + e—Pe2 + e—Pes + %6_665

y= 26_661 — g Be2 4 %e—ﬁes _ %e—ﬁm 4 Ee—ﬁez’) (27)

where the eigenvalues e;’s are given in Eq. (19). The reduced density matrix
p24(T') has the same elements as in the case of pi13(7"). Figure 5 shows Cj3 as
a function of ’%T for % = 0.5 and for r = %(Kl =Ky = K) =04 (a), 0.2
(b) and 0.0 (c¢). Again, at a fixed value of j—;, the magnitude of Cj3 decreases
as the strength of the four-spin interaction increases. The critical entanglement
temperature 7., beyond which the entanglement between spins located at the
ends of a diagonal disappears, is also the temperature beyond which the pairwise
entanglement between any two spins vanishes since in the parameter regime of
interest the n.n. concurrences are zero at all T'. The critical temperature 7, is
obtained as a solution of the equation

_3r2 r2 _3ra
I 32t T 5 =) (28)
J2 J K kpT. J
where z = e*8T 1| = = and ry = T Figure 6 shows a plot of =Ee versus g for

r=0.4 (a), 0.2 (b) and 0.0 (¢). For a fixed value of 5—;, the critical entanglement
temperature 7T, decreases as the strength of the four-spin interaction K increases.
T, approaches zero as j—; approaches the QCP j—; = 1. The major conclusion one
arrives at from an examination of Figs. (3)-(6), is that, as in the 7" = 0 case,
the two sets of concurrences (i) Ciz, Caz, Cs34, Ca1 and (i7) Ci3,, Coq are mutually
exclusive. For finite values of the concurrences belonging to the first set, the
values of the concurrences belonging to the second set are zero and vice versa.
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Figure 6: A plot of k?—zTc, where T is the critical entanglement temperature, versus
i for r = 0.4 (a), 0.2 (b) and 0.0 ().

ITI. Entanglement Witness

We now consider the S = % polyoxovanadate AFM compound V12 and show that
the magnetic susceptibility y serves as an EW for this compound. The magnetic
properties of this system are well described by considering only the central square
of localized V4Tions [36]. These ions form a square plaquette of S = % localized
spins described by the isotropic Heisenberg AFM Hamiltonian with only n.n.
interactions (Jo = K; = Ky = 0 in equation (2)). As shown in Ref. [36], the
V12 compound can be treated as a collection of independent S = % tetramers
with AFM n.n. interactions of strength 1;]_; ~ 17.6 K. In fact, the theoretical
expression for the magnetic susceptibility y of a tetramer gives a good fit (N
independent tetramers are to be considered in calculating y) to the experimental
data for V12 (Fig. 2 of Ref. [36]). The susceptibility for a spin tetramer with
only n.n. interaction of strength .J; is given by

X 'y 10e 3PNt 472871 4 2e=FN1
(g9um)?/ N1 "1 4 €28 4 301 4 6e2PT1  he—3b

Following Ref. 28], the magnetic susceptibility, x,, along the direction o (o =
x,y, z) can be written as

(29)

(9#3)2 2
where M, = 37;5¢ denotes the magnetization along «. The expression in

(30) holds true when the external magnetic field is zero and the Hamiltonian
is isotropic in spin space. The angular brackets in (30) denote the thermal ex-
pectation value. The susceptibility y, can further be written as

12



. — (gkl;BT) > (s0se) (31)

Due to the isotropy of the Hamiltonian, x, = x, = x> = x and we can write

_ (gup)* N 2
= kT [Z + g%(&ﬁﬁ] (32)

where N is the total number of interacting spins. The summation of expectation
values in (32) can be considered as the expectation value of the sum Hg of
interaction terms describing all-to-all spin couplings. The expectation value of Hg
has an overall negative contribution to x because of AFM correlations. Hg has
the nature of a Hamiltonian and the maximum negative expectation value is given
by the ground state energy of Hg. For separable states, the energy minimum is
given by the ground state energy of the equivalent classical Hamiltonian [32, B3].
For all-to-all spin couplings, the minimum energy separable state is described by
any spin configuration with total spin vector zero. For N=4 (spin tetramer), the
classical ground state is given by the Néel state and (Hg) = —3. For general
separable states, (Hg) has a lesser negative contribution to y and one can write
down the inequality

(gpp)* 2
> — 33
XZ 50y (33)
for separable, i.e., unentangled states. Figure 7 shows a plot of —25— versus

n(gup)?/J1

T (Curve a ) for n independent tetramers, the case of VV12. The expression for
the susceptibility of a single tetramer is given in (29). Curve b represents the y
versus 1" curve describing the equality in (33). In plotting the curves, the value of
,;]—]13 is taken as 17.6 K, the experimental estimate for V12. The intersection point
of the two curves provides an estimate, T, ~ 25.4 K, of the critical entanglement
temperature below which entanglement is present in V'12. The theoretical value
of the critical temperature, above which the two-spin entanglement disappears is
obtained from Eq. (26), with 7, = r, = 0, as T\V ~ 15.2 K. Since T, > TV,
only multipartite entanglement is present in the thermal state of the tetramer for
W <T<T,.

We now examine whether four-spin entanglement exists in the thermal state of
the tetramer. This is done by calculating the state preparation fidelity F' defined

as

F(p) = Wauz| p(T) [Yerz) (34)

where [Ygrz) = % (ITLT1) +11711)) is the four-spin Greenberger-Horne-Zeilinger
(GHZ) state [37]. The sufficient condition for the four-particle (N = 4 ) entan-
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Figure 7: A plot of ﬁ ( dimensionless unit ) versus 7' (Curve a ) for n
independent tetramers, as is the case of V12. Curve b represents the y versus T
curve describing the equality in (33). The intersection point of the two curves

represents the critical entanglement temperature 7, ~ 25.4 K with ];]—]13 ~ 17.6 K.

glement is given by

Fip) > (35)

For a tetramer with only n.n. interactions of strength J;, F(p) is calculated as

1 —BJl + 2 2BJ1

3
Flo) = 5e=AN 4T 4 3eﬁJ1 + 28N

F(p) = 2,ie., > 3 as T — 0 indicating the presence of four-spin entanglement in
the ground state of the tetramer. The critical entanglement temperature, T\,
beyond which the four-spin entanglement vanishes is obtained from a solution

of the equation F(p) = 3. The value obtained is kBJ—T;M) ~ (.417 from which

TW ~ 74K, assuming 7 Jl o~ 17.6 K as in the case of the compound V'12. One

finds that 7\? is less than the critical temperature T ~ 15.2 K. We next

consider a tetramer with n.n., diagonal and four-spin exchange interactions of
kBT b

(36)

strength Ji, Jo and K; = Ky = K respectively. Fig. 8 shows a plot of
Versus % for r = Jﬁl = 0.4 (a), 0.2 (b) and 0.0 (c) respectively. For a ﬁxed

value of %, the critical temperature for four-spin entanglement decreases as the
strength of the four-spin interaction increases.

The tetramer with J; = J, = J and K = 0, alternatively described as the
tetrahedron, provides an interesting example of the magnetic susceptibility y
serving as a witness for entanglement other than the entanglement between in-
dividual spins. The two-spin entanglement vanishes in the thermal state of the
tetrahedron. The same is true when 7" = 0 and the system is at the QCP J; = Js.
Figure 9 shows the EW curves for y (the same inequality bound as in (33) holds
true) which intersect at a finite temperature kB—ﬁ ~ 1.9 showing that the thermal
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Figure 8: Plot of % versus j—f for r = Jﬁl =0.4 (a), 0.2 (b) and 0.0 (c). TWis
the critical entanglement temperature above which the four-spin entanglement is

Zero.

states are entangled below the critical temperature corresponding to the inter-
section point. The entanglement is exclusively multipartite in nature. Figure 10

shows the EW curves for x in the case of a symmetric trimer described by the

S = % Heisenberg AFM Hamiltonian

Hipimer = J(S1.52 4+ 52.53 + S5.51) (37)

In this case, it is well-known [37, 43| that there is no pairwise entanglement both
at 7= 0 and at finite temperatures. In the inequality for x (Eq.(33)), the factor
% is replaced by the factor % In the classical ground state of Hg, the interacting
spins form angles of %’T with each other. The critical temperature is given by
kB—ﬁ ~ 1.4 . Again, only multipartite entanglement is present in the thermal
state of the symmetric trimer.

Another EW, which provides an estimate of critical entanglement temperature

T., is based on energy [32, B3]. The entanglement gap G is defined as

GE - Esep - EO (38)

where Ej is the ground state energy of the Hamiltonian H describing the system
and FE, is the minimum energy of the separable states. If G is > 0, a finite en-
ergy range exists over which all states are entangled. For a positive entanglement
gap Gg > 0, one can define an EW

Zpw = H — Byl (39)

where I represents the identity on the full Hilbert space. For any separable state,
Tr(Zewpsep)) = 0. 1f the state is entangled, Tr(Zgw pent)) is < 0. For example, if
the state belongs to the ground state manifold, Tr(Zgwpo) = Eo— Esep < 0. Zgw
thus acts as an EW.The entanglement gap temperature Tg is given by U(Tg) =

15



(0] 5 10 15 20
kgT/J

Figure 9: The EW curves for x in the case of a symmetric tetrahedron with
J1:J2:JandK:0.

Eqep, where U(T) (= (H) = —%g—g) is the thermal energy at temperature 7.
For T < Tg, the thermal state is entangled and hence T is a measure of the
critical entanglement temperature. Ej, is given by the ground state energy of
the corresponding classical spin model |32, B3]. For a square of spins, E,., = —Ji,
as the classical ground state is given by the Néel state. The expression for U(T')
is obtained from the partition function Z of the square of spins As shown in
B3], in the case of bipartite graphs and lattices, the EW detects only bipartite
entanglement. Thus Ty for the square of spins has an identical magnitude as
that of 7Y at and above which such entanglement vanishes. In the case of
non-bipartite graphs and lattices, the EW can detect multipartite entanglement.
The tetrahedron and the symmetric trimer are examples of non-bipartite graphs.
Eq., in these two cases can readily be calculated as Eg., = —0.5J (tetrahedron)
and E,, = —2J (symmetric trimer). The entanglement temperature Tg has the
magnitude 2212 ~ 1.9 (tetrahedron) and *2/2 ~ 1.4 (symmetric trimer). In both
the cases, two-spin entanglements are absent and the entanglement present in the

system for 7' < Ty is multipartite in nature.

IV. Summary and Discussion

In this paper, we consider a spin tetramer (S = %) with n.n., diagonal and four-
spin AFM exchange interactions of strength J;, Jo and K; = Ky = K respectively.
The significance of the inclusion of three-spin and four-spin interactions in spin
Hamiltonians of interest has been pointed out earlier |44, @5]. We study the
ground state and thermal entanglement properties of the tetramer in the various
limiting cases. At T' = 0, QPTs occur as the exchange interaction strengths are
tuned to certain critical values.We focus on a particular QPT at J;, = J, = J
(K < %J) as the other QPTs exhibit similar features. The QPT point separates

two RVB ground states, ©gy g1 and ¥gyp2. The entanglement between two spins
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Figure 10: The EW curves for x in the case of the symmetric trimer.

is determined by calculating the concurrences Co, Cos, Csy, Cyy and C3, Coy. The
n.n. concurrences are non-zero only in gy g1 and the other two concurrences as-
sociated with diagonal spins are non-zero only in ¢¥gype. The 1—tangle 7, a
measure of the global entanglement, has the value 1 in both gy g1 and Ygy o.
The entanglement measure 7y, defined for pure states, has to be generalized to
7" at the QPT point where the ground state is doubly degenerate. The entan-

glement ratio R = TZ?,-n has the value zero at the transition point if 7‘{7“'” # 0 and

is undefined otherwise. Away from the transition point, R = 0.5 in the ground
state ¥ryp1 and 1.0 in the ground state ¥gype. A better evidence of the first
order QPT is provided by the jumps in both the n.n. and diagonal concurrences
18, 23].

The study of finite temperature entanglement properties again shows the ex-
istence of two distinctive parameter regimes. The n.n. concurrences are non-zero
only when Jo, < J1(K < %) and the concurrences associated with diagonal spins
are non-zero only when J; < Jo(K < %) At Jy = Js, all the six concurrences
are zero. The critical entanglement temperature, 7., beyond which entanglement
between two spins disappears, is computed. The magnitude of T} is highest when
Jo =0 and K = 0. For fixed values of J; and J5, T, decreases as the strength of
the four-spin interaction increases. A measure of the four-spin entanglement in
the thermal state of the tetramer is obtained by calculating the fidelity £'(p). The
critical temperature, 7“, beyond which the four-spin entanglement disappears
is calculated and one finds that at fixed values of J; and J5, the magnitude of
T decreases as the strength K of the four-spin interaction increases.

Molecular or nanomagnets provide examples of spin systems in which the
dominant exchange interactions are confined to small spin clusters like dimers,
trimers and tetramers. In several cases, the magnetic properties can be well
explained by treating the solid to consist of independent spin clusters. We con-
sider one such compound, V12, which is a collection of spin tetramers with only
n.n. exchange interactions. Treating the magnetic susceptibility x as an EW,
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the critical temperature, 7., below which entanglement is present in the sys-
tem, is estimated from the experimental data on y. The entanglement includes
both bipartite and multipartite entanglement with 7, ~ 25.4 K in the case of
V12 (é ~ 17.6 K). From theoretical calculations, the critical temperature Tc(l),

beyond which bipartite entanglement vanishes is given by TV~ 15.2 K. Since
T < T,, multipartite entanglement in the system persists upto a higher tem-
perature. The entanglement contents of the thermal states of the tetrahedron
and the symmetric trimer are shown to be exclusively multipartite in nature. An
EW based on energy provides evidence of bipartite entanglement in the case of
a square of spins (relevant for V'12) and multipartite entanglement in the cases
of the tetrahedron and the symmetric trimer. The EW based on susceptibility
x can detect both bipartite and multipartite entanglement. The EW based on
energy detects only bipartite entanglement when the spin system is defined on a
bipartite graph or lattice. The latter EW can detect multipartite entanglement
only in the case of a non-bipartite graph or lattice. The critical entanglement
temperature 7, and the entanglement gap temperature 7x have identical values
if the corresponding EWs both detect entanglement.

After our work was completed, we learnt of a new inequality for susceptibility
serving as an EW [47, 48|. The inequality can be derived using the sum uncer-
tainty relation for spin—% operators [47, @9]. When x, = x, = x. = X, the
separability criterion for a single cluster of N spins is given by

> (91B)* N

~ kT 6
The results reported by us, using slightly different arguments, are special cases
of the general condition (40) for N — 3 and 4. We can generalize our derivation
in the following manner to obtain (40). We start with the identity

(40)

N
Hs =30 85i8; = 5(5° = 3 (a1)
i<j i=1
where S is the total spin vector. The maximum negative contribution to x is
obtained for § =0. Thus for separable states with (S?) = 1, Eq.(32) reduces to
the inequality in (40). There is now a wealth of experimental data on molecular
magnets and other magnetic systems which are yet to be analyzed in terms of the
entanglement properties of the systems [35, 46]. Appropriate finite temperature
measures of the different types of entanglement need to be developed so that
contact between theory and experiments can be made. A challenging task ahead
is to develop suitable EWs which provide signatures of the different types of
entanglement in the experimental data.
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