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5 Thermal entanglement properties of small spin
lustersIndrani Bose and Amit Tribedi2nd February 2008Department of Physi
sBose Institute93/1, A
harya Prafulla Chandra RoadKolkata - 700 009, IndiaAbstra
tEx
hange intera
tions in spin systems 
an give rise to quantum entan-glement in the ground and thermal states of the systems. In this paper, we
onsider a spin tetramer, with spins of magnitude 1
2 , in whi
h the spins in-tera
t via nearest-neighbour, diagonal and four-spin intera
tions of strength

J1, J2 and K respe
tively. The ground and thermal state entanglementproperties of the tetramer are 
al
ulated analyti
ally in the various limiting
ases. Both bipartite and multipartite entanglements are 
onsidered and asignature of quantum phase transition (QPT), in terms of the entanglementratio, is identi�ed. The �rst order QPT is a

ompanied by dis
ontinuitiesin the nearest-neighbour and diagonal 
on
urren
es. The magneti
 proper-ties of a S =
1
2 AFM polyoxovanadate 
ompound, V 12, are well explainedby tetramers, with J2 = 0, K = 0, in whi
h the spins intera
t via theisotropi
 Heisenberg ex
hange intera
tion Hamiltonian. Treating the mag-neti
 sus
eptibility χ as an entanglement witness (EW), an estimate of thelower bound of the 
riti
al entanglement temperature, Tc, above whi
h theentanglement between two individual spins disappears in the experimental
ompound, is determined. Two other 
ases 
onsidered in
lude the sym-metri
 tetramer, i.e. tetrahedron ( J1 = J2, K=0 ) and the symmetri
trimer. In both the 
ases, there is no entanglement between a pair of spinsin the thermal state but multipartite entanglement is present. A se
ondEW based on energy provides an estimate of the entanglement temperature,

TE , below whi
h the thermal state is de�nitely entangled. This EW dete
tsbipartite entanglement in the 
ase of the tetramer des
ribing a square ofspins ( the 
ase of V 12 ) and multipartite entanglement in the 
ases of thetetrahedron and the symmetri
 trimer.1
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I. Introdu
tionEntanglement is a fundamental property of quantum me
hani
al systems andgives rise to an ex
ess of 
orrelations in a system over and above those expe
tedfrom 
lassi
al 
onsiderations [1℄. A pure state is said to be entangled if it doesnot fa
torize , i.e., 
annot be written as a produ
t of individual wave fun
tions.A well -known example of an entangled state is the singlet state of two spin-
1
2
parti
les, 1√

2
(|↑↓〉 − |↓↑〉), whi
h 
annot be written as a produ
t of the spinstates of individual spins. Measurement on one 
omponent of an entangled pair�xes the state of the other implying non-lo
al 
orrelations. In the 
ase of amixed state, entanglement o

urs if the density matrix is not a 
onvex sum ofprodu
t states. The importan
e of entanglement derives from its essential rolein appli
ations related to quantum information and 
ommuni
ation. Candidatesystems for implementing the appli
ation proto
ols in
lude spin systems in whi
hex
hange intera
tions give rise to entanglement [2, 3, 4, 5℄.Entanglement is a resour
e whi
h 
an be 
reated, manipulated and destroyed.It 
an be of di�erent types, e.g., bipartite, multipartite, lo
alizable [6℄, zero-temperature, �nite-temperature et
. for whi
h appropriate quanti�
ation mea-sures are available. Bipartite (multipartite) entanglement involves two (morethan two) subsystems. The entanglement between a pair of spins belonging toa 
hain of intera
ting spins provides an example of bipartite entanglement. Bi-partite and to a lesser extent multipartite entanglement properties of a varietyof spin models have been studied so far at both zero and �nite temperatures andin
luding an external magneti
 �eld [7, 8, 9, 10, 11, 12, 13, 14, 15, 16℄. Thesestudies show that the amount of entanglement 
an be 
hanged by 
hanging thetemperature T and/or the external magneti
 �eld. Sin
e entanglement involvesnon-lo
al 
orrelations of purely quantum origin, an issue of 
onsiderable interestis whether entanglement develops spe
ial features in the vi
inity of a quantumphase transition (QPT). A QPT o

urs at T = 0 and is brought about by tuningsome system parameter, say, the ex
hange intera
tion strength or an externalvariable like the magneti
 �eld to a 
riti
al value [17℄. In a QPT, the groundstate of the system undergoes qualitative 
hanges whi
h in turn a�e
ts the en-tanglement properties in the ground state. Some re
ent studies have exploredthe relation between entanglement and QPT in a variety of spin models and themain 
on
lusion is that 
ertain entanglement-related quantities exhibit featureslike s
aling and singularity in the vi
inity of a quantum 
riti
al point (QCP)[15, 16, 18, 19, 20, 21, 22℄. In the 
ase of �rst-order QPTs, the ground state
on
urren
es may 
hange dis
ontinuously at the transition point [23, 24, 25, 26℄.The in�uen
e of quantum 
riti
ality extends also to �nite temperatures so thatmeasurements of appropriate observables provide signatures of QPT. At �nite T ,the system in thermal equilibrium is des
ribed by the density operator, ρ (T ) =

1
Z
exp

(
− H

kBT

), where H is the Hamiltonian, Z the partition fun
tion and kB theBoltzmann 
onstant. A thermal state remains entangled upto a 
riti
al tempera-2



ture Tc beyond whi
h the state be
omes separable, i.e., the entanglement falls tozero. Experimental demonstrations of entanglement are mostly 
on�ned to themi
roworld, i.e., to systems 
onsisting of a few photons, atoms or ions. Thereis now experimental eviden
e that entanglement 
an also a�e
t the ma
ros
opi
properties of solids. This has been shown in the insulating magneti
 
ompound
LiHoxY1−xF4 the spe
i�
 heat and the sus
eptibility data of whi
h 
an only beexplained if quantum entanglement of the relevant states is expli
itly taken intoa

ount [27, 28℄. Measures of thermal entanglement based on the thermal den-sity matrix require a knowledge of both the eigenvalues and the eigenve
tors of
H . On the other hand, there are suggestions that ma
ros
opi
 thermodynami
observables 
an serve as entanglement witnesses so that a measurement of thesequantities 
an provide the eviden
e for entanglement [11, 28, 29, 30, 31℄. Anentanglement witness (EW) is an observable the expe
tation value of whi
h ispositive in unentangled, i.e., separable states and negative in entangled states[32, 33, 34℄. The thermodynami
 observables whi
h have been proposed as EWsin
lude internal energy and magnetization and magneti
 sus
eptibility [28, 31℄.The latter has been used as an EW in the spin-1

2
alternating bond antiferro-magnet Cu(NO3)22.5D2O(CN). The 
ompound 
an be 
onsidered as a 
hainof un
oupled spin dimers sin
e the ratio of the inter-dimer to the intra-dimerex
hange intera
tion strengths is approximately 0.24, i.e., low. For separable(unentangled) states, the magneti
 sus
eptibility obeys the inequality

χ ≥ (gµB)2N

kBT

1

6
(1)where g is the Landé splitting fa
tor, µB the Bohr magneton and N the numberof spins in the system. Entanglement is present in the system if the inequality in

(1) is violated. The interse
tion point of the 
urve representing the EW (equalityin (1) ) and the experimental χ versus T 
urve de�nes the 
riti
al temperature
Tc below whi
h entanglement is present in the system. The experimental esti-mate of Tc ≃ 5K is in good agreement with the theoreti
al value of the 
riti
altemperature at whi
h the pairwise thermal entanglement (entanglement betweentwo spins ), as measured by the 
on
urren
e, falls to zero.Determination of the entanglement properties of an intera
ting spin system isa theoreti
al 
hallenge as the eigenstates and eigenvalues are not known exa
tlywhen the number of spins is large. Most of the 
al
ulations are 
on�ned to systems
ontaining a few spins so that exa
t diagonalization is possible. Studies on �nitequantum spin systems a
quire signi�
ant relevan
e in the 
ontext of mole
ularor nanomagnets. In su
h magneti
 systems, the dominant ex
hange intera
tionsare often 
on�ned to small spin 
lusters. The inter-
luster ex
hange intera
-tions are mu
h weaker in 
omparison so that the 
ompounds 
an be assumed to
onsist of independent spin 
lusters. A re
ent study provides a number of exam-ples of mole
ular magnets the thermodynami
 and neutron s
attering propertiesof whi
h 
an be well des
ribed by small spin 
lusters like dimers, trimers and3



tetramers [35℄. As in Ref. [28℄, one 
an study the entanglement properties ofthe mole
ular magnets by treating the sus
eptibility χ as an EW. The earlierwork dealt with spin dimers for whi
h only pairwise entanglement is possible.In this paper, we 
onsider 
lusters of three (trimer) and four (tetramer) spinsin whi
h pairwise entanglement between individual spins does not exhaust thetotal entanglement. The tetramer Hamiltonian 
ontains both bilinear and four-spin intera
tions. The ground state and thermal entanglement properties of thetetramers are determined analyti
ally. The in�uen
e of multispin intera
tionson entanglement is further determined. The system exhibits QPTs at spe
ialvalues of the ex
hange intera
tion strengths. A signature of the QPT via theso-
alled entanglement ratio is identi�ed. A distin
t signature of �rst order QPTis provided by jumps in the amounts of entanglement asso
iated with n.n. anddiagonal spin pairs. The magneti
 properties of the polyoxovanadate 
ompound,
(NHEt)3

[
V IV

8 V V
4 As8O40 (H2O)

]
.H2O (designated as V 12 ) are well explainedby spin−1

2
AFM tetramers, with only nearest-neighbour (n.n.) intera
tions, anddes
ribed by the isotropi
 Heisenberg ex
hange intera
tion Hamiltonian [35, 36℄.The experimental data on the magneti
 sus
eptibility of this 
ompound are avail-able. Treating χ as an EW, the 
riti
al entanglement temperature, Tc, belowwhi
h entanglement is 
ertainly present in the system, is determined. The 
asesof the S = 1
2
AFM symmetri
 trimer and tetrahedron are also 
onsidered.Dowling et al.[33℄ have introdu
ed the 
on
ept of the entanglement gap, de-�ned to be the di�eren
e in the energies of the minimum energy, Esep, that aseparable state may attain and the ground state energy E0. If the energy of thesystem falls within the entanglement gap, the state of the system is entangled.The entanglement gap temperature, TE , is de�ned to be the temperature at whi
hthe thermal energy U(TE) = Esep, the minimum separable energy. Below TE , thethermal state of the system is bound to be entangled. We obtain an estimateof TE in the 
ases of a single square of spins (the 
ase of V 12), a tetrahedronand a symmetri
 trimer. In the last two 
ases the 
riti
al entanglement temper-ature Tc, determined by using χ as an EW, is identi
al to the entanglement gaptemperature TE .II. Entanglement properties of S =

1
2
AFM tetramerWe 
onsider a tetramer of spins of magnitude 1

2
(Fig. 1) des
ribed by the AFMHeisenberg ex
hange intera
tion Hamiltonian

H = J1 (S1.S2 + S2.S3 + S3.S4 + S4.S1) + J2(S1.S3 + S2.S4)
+K1(S1.S2)(S3.S4) +K1(S2.S3)(S1.S4) +K2(S1.S3)(S2.S4)

(2)where Si is the spin operator at the ith site of the square plaquette, J1 is thestrength of the n.n. ex
hange intera
tion, J2 that of the diagonal ex
hange in-tera
tion and K1, K2 are the strengths of the four-spin ex
hange intera
tions.4
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34Figure 1: A tetramer of spins of magnitude 1
2
. J1 and J2 denote the strengths ofthe n.n. and diagonal ex
hange intera
tions. The four-spin intera
tions are notshown.The entanglement properties of the four-spin 
luster have earlier been studiedanalyti
ally only for J1 6= 0 [37℄ and numeri
ally for both J1 6= 0, J2 6= 0 [38℄. Wenow determine the entanglement properties analyti
ally for the general 
ase inEq. (2). The z-
omponent of the total spin, Stot
z , is a 
onserved quantity so thatthe eigenvalue problem 
an be solved in the separate subspa
es 
orrespondingto the di�erent values of Stot

z . The results are displayed in the following (Ei ,
i = 1, ...., 16, is the energy eigenvalue):

Stot
z = +2

ψ1 = |↑↑↑↑〉
E1 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (3)
Stot

z + 1

ψ2 = 1√
2
(|↑↑↑↓〉 − |↑↓↑↑〉)

E2 = −
(

J2

2
+ K1

8
+ 3K2

16

) (4)
ψ3 = 1√

2
(|↑↑↓↑〉 − |↓↑↑↑〉)

E3 = −
(

J2

2
+ K1

8
+ 3K2

16

) (5)
ψ4 = 1√

4
(|↑↑↑↓〉 + |↑↑↓↑〉 + |↑↓↑↑〉 + |↓↑↑↑〉)
E4 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (6)
ψ5 = 1√

4
(|↑↑↑↓〉 + |↑↓↑↑〉 − |↑↑↓↑〉 − |↓↑↑↑〉)
E5 =

(
−J1 + J2

2
− 3K1

8
+ K2

16

) (7)
Stot

z = 0

ψ6 = 1√
2
(|↑↑↓↓〉 − |↓↓↑↑〉)

E6 = −
(

J2

2
+ K1

8
+ 3K2

16

) (8)5



ψ7 = 1√
2
(|↑↓↓↑〉 − |↓↑↑↓〉)

E7 = −
(

J2

2
+ K1

8
+ 3K2

16

) (9)
ψ8 = 1√

2
(|↑↓↑↓〉 − |↓↑↓↑〉)

E8 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

) (10)
ψ9 = 1√

6
(|↑↑↓↓〉 + |↑↓↓↑〉 + |↓↓↑↑〉 + |↓↑↑↓〉 + |↑↓↑↓〉 + |↓↑↓↑〉)

E9 =
(
J1 + J2

2
+ K1

8
+ K2

16

) (11)
ψ10 = 1√

4
(|↑↑↓↓〉 + |↓↓↑↑〉 − |↑↓↓↑〉 − |↓↑↑↓〉)
E10 =

(
−3J2

2
+ 3K1

8
+ 9K2

16

) (12)
ψ11 = 1√

12
(2 |↑↓↑↓〉 + 2 |↓↑↓↑〉 − |↑↑↓↓〉 − |↑↓↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉)

E11 =
(
−2J1 + J2

2
+ 7K1

8
+ K2

16

) (13)
Stot

z = −1

ψ12 = 1√
2
(|↓↓↓↑〉 − |↓↑↓↓〉)

E12 = −
(

J2

2
+ K1

8
+ 3K2

16

) (14)
ψ13 = 1√

2
(|↓↓↑↓〉 − |↑↓↓↓〉)

E13 = −(J2

2
+ K1

8
+ 3K2

16
)

(15)
ψ14 = 1√

4
(|↓↓↓↑〉 + |↓↓↑↓〉 + |↓↑↓↓〉 + |↑↓↓↓〉)
E14 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (16)
ψ15 = 1√

4
(|↓↓↓↑〉 + |↓↑↓↓〉 − |↓↓↑↓〉 − |↑↓↓↓〉)

E15 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

) (17)
Stot

z = −2

ψ16 = |↓↓↓↓〉
E16 =

(
J1 + J2

2
+ K1

8
+ K2

16

) (18)We �rst dis
uss the ground state (T = 0) entanglement properties. There are�ve distin
t eigenvalues:
e1 = E1 = E4 = E9 = E14 = E16 = (J1 + J2

2
+ K1

8
+ K2

16
)

e2 = E2 = E3 = E6 = E7 = E12 = E13 = −
(

J2

2
+ K1

8
+ 3K2

16

)

e3 = E5 = E8 = E15 =
(
−J1 + J2

2
− 3K1

8
+ K2

16

)

e4 = E10 =
(
−3J2

2
+ 3K1

8
+ 9K2

16

)

e5 = E11 =
(
−2J1 + J2

2
+ 7K1

8
+ K2

16

)

(19)
6



Figure 2: The two resonating valen
e bond (RVB) states, ψRV B1( + sign) and
ψRV B2( - sign). A solid line represents a singlet spin 
on�guration. The arrow
onvention is explained in the textFor simpli
ity, let us put K1 = K2 = K. When J2 < J1 and K < 4J1

5
, the groundstate is non-degenerate with eigenvalue e5. When J2 < J1 and K > 4J1

5
, theground state is three-fold degenerate with eigenvalue e3. Thus K = 4J1

5
(J2 < J1)is a QCP. When J1 < J2 and K < 4J2

5
, the ground state is non-degeneratewith eigenvalue e4. When J1 < J2 and K > 4J2

5
, the ground state is six-folddegenerate with eigenvalue e2 . In this 
ase a QPT o

urs at K = 4J2

5
. With

K < 4J1

5
, a QPT o

urs at J1 = J2 when the ground state 
hanges from ψ11to ψ10. In this paper, we fo
us our attention on this last QPT. The states ψ11and ψ10 des
ribe two resonating valen
e bond (RVB) states, ψRV B1 and ψRV B2respe
tively. Figure 2 gives a pi
torial representation of ψRV B1 and ψRV B2. Thesolid lines represent singlets (valen
e bonds) and the arrow signs follow the phase
onvention that a VB between the sites i and j represents the spin 
on�guration

1√
2
[|↑ (i) ↓ (j)〉 − |↓ (i) ↑ (j)〉] , if the arrow points away from the site i.A measure of entanglement between the spins at sites i and j is given by 
on-
urren
e [7, 8℄. To 
al
ulate this, a knowledge of the redu
ed density matrix ρijis required. This is obtained from the ground state wave fun
tion by tra
ing outall the spin degrees of freedom ex
ept those of the spins at the sites i and j. Let

ρij be de�ned as a matrix in the standard basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} . One 
ande�ne the spin-reversed density matrix as ρ̃ = (σy ⊗ σy) ρ
∗ (σy ⊗ σy), where σy isthe Pauli matrix. The 
on
urren
e C is given by C = max {λ1 − λ2 − λ3 − λ4, 0},where the λi's are the square roots of the eigenvalues of the matrix ρρ̃ in des
end-ing order. C = 0 implies an unentangled state whereas C = 1 
orresponds tomaximum entanglement. The redu
ed density matrix in the standard basis hasthe stru
ture

ρij =




u 0 0 0
0 ω1 y∗ 0
0 y ω2 0
0 0 0 v


 (20)and the 
on
urren
e Cij has the simple form7



Cij = 2 max
(
0, |y| −

√
uv

) (21)If the ground state is degenerate, the T = 0 ensemble is des
ribed by a densitymatrix whi
h is an equal mixture of 
ontributions from all possible ground states.The density matrix is a limiting 
ase of the thermal density matrix as T → 0. Thestate ψRV B1 is the ground state for J2 < J1 and K < 4J1

5
. In this 
ase, the n.n.
on
urren
es C12 = C23 = C34 = C41 = 0.5, i.e., the n.n. spin pairs are entangledin equal amounts. The magnitude of the 
on
urren
e is independent of J1, J2 and

K as long as ψRV B1 remains the ground state. The 
on
urren
es C13 and C24 arezero, i.e., the spins at the ends of a diagonal are unentangled. At the QCP, J1 =
J2 = J (K < 4J

5
), the 
on
urren
es C12, C23, C34, C41 and C13, C24 are all equalto zero. The ground state at this point is doubly degenerate with wave fun
tions

ψRV B1 and ψRV B2. For J2 > J1 and K < 4J2

5
, the ground state is given by

ψRV B2. The n.n. 
on
urren
es C12, C23, C34 and C41 are now zero whereas C13 =
C24 = 1. The spin 
on�guration des
ribed by ψRV B2 (Fig. 2) 
an alternativelybe des
ribed as 
onsisting of VBs, i.e., singlets a
ross the diagonals. Sin
e asinglet is maximally entangled, C13 = C24 = 1. The entanglement properties ofa system 
an further be analyzed in terms of a quantity known as the one-tangle
τ1 whi
h is a measure of the entanglement between a spin and the remainderof the system [39, 40, 41℄. It is given as τ1 = 4detρ(1) where ρ(1) is the single-site redu
ed density matrix. In a translationally invariant system, τ1 providesa global estimate of the entanglement present whereas the 
on
urren
e gives ameasure of the pairwise entanglement between two individual spins. When τ1 = 0,there is no entanglement in the ground state, i.e., the state be
omes separable.The Co�man-Kundu-Wootters (CKW) 
onje
ture [39℄, originally proposed for athree-qubit system, 
an be generalized to yield the inequality

τ1 ≥ τ2 =
∑

j 6=i

C2
ij (22)where τ1 represents the one-tangle 
orresponding to the entanglement betweenthe ith qubit (spin) and the rest of the system and C2

ij is the square of the
on
urren
e asso
iated with the pairwise entanglement between the ith and jthqubits. The inequality in (22) shows that the pairwise entanglement is not thesole entanglement in the system. For the four-spin 
luster, τ 1 has the value 1when ψRV B1 and/or ψRV B2 are the ground states. The ratio R = τ2
τ1
quanti�es therelative 
ontribution of the pairwise entanglement and has values 1

2
and 1 in theground states ψRV B1 and ψRV B2 respe
tively. Ros
ilde et al. [40, 41℄ have shownthat the value of R rea
hes a minimum (not zero) at the QCP of S = 1

2
XYXAFMs in an external magneti
 �eld. In the present 
ase, we have a �rst orderQPT. At the transition point J1=J2=J (K < 4J

5
), the ground state is doublydegenerate so that the system is in a mixed state. The entanglement measure τ1,de�ned for pure states, needs to be generalized to the 
ase of mixed states. This8



is done [39℄ by 
onsidering all possible pure state de
ompositions of the densitymatrix ρ. For ea
h of the de
ompositions, one 
an determine the average valueof τ1. The minimum of the average over all de
ompositions is taken to be τmin
1whi
h repla
es τ1 in the CKW inequality in Eq. (22). While 
al
ulation of τmin
1is di�
ult, one 
an readily see that R (R = τ2

τmin

1
) at the QPT point either hasthe value zero (τ 2=0, τmin

1 6=0) or is unde�ned (τ 2=0, τmin
1 =0) . In the former
ase, the value of R rea
hes a minimum at the transition point. In both the 
ases

R has distin
t values on both sides of the transition point. In ψRV B1, two-spinentanglements exhaust the one-tangle whereas the opposite is true in the 
aseof ψRV B2. A 
learer signature of �rst order QPT is provided by the jumps inboth the n.n. and diagonal 
on
urren
es [18, 23℄. In the present model, the n.n.
on
urren
es C12, C23, C34 and C14 are equal to 0.5 in the ground state ψRV B1 andzero at the transition point as well as in the ground state ψRV B2. The diagonal
on
urren
es C13 and C24 are equal to 1 in ψRV B2 and zero at the transition pointas well as in the state ψRV B1. The jumps in the magnitudes of the 
on
urren
esare asso
iated with the jumps in the density matrix elements, a typi
al featureof �rst order QPTs [18℄.We now dis
uss the �nite temperature entanglement properties of the spintetramer. The thermal density matrix, ρ(T ) = 1
Z
exp(−βH) (β = 1

kBT
), nowrepla
es the ground state density matrix with Z denoting the partition fun
tionof the system. The redu
ed thermal density matrix ρij(T ) has the same form asin (20) with Cij(T ) given by

Cij(T ) =
2

Z
max

(
0, |y(T )| −

√
u(T )v(T )

) (23)For the four-spin 
luster, the thermal density matrix is
ρ(T ) =

1

Z

16∑

k=1

exp(−βEk) |ψk〉 〈ψk| (24)where the |ψk〉′s and the Ek
′s are given in equations (3)-(18). The matrix elements

u, v and y of the redu
ed thermal density matrix ρ12(T ) are
u = v = 5

3
e−βe1 + 3

2
e−βe2 + 1

2
e−βe3 + 1

4
e−βe4 + 1

12
e−βe5

y = 5
6
e−βe1 − 1

2
e−βe3 − 1

3
e−βe5

(25)where the eigenvalues ei
′s (i = 1, 2, ..., 5) are given in Eq. (19). Due to trans-lational invarian
e, the redu
ed density matri
es for the other n.n. spin pairshave the same matrix elements as in the 
ase of ρ12(T ). Figure 3 shows C12 as afun
tion of kBT

J1
for J2

J1
= 0.5 and for r = K

J1
(K1 = K2 = K) = 0.4 (a), 0.2 (b) and

0.0 (c). In
rease in the strength of the four-spin intera
tion redu
es the magni-tude of the n.n. 
on
urren
e. The value of the 
on
urren
e is non-zero provided
|y| − √

uv (Eq.(23)) is > 0. One 
an de�ne a 
riti
al temperature Tc beyondwhi
h the entanglement between n.n. spins disappears [37, 42℄. One 
an show9
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Figure 3: Con
urren
e C12 as a fun
tion of kBT
J1

for J2

J1
= 0.5 and for r = K

J1
(K1 =

K2 = K) = 0.4 (a), 0.2 (b) and 0.0 (c).
0 0.2 0.4 0.6 0.8 1

J2�J1

0.2

0.4

0.6

0.8

kBTc�J1
a

b

c

Figure 4: A plot of kBTc

J1
, where Tc is the 
riti
al entanglement temperature, versus

J2

J1
, for r = 0.4 (a), 0.2 (b) and 0.0 (c)that in the parameter regime of interest, the thermal entanglement between thediagonal spins is zero so that Tc 
an be taken as the 
riti
al temperature beyondwhi
h the entanglement between any two spins is zero. The 
riti
al temperature

Tc is obtained from |y| − √
uv = 0 (Eq. (23)), i.e., as a solution of the equation

z3− 3r2
4 − 6z1+r1+

r2
2 − z1+2r1− 3r2

4 − 10 = 0 (26)where z = e
J1

kBT , r1 = J2

J1
and r2 = K

J1
. Figure 4 shows a plot of kBTc

J1
versus J2

J1
for

r = 0.4 (a), 0.2 (b) and 0.0 (c). For a �xed value of J2

J1
, the 
riti
al entanglementtemperature Tc de
reases as the strength of the four-spin intera
tion in
reases.

Tc tends to zero as J2

J1
approa
hes the QCP J2

J1
= 1. For J2 > J1 (with K < 4J2

5
),the n.n. 
on
urren
es are zero.We next 
al
ulate the 
on
urren
e for pairwise entanglement between thespins lo
ated at the ends of a diagonal. The matrix elements u, v and y of theredu
ed thermal density matrix ρ13(T ) are given by10
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Figure 5: Con
urren
e C13 as a fun
tion of kBT
J2

for J2

J1
= 0.5 and for r = K

J1
(K1 =

K2 = K) = 0.4 (a), 0.2 (b) and 0.0 (c).
u = v = 5

3
e−βe1 + e−βe2 + e−βe3 + 1

3
e−βe5

y = 5
6
e−βe1 − e−βe2 + 1

2
e−βe3 − 1

2
e−βe4 + 1

6
e−βe5

(27)where the eigenvalues ei
′s are given in Eq. (19). The redu
ed density matrix

ρ24(T ) has the same elements as in the 
ase of ρ13(T ). Figure 5 shows C13 asa fun
tion of kBT
J2

for J1

J2
= 0.5 and for r = K

J2
(K1 = K2 = K) = 0.4 (a), 0.2

(b) and 0.0 (c). Again, at a �xed value of J1

J2
, the magnitude of C13 de
reasesas the strength of the four-spin intera
tion in
reases. The 
riti
al entanglementtemperature Tc, beyond whi
h the entanglement between spins lo
ated at theends of a diagonal disappears, is also the temperature beyond whi
h the pairwiseentanglement between any two spins vanishes sin
e in the parameter regime ofinterest the n.n. 
on
urren
es are zero at all T . The 
riti
al temperature Tc isobtained as a solution of the equation

z2+r1− 3r2
4 − 3z2r1+

r2
2 − z3r1− 3r2

4 − 5 = 0 (28)where z = e
J2

kBT , r1 = J1

J2
and r2 = K

J2
. Figure 6 shows a plot of kBTc

J2
versus J1

J2
for

r = 0.4 (a), 0.2 (b) and 0.0 (c). For a �xed value of J1

J2
, the 
riti
al entanglementtemperature Tc de
reases as the strength of the four-spin intera
tion K in
reases.

Tc approa
hes zero as J1

J2
approa
hes the QCP J1

J2
= 1. The major 
on
lusion onearrives at from an examination of Figs. (3)-(6), is that, as in the T = 0 
ase,the two sets of 
on
urren
es (i) C12, C23, C34, C41 and (ii) C13,, C24 are mutuallyex
lusive. For �nite values of the 
on
urren
es belonging to the �rst set, thevalues of the 
on
urren
es belonging to the se
ond set are zero and vi
e versa.

11
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Figure 6: A plot of kBTc

J2
, where Tc is the 
riti
al entanglement temperature, versus

J1

J2
, for r = 0.4 (a), 0.2 (b) and 0.0 (c).III. Entanglement WitnessWe now 
onsider the S = 1

2
polyoxovanadate AFM 
ompound V 12 and show thatthe magneti
 sus
eptibility χ serves as an EW for this 
ompound. The magneti
properties of this system are well des
ribed by 
onsidering only the 
entral squareof lo
alized V 4+ions [36℄. These ions form a square plaquette of S = 1

2
lo
alizedspins des
ribed by the isotropi
 Heisenberg AFM Hamiltonian with only n.n.intera
tions (J2 = K1 = K2 = 0 in equation (2)). As shown in Ref. [36℄, the

V 12 
ompound 
an be treated as a 
olle
tion of independent S = 1
2
tetramerswith AFM n.n. intera
tions of strength J1

kB

≃ 17.6 K. In fa
t, the theoreti
alexpression for the magneti
 sus
eptibility χ of a tetramer gives a good �t (Nindependent tetramers are to be 
onsidered in 
al
ulating χ) to the experimentaldata for V 12 (Fig. 2 of Ref. [36℄). The sus
eptibility for a spin tetramer withonly n.n. intera
tion of strength J1 is given by
χ

(gµB)2/J1
= βJ1

10e−3βJ1 + 4e−2βJ1 + 2e−βJ1

1 + e−2βJ1 + 3e−βJ1 + 6e−2βJ1 + 5e−3βJ1
(29)Following Ref. [28℄, the magneti
 sus
eptibility, χα, along the dire
tion α (α =

x, y, z) 
an be written as
χα =

(gµB)2

kBT

〈
(Mα)2

〉 (30)where Mα =
∑

j S
α
j denotes the magnetization along α. The expression in(30) holds true when the external magneti
 �eld is zero and the Hamiltonianis isotropi
 in spin spa
e. The angular bra
kets in (30) denote the thermal ex-pe
tation value. The sus
eptibility χα 
an further be written as

12



χα =
(gµB)2

kBT

∑

i,j

〈
Sα

i S
α
j

〉 (31)Due to the isotropy of the Hamiltonian, χx = χy = χz = χ and we 
an write
χ =

(gµB)2

kBT
[
N

4
+

2

3

∑

i<j

〈Si.Sj〉] (32)where N is the total number of intera
ting spins. The summation of expe
tationvalues in (32) 
an be 
onsidered as the expe
tation value of the sum HS ofintera
tion terms des
ribing all-to-all spin 
ouplings. The expe
tation value ofHShas an overall negative 
ontribution to χ be
ause of AFM 
orrelations. HS hasthe nature of a Hamiltonian and the maximum negative expe
tation value is givenby the ground state energy of HS. For separable states, the energy minimum isgiven by the ground state energy of the equivalent 
lassi
al Hamiltonian [32, 33℄.For all-to-all spin 
ouplings, the minimum energy separable state is des
ribed byany spin 
on�guration with total spin ve
tor zero. For N=4 (spin tetramer), the
lassi
al ground state is given by the Néel state and 〈HS〉 = −1
2
. For generalseparable states, 〈HS〉 has a lesser negative 
ontribution to χ and one 
an writedown the inequality

χ ≥ (gµB)2

kBT

2

3
(33)for separable, i.e., unentangled states. Figure 7 shows a plot of χ

n(gµB)2/J1
versus

T (Curve a ) for n independent tetramers, the 
ase of V 12. The expression forthe sus
eptibility of a single tetramer is given in (29). Curve b represents the χversus T 
urve des
ribing the equality in (33). In plotting the 
urves, the value of
J1

kB

is taken as 17.6 K, the experimental estimate for V 12. The interse
tion pointof the two 
urves provides an estimate, Tc ≃ 25.4 K, of the 
riti
al entanglementtemperature below whi
h entanglement is present in V 12. The theoreti
al valueof the 
riti
al temperature, above whi
h the two-spin entanglement disappears isobtained from Eq. (26), with r1 = r2 = 0, as T (1)
c ≃ 15.2 K. Sin
e Tc > T (1)

c ,only multipartite entanglement is present in the thermal state of the tetramer for
T (1)

c < T < Tc .We now examine whether four-spin entanglement exists in the thermal state ofthe tetramer. This is done by 
al
ulating the state preparation �delity F de�nedas
F (ρ) = 〈ψGHZ | ρ(T ) |ψGHZ〉 (34)where |ψGHZ〉 = 1√

2
(|↑↓↑↓〉 + |↓↑↓↑〉) is the four-spin Greenberger-Horne-Zeilinger(GHZ) state [37℄. The su�
ient 
ondition for the four-parti
le (N = 4 ) entan-13
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Figure 7: A plot of χ

n(gµB)2/J1
( dimensionless unit ) versus T (Curve a ) for nindependent tetramers, as is the 
ase of V 12. Curve b represents the χ versus T
urve des
ribing the equality in (33). The interse
tion point of the two 
urvesrepresents the 
riti
al entanglement temperature Tc ≃ 25.4 K with J1

kB

≃ 17.6 K.glement is given by
F (ρ) >

1

2
(35)For a tetramer with only n.n. intera
tions of strength J1, F (ρ) is 
al
ulated as

F (ρ) =
1
3
e−βJ1 + 2

3
e2βJ1

5e−βJ1 + 7 + 3eβJ1 + e2βJ1
(36)

F (ρ) = 2
3
,i.e., > 1

2
as T → 0 indi
ating the presen
e of four-spin entanglement inthe ground state of the tetramer. The 
riti
al entanglement temperature, T (4)

c ,beyond whi
h the four-spin entanglement vanishes is obtained from a solutionof the equation F (ρ) = 1
2
. The value obtained is kBT

(4)
c

J1
≃ 0.417 from whi
h

T (4)
c ≃ 7.4 K, assuming J1

kB

≃ 17.6 K as in the 
ase of the 
ompound V 12. One�nds that T (4)
c is less than the 
riti
al temperature T (1)

c ≃ 15.2 K. We next
onsider a tetramer with n.n., diagonal and four-spin ex
hange intera
tions ofstrength J1, J2 and K1 = K2 = K respe
tively. Fig. 8 shows a plot of kBT
(4)
c

J1versus J2

J1
for r = K

J1
= 0.4 (a), 0.2 (b) and 0.0 (
) respe
tively. For a �xedvalue of J2

J1
, the 
riti
al temperature for four-spin entanglement de
reases as thestrength of the four-spin intera
tion in
reases.The tetramer with J1 = J2 = J and K = 0, alternatively des
ribed as thetetrahedron, provides an interesting example of the magneti
 sus
eptibility χserving as a witness for entanglement other than the entanglement between in-dividual spins. The two-spin entanglement vanishes in the thermal state of thetetrahedron. The same is true when T = 0 and the system is at the QCP J1 = J2.Figure 9 shows the EW 
urves for χ (the same inequality bound as in (33) holdstrue) whi
h interse
t at a �nite temperature kBTc

J
≃ 1.9 showing that the thermal14
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Figure 8: Plot of kBT
(4)
c

J1
versus J2

J1
for r = K

J1
= 0.4 (a), 0.2 (b) and 0.0 (c). T (4)

c isthe 
riti
al entanglement temperature above whi
h the four-spin entanglement iszero.states are entangled below the 
riti
al temperature 
orresponding to the inter-se
tion point. The entanglement is ex
lusively multipartite in nature. Figure 10shows the EW 
urves for χ in the 
ase of a symmetri
 trimer des
ribed by the
S = 1

2
Heisenberg AFM Hamiltonian

Htrimer = J(S1.S2 + S2.S3 + S3.S1) (37)In this 
ase, it is well-known [37, 43℄ that there is no pairwise entanglement bothat T = 0 and at �nite temperatures. In the inequality for χ (Eq.(33)), the fa
tor
2
3
is repla
ed by the fa
tor 1

2
. In the 
lassi
al ground state of HS, the intera
tingspins form angles of 2π

3
with ea
h other. The 
riti
al temperature is given by

kBTc

J
≃ 1.4 . Again, only multipartite entanglement is present in the thermalstate of the symmetri
 trimer.Another EW, whi
h provides an estimate of 
riti
al entanglement temperature

Tc, is based on energy [32, 33℄. The entanglement gap GE is de�ned as
GE = Esep − E0 (38)where E0 is the ground state energy of the Hamiltonian H des
ribing the systemand Esep is the minimum energy of the separable states. If GE is > 0, a �nite en-ergy range exists over whi
h all states are entangled. For a positive entanglementgap GE > 0, one 
an de�ne an EW
ZEW = H − EsepI (39)where I represents the identity on the full Hilbert spa
e. For any separable state,

Tr(ZEWρsep)) ≥ 0. If the state is entangled, Tr(ZEWρent)) is < 0. For example, ifthe state belongs to the ground state manifold, Tr(ZEWρ0) = E0−Esep < 0. ZEWthus a
ts as an EW.The entanglement gap temperature TE is given by U(TE) =15
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Figure 9: The EW 
urves for χ in the 
ase of a symmetri
 tetrahedron with
J1 = J2 = J and K = 0.
Esep, where U(T ) (= 〈H〉 = − 1

Z
∂Z
∂β

) is the thermal energy at temperature T.For T < TE , the thermal state is entangled and hen
e TE is a measure of the
riti
al entanglement temperature. Esep is given by the ground state energy ofthe 
orresponding 
lassi
al spin model [32, 33℄. For a square of spins, Esep = −J1,as the 
lassi
al ground state is given by the Néel state. The expression for U(T )is obtained from the partition fun
tion Z of the square of spins As shown in[33℄, in the 
ase of bipartite graphs and latti
es, the EW dete
ts only bipartiteentanglement. Thus TE for the square of spins has an identi
al magnitude asthat of T (1)
c at and above whi
h su
h entanglement vanishes. In the 
ase ofnon-bipartite graphs and latti
es, the EW 
an dete
t multipartite entanglement.The tetrahedron and the symmetri
 trimer are examples of non-bipartite graphs.

Esep in these two 
ases 
an readily be 
al
ulated as Esep = −0.5J (tetrahedron)and Esep = −3
8
J (symmetri
 trimer). The entanglement temperature TE has themagnitude kBTE

J
≃ 1.9 (tetrahedron) and kBTE

J
≃ 1.4 (symmetri
 trimer). In boththe 
ases, two-spin entanglements are absent and the entanglement present in thesystem for T < TE is multipartite in nature.IV. Summary and Dis
ussionIn this paper, we 
onsider a spin tetramer (S = 1

2
) with n.n., diagonal and four-spin AFM ex
hange intera
tions of strength J1, J2 andK1 = K2 = K respe
tively.The signi�
an
e of the in
lusion of three-spin and four-spin intera
tions in spinHamiltonians of interest has been pointed out earlier [44, 45℄. We study theground state and thermal entanglement properties of the tetramer in the variouslimiting 
ases. At T = 0, QPTs o

ur as the ex
hange intera
tion strengths aretuned to 
ertain 
riti
al values.We fo
us on a parti
ular QPT at J1 = J2 = J

(K < 4
5
J) as the other QPTs exhibit similar features. The QPT point separatestwo RVB ground states, ψRV B1 and ψRV B2. The entanglement between two spins16
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Figure 10: The EW 
urves for χ in the 
ase of the symmetri
 trimer.is determined by 
al
ulating the 
on
urren
es C12, C23, C34, C41 and C13, C24. Then.n. 
on
urren
es are non-zero only in ψRV B1 and the other two 
on
urren
es as-so
iated with diagonal spins are non-zero only in ψRV B2. The 1−tangle τ1, ameasure of the global entanglement, has the value 1 in both ψRV B1 and ψRV B2.The entanglement measure τ1, de�ned for pure states, has to be generalized to
τmin
1 at the QPT point where the ground state is doubly degenerate. The entan-glement ratio R = τ2

τmin

1
has the value zero at the transition point if τmin

1 6= 0 andis unde�ned otherwise. Away from the transition point, R = 0.5 in the groundstate ψRV B1 and 1.0 in the ground state ψRV B2. A better eviden
e of the �rstorder QPT is provided by the jumps in both the n.n. and diagonal 
on
urren
es[18, 23℄.The study of �nite temperature entanglement properties again shows the ex-isten
e of two distin
tive parameter regimes. The n.n. 
on
urren
es are non-zeroonly when J2 < J1(K < 4J1

5
) and the 
on
urren
es asso
iated with diagonal spinsare non-zero only when J1 < J2(K < 4J2

5
). At J1 = J2, all the six 
on
urren
esare zero. The 
riti
al entanglement temperature, Tc, beyond whi
h entanglementbetween two spins disappears, is 
omputed. The magnitude of Tc is highest when

J2 = 0 and K = 0. For �xed values of J1 and J2, Tc de
reases as the strength ofthe four-spin intera
tion in
reases. A measure of the four-spin entanglement inthe thermal state of the tetramer is obtained by 
al
ulating the �delity F (ρ). The
riti
al temperature, T (4)
c , beyond whi
h the four-spin entanglement disappearsis 
al
ulated and one �nds that at �xed values of J1 and J2, the magnitude of

T (4)
c de
reases as the strength K of the four-spin intera
tion in
reases.Mole
ular or nanomagnets provide examples of spin systems in whi
h thedominant ex
hange intera
tions are 
on�ned to small spin 
lusters like dimers,trimers and tetramers. In several 
ases, the magneti
 properties 
an be wellexplained by treating the solid to 
onsist of independent spin 
lusters. We 
on-sider one su
h 
ompound, V 12, whi
h is a 
olle
tion of spin tetramers with onlyn.n. ex
hange intera
tions. Treating the magneti
 sus
eptibility χ as an EW,17



the 
riti
al temperature, Tc, below whi
h entanglement is present in the sys-tem, is estimated from the experimental data on χ. The entanglement in
ludesboth bipartite and multipartite entanglement with Tc ≃ 25.4 K in the 
ase of
V 12 ( J

kB

≃ 17.6 K). From theoreti
al 
al
ulations, the 
riti
al temperature T (1)
c ,beyond whi
h bipartite entanglement vanishes is given by T (1)

c ≃ 15.2 K. Sin
e
T (1)

c < Tc, multipartite entanglement in the system persists upto a higher tem-perature. The entanglement 
ontents of the thermal states of the tetrahedronand the symmetri
 trimer are shown to be ex
lusively multipartite in nature. AnEW based on energy provides eviden
e of bipartite entanglement in the 
ase ofa square of spins (relevant for V 12) and multipartite entanglement in the 
asesof the tetrahedron and the symmetri
 trimer. The EW based on sus
eptibility
χ 
an dete
t both bipartite and multipartite entanglement. The EW based onenergy dete
ts only bipartite entanglement when the spin system is de�ned on abipartite graph or latti
e. The latter EW 
an dete
t multipartite entanglementonly in the 
ase of a non-bipartite graph or latti
e. The 
riti
al entanglementtemperature Tc and the entanglement gap temperature TE have identi
al valuesif the 
orresponding EWs both dete
t entanglement.After our work was 
ompleted, we learnt of a new inequality for sus
eptibilityserving as an EW [47, 48℄. The inequality 
an be derived using the sum un
er-tainty relation for spin−1

2
operators [47, 49℄. When χx = χy = χz = χ, theseparability 
riterion for a single 
luster of N spins is given by

χ ≥ (gµB)2

kBT

N

6
(40)The results reported by us, using slightly di�erent arguments, are spe
ial 
asesof the general 
ondition (40) for N = 3 and 4. We 
an generalize our derivationin the following manner to obtain (40). We start with the identity

HS =
∑

i<j

SiSj =
1

2
(S2 −

N∑

i=1

S2
i ) (41)where S is the total spin ve
tor. The maximum negative 
ontribution to χ isobtained for S =0. Thus for separable states with 〈S2
i 〉 = 1

4
, Eq.(32) redu
es tothe inequality in (40). There is now a wealth of experimental data on mole
ularmagnets and other magneti
 systems whi
h are yet to be analyzed in terms of theentanglement properties of the systems [35, 46℄. Appropriate �nite temperaturemeasures of the di�erent types of entanglement need to be developed so that
onta
t between theory and experiments 
an be made. A 
hallenging task aheadis to develop suitable EWs whi
h provide signatures of the di�erent types ofentanglement in the experimental data.A
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