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Stone-Wales (SW) defects, analogous to dislocations in crystals, play an important role in mechan-
ical behavior of sp2-bonded carbon based materials. Here, we show using first-principles calculations
that a marked anisotropy in the interaction among the SW defects has interesting consequences when
such defects are present near the edges of a graphene nano-ribbon: depending on their orientation
with respect to edge, they result in compressive or tensile stress, and the former is responsible to de-
pression or warping of the graphene nano-ribbon. Such warping results in delocalization of electrons
in the defect states.

1. INTRODUCTION

Graphene, a two dimensional (2D) allotrope of carbon,
is the motherform of all its graphitic forms. Graphene
shows several fascinating electronic-transport properties,
originating from the linear energy dispersion near the
high symmetry corners of the hexagonal Brillouin zone,
which results in effective dynamics of electrons similar
to massless Dirac Fermions.1 But graphene is a zero
bandgap semiconductor,2 which limits its applications
in electronic devices. In the bulk-form, a band gap
can be opened up and tuned by doping graphene with
boron or nitrogen3 or by introducing uniaxial strain.4,5

In graphene nano-ribbons (GNRs), this can be accom-
plished using the geometry of the edges: while a GNR
with a zigzag edge (ZGNR) has a vanishing gap (which
opens up due to magnetic ordering), a GNR with an arm-
chair edge (AGNR)6 has a nonzero gap. GNRs can be
very useful for practical purposes because their bandgap
can be tuned by changing the ribbon-width.6 Magnetic
ground state of pristine ZGNR can be exploited to ex-
plore graphene based spintronics.7

For any technological applications of graphene, under-
standing of its structural stability and mechanical be-
havior is crucial. For example, deviation from the per-
fectly planar structure in the form of ripples or wrin-
kles observed in graphene,8,9 can have interesting ef-
fects on electronic properties. GNRs are known to be
susceptible to structural instabilities at the edges and
reconstructions.10–17 Topological defects in the honey-
comb carbon lattice, such as Stone-Wales (SW) defects
(pairs of pentagons and heptagons created by 90° rotation
of a C-C bond18) occur in graphene19 and are relevant
to its structural and mechanical behavior.20,21 It is im-
portant to understand how atomic and electronic struc-
ture of quasi 1-D GNRs is influenced by such defects. In
this work, we focus on the effects of the SW defects on
structural stability, electronic and magnetic properties of

GNRs.

Deprived of a neighbor, an atom at the edge of GNR
has a dangling bond resulting in an edge compressive
stress, which can be relieved by warping, as analyzed
by Shenoy et al.10 using a classical potential and inter-
preted with a continuum model. Huang et al.,11 on the
other hand, found using first-principles quantum me-
chanical simulations that such graphene with dangling
bonds at the edges would rather undergo SW mediated
edge reconstructions to relieve stresses, and consequently
have a flat structure. Alternatively, edge stresses in
GNRs can be relieved if the dangling bonds are saturated
with hydrogen (H-GNR), stabilizing the planar structure
relative to the warped one.11 How SW defect would in-
fluence the structure of a H-GNR is not clear and we
uncover this in the present work. Although SW defects
cost energy,22 they do occur in graphene19 and are shown
here to induce warping instability even in H-GNRs.

We organize the paper in the following manner. First,
we briefly describe computational details in section 2. A
discussion follows on various stresses associated with a
SW defect in bulk graphene in section 3.1. We corre-
late the results obtained in this section to the mechan-
ical properties of edge reconstructed (by SW defects)
GNRs. Next, in section 3.2, we investigate the prop-
erties of such GNRs: first the issue of structural stability
in section 3.2.1, followed by their electronic properties in
section 3.2.2. We conclude the paper in section 4.

2. METHOD

We use first-principles calculations as implemented
in the PWSCF code,23 with a plane-wave basis set
and ultrasoft pseudo-potential, and electron exchange-
correlation is treated with a local density approximation
(LDA, Perdew-Zunger functional). In the literature, we
find use of both LDA6 and GGA11 in the study of prop-
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(a) (b)

(c) (d)

FIG. 1: (color online) Stone Wales defect in bulk graphene;
(a) SW‖, (b) SW∠ (θ=60°), (c) SW∠ (θ=120°), where θ is the
angle of the bond [marked in red (light gray in the gray-scale)]
with the horizontal axis in the anti-clockwise direction. (d)
Planar stresses acting on the supercell.

erties of graphene nanoribbons, and we expect that the
choice of exchange-correlation functional should not af-
fect the main findings of our work much. We use an
energy cutoff for the plane-wave basis for wavefunctions
(charge density) of 30 (240) Ry. Nanoribbons are simu-
lated using a supercell geometry, with a vacuum layer of
> 15 Å between any two periodic images of the GNR. A
k -point grid of 12 (24)x1x1 k points (periodic direction
of the ribbon along x-axis) is used for sampling Brillouin
zone integrations for AGNR (ZGNR).
Despite many-body effects in graphene being a subject

of active research, most of the current experiments sup-
port validity of band structure point of view. Results
of DFT calculations are also found to be in remarkable
agreement with those of the Hubbard model24, which
takes into account onsite electron-electron interactions.
While we believe that many-body effects will not dras-
tically alter our results for structure and energetics of
Stone-Wales defects and associated warping, it would in-
deed be an interesting research problem to analyze elec-
tronic transport properties with many body corrections,
which will not be addressed in this paper.

3. RESULTS AND DISCUSSION

3.1. SW Defects in Bulk Graphene

We first develop understanding of the stresses as-
sociated with SW defects in bulk graphene (supercells

shown in Fig. 1(a), (b) and (c)), and also benchmark
our methodology through comparison with earlier works.
The rotated bond that creates the SW defect (marked in
red) makes an angle θ with the horizontal axis (x axis).
Based on θ, we classify the defects as parallel (θ = 0°) and
angled (θ 6= 0°) and denote by the symbol SW‖ (see Fig. 1
(a)) and SW∠ (see Fig. 1 (b) and (c)). We express nor-
mal (shear) stress by σ (τ). We use +ve (-ve) σ to de-
note compressive (tensile) stress. For bulk graphene, the
stresses are in the units of eV/Å2, obtained by multi-
plying the stress tensor components with the supercell
length along z direction. We show the direction of planar
stresses acting on a graphene supercell in Fig. 1(d). For
SW‖ defect, σx, σy and τxy are 0.40, -0.27 and 0 eV/Å2

respectively. Under rotation θ, stress tensor components
transform as

σx(θ) =
1

2
(σx + σy) +

1

2
(σx − σy)cos 2θ + τxysin 2θ

σy(θ) =
1

2
(σx + σy)−

1

2
(σx − σy)cos 2θ − τxysin 2θ

τxy(θ) = −1

2
(σx − σy)sin 2θ + τxycos 2θ

(1)
When θ=60°, σx, σy and τxy are -0.10, 0.23 and -0.29

eV/Å2 respectively. SW∠ with θ=120° is same as
θ=60° in terms of stresses, barring the fact that τxy has
opposite sign. The energy cost for a single defect forma-
tion in a 60 atom supercell is 5.4 eV (4.8 eV) for SW‖

(SW∠), which is in good agreement with Ref. 22. The
energy difference is due to sizeable long range anisotropic
interactions between the defects (periodic images), and
can be understood in the framework of Ref. 25.
GNRs are obtained by cutting the bulk graphene sheet

along certain direction − along x (y) to create ZGNR
(AGNR) (see Fig. 1) and the respective direction be-
comes the ribbon axis. Based on the analysis presented
in the previous paragraph, we can readily predict the na-
ture (sign) of stresses generated by SW defects in a GNR
along the ribbon axis and in the transverse direction (i.e.
along the ribbon width). However, due to finite thick-
ness, a GNR has the freedom to relax stress along the
width by deformation (expansion/contraction depending
on the sign of stress). We find that, in a properly re-
laxed SW reconstructed GNR, except the normal stress
acting along the ribbon axis, all the other stress tensor
components are negligible. Thus, post structural relax-
ation, compressive (tensile) stress along the ribbon axis
remains the only significant term in a SW‖ reconstructed
ZGNR (AGNR). For SW∠ defect, the sign of induced
stress along the ribbon axis is opposite to that of SW‖.
Based on bulk results, we can also predict the elas-

tic energy cost of SW defect formation in GNRs. Note
that, normal stress created by SW‖ in a particular direc-
tion is of higher magnitude than that generated by SW∠

defect− in x direction, σ‖/σ∠ = 4, and in y direction,
σ‖/σ∠ = 1.2. Elastic energy cost for defect formation
is proportional to the stress. Hence, in a GNR SW‖ de-
fect is energetically more expensive than SW∠. From the
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(a)Pristine AGNR (b)A2L
⊥5757

(c)A2L
⊥757

(d)A2L
∠5757

(e)A2L
∠57

(f)AL
∠57

(g)Pristine ZGNR (h)Z3L
‖575

(i)Z2L
∠5757

(j)Z2L
∠57

(k)Z3L
∠5757

(l)Z3L
∠57

FIG. 2: (color online) (a) Pristine AGNR and (b)−(f) SW
reconstructed AGNRs. (g) Pristine ZGNR and (h)−(l) SW
reconstructed ZGNRs. Red, appearing light gray in the gray-
scale, dots and lines denote the hydrogen atoms and bonds
rotated to create SW defects, respectively.

above discussion, it is evident that orientation of the de-
fects with respect to the ribbon axis plays a vital role in
GNRs. We investigate this and its consequences in the
rest of this paper.

TABLE I: Linear density of defects η (number of SW defects
per unit length), edge formation energy Eedge, stress σ along
the ribbon axis and width W of various GNRs.

GNR η Eedge σ W GNR η Eedge σ W
(/Å) (eV/Å) (eV/Å) (Å) (/Å) (eV/Å) (eV/Å) (Å)

AC 0 0.04 0 19.5 Z 0 0.10 0 15.5
A2L

⊥5757 0.12 0.62 -11 20.1 Z3L
‖575 0.14 0.86 19 15.0

A2L
⊥757 0.12 0.51 -11 20.0 Z3L

‖575w 0.14 0.70 7 14.8

A2L
∠5757 0.12 0.51 10 19.3 Z2L

‖557 0.21 1.66 29 14.8

AL
∠57 0.24 0.86 18 18.9 Z2L

‖557w 0.21 1.39 8 14.4

AL
∠57w 0.24 0.81 11 18.8 Z3L

∠5757 0.14 0.49 -5 15.9
A2L

∠57 0.12 0.40 7 19.3 Z2L
∠5757 0.21 0.53 -6 16.0

A2L
∠57w 0.12 0.36 3 19.0 Z3L

∠57 0.14 0.34 -4 16.0
Z2L

∠57 0.21 0.37 -5 16.1

3.2. SW Defects in GNRs

3.2.1. Structural Stability

We first describe the nomenclature for different SW
defects in GNRs. The first letter, A (armchair) or Z
(zigzag), denotes the kind of pristine GNR hosting a
SW-defect, and the first subscript denotes the orienta-
tion of SW defect, defined as the angle between the ro-
tated bond and the ribbon axis. Three possible orien-
tations are ‖ (θ = 0°), ⊥ (θ = 90°) and ∠ (θ 6= 0° or
6= 90°). The SW‖ defect in bulk graphene described
earlier, falls into two categories in GNRs, ⊥ and ‖, to
mark its orientation with AGNR and ZGNR edge re-
spectively. The series of 5’s and 7’s in the subscript rep-
resent constituent rings of a single defect − pentagons
and heptagons. For example, a ⊥ defect, with a pair
of pentagons and heptagons each in an AGNR is de-
noted as A⊥5757 (see Fig. 2(b)). Such a defect is away
from GNR edges and keeps the armchair (or zigzag) edge
shapes undisturbed (see Fig. 2(b),(d),(i),(k)). Lesser
number of pentagons/heptagons (575 or 57) in the sub-
script implies defects overlapping with the edge, and re-
constructed edge shapes typically differ from that of pris-
tine GNRs (see Fig. 2(c),(e),(f),(h),(j),(l)). The super-
script denotes the length of periodicity along the ribbon
axis. L = 3d(

√
3d) for AGNR (ZGNR), where d is the

C-C bond length. Finally, a subscript w is used to differ-
entiate warped ribbons from planar ones. All the GNRs
reported here have H-terminated edges, shown by red
dots in Fig. 2.
We characterize GNRs with two properties: edge for-

mation energy per unit length and stress along the ribbon
axis. The numerical values calculated using first princi-
ples method are reported in Table I. Edge formation
energy per unit length is,

Eedge =
1

2L

(

EGNR −NCEbulk − NH

2
EH2

)

(2)
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where EGNR, Ebulk and EH2 are the total energies of the
nanoribbon supercell, one carbon atom in bulk graphene
and of the isolated H2 molecule respectively; NC (NH)
are the number of carbon (hydrogen) atoms in the su-
percell. Stress reported here is σ = (bc)σx, where σx

is the component of stress tensor along x (ribbon axis)
and b and c are the supercell sizes in y and z direction.
Other components of the stress tensor are negligible.
Eedge is found to be much higher for ZGNR (0.10 eV/Å)

than compared to AGNR (0.04 eV/Å). Our numbers are
slightly overestimated with respect to the reported val-
ues of 0.08 eV/Å (0.03 eV/Å) for ZGNR (AGNR),14 ob-
tained using the PBE functional (a GGA functional) for
exchange-correlation energy.

Edge defects, consisting of fewer number of pentagons
and/or heptagons, require less formation energy. For ex-
ample, consider A2L

∠5757 and A2L
∠57, for which Eedge values

are 0.51 and 0.40 eV/Å respectively. This is true for all
SW reconstructed GNRs if we compare the cases with de-
fects of a particular orientation (see Table I). For varied
orientations, ∠ SW defects require less formation energy
than compared to ⊥ and ‖ ones. For example, Eedge of

A2L
∠5757 is lower by 0.11 eV/Å than that of A2L

⊥5757 (con-
sult Table I for more such instances). This observation is
consistent with the argument based on our analysis of SW
defect in bulk graphene. Note that ribbons with higher
linear defect density (η) have higher Eedge and the above
comparisons are meaningful only for edge reconstructed
GNRs of similar η.

Defect orientations with respect to the ribbon edges
control the sign of stress induced. Note that, the sign of
stress along the ribbon axis reported in Table I matches
with the predictions based on our analysis of SW defect
in bulk graphene. The ribbon widths (W) vary in the
range of 18.8 to 20.1 Å for AGNRs and 14.4 to 16.1 Å for
ZGNRs. This is due to the stress relaxation via defor-
mation in the direction perpendicular to the ribbon axis.
For example, an unrelaxed A2L

⊥5757 experiences compres-
sive stress along the width and relieves it by expansion
in that direction; thus making it slightly wider than the
pristine AGNR (consult Table I). Similarly, relaxation of
the tensile stress along the width by contraction makes
a SW reconstructed GNR narrower than pristine GNRs
(see Table I).

In contrast to the in-plane deformation to relax normal
stress along the width, the only way to partially release
the normal stress along ribbon axis is by an out-of-plane
deformation − bending. It has been reported that pris-
tine GNRs with dangling bonds relax the compressive
stress by spontaneous warping.10 As shown in Fig. 3, we
also find that SW reconstructed GNRs under compressive
stress (∠ (‖) in AGNR (ZGNR)) relax by local warping.
For example, σ (Eedge) is smaller by 4 (0.04) eV/Å in
A2L

∠57w than its planar form A2L
∠57 (see Table I for more

such instances). On the other hand, SW reconstructed
GNRs under tensile stress (⊥ (∠) in AGNR (ZGNR))
favor planar structure. In this regard, our results are in
agreement with those of Ref. 11, where authors have con-

(a)AL
∠57w

(b)A2L
∠57w

(c)Z3L
‖575w

FIG. 3: (color online) Warped structure of various different
edge reconstructed nanoribbons. Red, green and blue repre-
sents elevated, “flat” and depressed regions respectively. In
gray-scale, light and dark gray represents “flat” and warped
regions respectively. Atoms of a warped GNR are labeled as
“flat” if |z| < 0.1Å, z being the height of the constituent car-
bon atoms. For a GNR of strictly flat geometry, z = 0 for all
the carbon atoms.

sidered only the SW defects generating tensile stress and
found them to stabilize the planar geometry.

Our results for the edge reconstructions in Z∠57 agree
well with earlier work14: our estimate of Eedge (0.37

eV/Å) for Z2L
∠57 is slightly higher than the PBE (a GGA

exchange-correlation functional) estimate (0.33 eV/Å) of
Ref. 14. However, we predict here qualitatively differ-
ent types of reconstructions in A∠57 and Z‖575 accom-
panied by warping of H-GNRs, which originate from dif-
ferent orientations of the SW-defects. The gain in en-
ergy by H-saturation of dangling bonds at the edges
of a GNR is so large that even after the creation of a
relatively costly SW-defect, it remains lower in energy
than the GNRs (no H-saturation) studied in Ref. 11 (a
set of DFT calculations, but the authors did not spec-
ify the exchange-correlation functional). For example,
SW-reconstructions at the edges (with dangling bonds)
lead to a energy gain of 0.01 (0.18) eV/Å for AGNR
(ZGNR).11 In contrast, we find SW reconstruction of H-
GNRs costs 0.32 (0.24) eV/Å energy in AGNR (ZGNR)
at least! However, because the edge energies of pristine
H-GNR and GNRs with dangling bonds are of the or-
der of 0.1 eV/Å and 1.0 eV/Å respectively, Eedge of
the edge reconstructed H-GNRs presented here (0.36 and
0.34 eV/Å for AGNR and ZGNR) is much smaller than
that (0.99 and 0.97 eV/Å for AGNR and ZGNR) re-
ported in Ref. 11.

So far, we have presented theoretical analysis of Stone-
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Wales defects in GNRs with a fixed width (19.5 and 15.5
Å for pristine AGNR and ZGNR respectively). Since
interactions among the SW defects are long-ranged in
nature, it will be interesting to verify how our findings de-
pend on the width of a GNR. Eedge and σ for edge recon-

structed ribbons of widths 20.7 and 16.9 Å, for pristine
AGNR and ZGNR respectively, are found to be almost
the same as values reported in Table I, for GNRs with
smaller width. Specifically, our estimates of Eedge and σ

for AL
∠57w type of edge reconstruction are 0.80 eV/Å and

11 eV/Å respectively for wider ribbons. Changes in
Eedge with width of a GNR are similar to those in a pris-
tine GNR. Despite long-ranged interactions among the
SW defects, such remarkable insensitivity to width can
be understood in terms of defect concentration along the
ribbon length vs. width. Since defects are located at the
edges, distance between the two adjacent defects along
the width is 15 − 20 Å (see the W column of Table I).
On the other hand, inter-defect distance along the rib-
bon length is about 4 − 8 Å (inverse of the number
reported in the η column of Table I). Thus, defect-defect
interactions along the length of the ribbon are dominant,
explaining relatively weak dependence of edge properties
on the width. We note that the GNRs used in experi-
ments are typically wider than the ones we studied here,
and thus our results for edge reconstruction and related
phenomena should hold good in such cases.
The ribbon periodicity (L, corresponding to minimum

Eedge and σ in pristine GNRs) was kept fixed in our
analysis, as reported in Table I. As shown in Fig. 3, for
certain types of SW reconstructions, buckling relieves σ
partially and reduce Eedge. Nevertheless, there is a small
remanant stress, which could be relieved further by al-
lowing the ribbons to relax along the periodic axis. For
example, Eedge and σ decreases to 0.57 and 1.0 eV/Å re-
spectively, upon relaxation of the periodic length of rib-
bon Z3L

‖575w. This results in an expansion of the ribbon

by 4% along its length. Warping still prevails, though
with slightly smaller amplitude and longer wavelength.
Thus our results do not change qualitatively. We note
that relaxation of the periodicity of a GNR involves (a)
an elastic energy cost associated with straining of the
bulk (central part) of the ribbon and (b) a small en-
ergy gain associated with relief of compressive stress at
the edges. The former would dominate in wide ribbons
typically used in experiments, and our results obtained
without such relaxation are more relevant to experimen-
tal measurements.
Comparing the Eedge values from Table I, we conclude

that among the edge reconstructed GNRs: warped AG-

NRs and flat ZGNRs are energetically more favorable
than flat AGNRs and warped ZGNRs. In H-unsaturated
GNRs, at an optimal concentration, SW reconstructions
lower the edge energy.11 We also find that Eedge values
decrease on reducing the linear defect density η (by em-
bedding SW defect in a longer supercell). However, our
study is limited to a region of high η only. Whether there
exists an optimal η in H-saturated GNRs also or not, at

FIG. 4: (color online) Density of states (DOS) and scanning
tunneling microscope (STM) image of pristine AGNR visual-
ized with XCRYSDEN26. E = 0 denotes the Fermi energy.
We have applied a thermal broadening equivalent to room
temperature to plot the DOS in this figure and throughout
the rest of the paper. Consult text for the definition of ρ, ρe
and ρi. The horizontal bar represents the color scale used in
the STM image. The image has been simulated for a sample
bias of -0.3 eV and reflects the spatial distribution of the local
density of states LDOS below Fermi energy.

which reconstructed edge has lower energy than pristine
edge, needs to be investigated and is outside the scope of
the present paper.

3.2.2. Electronic Properties

Electronic properties of GNRs are sensitive to the ge-
ometry of the edges at the boundary. For example, pris-
tine AGNRs are semiconducting - the bandgap arises
due to quantum confinement and depends on the width
of the ribbon.6 Pristine ZGNRs also exhibit gapped en-
ergy spectrum, although of entirely different origin. Gap
arises due to a localized edge potential generated by edge
magnetization.6 It is well known that presence of de-
fects or disorders at the edges can change the electronic,
magnetic and transport properties of GNRs to various
extent.27,28 In 2D graphene, topological defects such as
dislocations or SW defects give rise to electronic states lo-
calized at the defect sites.20 Presence of any such defect
induced states near the edges of the SW reconstructed
GNRs can have interesting consequences on their elec-
tronic and transport properties.

In this section, we analyze electronic properties using
the density of states (DOS) and simulated scanning tun-
neling microscope (STM) images of pristine and edge re-
constructed GNRs. We decompose total DOS (ρ) into
the sum of projected DOS of atoms located at the inte-
rior of the ribbon (ρi) and atoms near the edges (ρe). ρe
is the sum of projected DOS of first two layers of atoms
from both the edges. Since the defects are located at the
edges, this technique clearly uncovers the difference be-
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FIG. 5: (color online) DOS and STM image of A2L
⊥757, simu-

lated with a sample bias of +0.2 eV. The STM image shows
the spatial distribution of LDOS above the Fermi energy.

tween electronic band structures of a pristine and edge
reconstructed GNR. Note (Fig. 3) that, this is the re-
gion which undergoes warping (remains flat) if the ribbon
edges are under compressive (tensile) stress. ρi includes
the projected DOS of rest of the atoms (located in the
region of the nanoribbon that always remains flat). De-
pending on the sample bias, STM images help identify
the spatial distribution of local DOS (LDOS) below (-
ve bias) and above (+ve bias) the Fermi level (EF = 0).
These images should be useful in experimental character-
ization of GNRs, as well as understanding consequences
of such defects and warping to electronic transport in
GNRs.

The DOS for a 19.5 Å wide pristine AGNR of bandgap
0.1 eV (Fig. 4) shows that both ρi and ρe contributes to
the ρ with equal weight, and symmetric about EF . This
symmetry is known as particle-hole symmetry. The inset
of Fig. 4 shows that for a sample bias of -0.3 eV, the
occupied LDOS is spread over the entire ribbon. We do
not present the corresponding image for a positive sample
bias, which is very similar due to the underlying particle-
hole symmetry.

Edge reconstruction by ⊥ SW defect (7− 5− 7 defect)
breaks the particle-hole symmetry and a sharp peak of
DOS appears above EF (see Fig. 5), which has primary
contribution from the edge atoms (ρe > ρi). The STM
image (simulated with a sample bias of +0.2 eV) reveals
that the unoccupied LDOS is localized at the defect sites,
located very close to the ribbon edges. The STM image
for a -ve sample bias (not shown here) illustrates that
occupied LDOS is spatially distributed over the entire
ribbon, similar to the pristine one.

Edge reconstruction by ∠ SW defects (5 − 7 defect)
have similar consequences on electronic band structure of
AGNRs. A sharp peak in DOS, primarily coming from
ρe, appears above the Fermi energy (see Fig. 6(a)). Sim-
ulated STM image (at sample bias +0.2 eV) confirms
that LDOS above the Fermi level are localized at the
edges. For -ve sample bias (not presented here), occu-

(a)AL
∠57

(b)AL
∠57w

FIG. 6: (color online) DOS and STM image of (a) AL
∠57 and

(b)AL
∠57w . The STM images have been simulated with sample

bias of +0.2 and +0.4 eV for (a) and (b) respectively. They
show the spatial distribution of LDOS above the Fermi energy.

pied LDOS is spatially distributed over edge, as well as
interior atoms. However, for this type of edge recon-
structions, planar structure is not the stable one and the
ribbon undergoes warping near the edges (see Fig. 3).
As shown in Fig. 6(b), the DOS peak of edge-localized
(or rather defect localized) states above the Fermi en-
ergy vanishes in the warped GNR and LDOS above EF

is spatially distributed throughout the ribbon. This is
also true for LDOS below the Fermi level also(STM im-
age not shown here). This reveals an electronic origin
of the defect induced stress and its anisotropy in the lo-
calized p like defect state. Delocalization of this state
relieves the stress and favors warping.
All the results presented here are for a pristine AGNR

of narrow bandgap (0.1 eV), which undergoes edge recon-
structions by various SW defects. We have investigated
edge reconstructions of a wide bandgap AGNR also. We
find qualitative similarity, such as unoccupied LDOS lo-
calized at the edges, among the edge reconstructed AG-
NRs of various widths and bandgaps. However, the mag-
nitude of bandgap depends both on ribbon width and the
type of SW reconstruction present at the edge (i.e. edge
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FIG. 7: (color online) DOS up to EF (=0.0) and STM image
of pristine ZGNR, simulated with a sample bias of -0.2 eV.
The image illustrates the spatial distribution of LDOS below
the Fermi energy.

shape) and varies over a wide range of values (0.1 eV
to 1 eV). The unoccupied states localized near the edges
can have interesting applications in molecule detection.
These states are going to act as electron acceptors and
can detect some suitable electron donating molecules.

We have employed a local spin density approximation
(LSDA) in our calculations to explore the possibilies of
magnetic ordering in GNRs. We initialize our calculation
with atoms at the edges of GNRs to have non-zero spin
polarization (of same (opposite) sign at the two edges in
FM (AFM) configurations). While the magnitude of spin
at edge atoms change in the course to self-consistency,
their relative signs remain the same, if the correspond-
ing magnetic ordering is stable. As mentioned earlier,
pristine ZGNRs have gapped antiferromagnetic ground
sate.6,7 We illustrate the DOS and simulated STM im-
age of a pristine ZGNR with a width of 15.5 Å in Fig. 7.
The bandgap is 0.3 eV and we show DOS upto the Fermi
level. Note that up and down spin electrons have simi-
lar energy spectrum and are not shown separately. The
STM image has been simulated for a sample bias of -
0.2 eV and reveals that LDOS below the Fermi energy is
localized at the zigzag edges. The edges are spin polar-
ized - ferromagnetically coupled along a particular edge
but antiferromagnetic between two opposite edges (not
shown here).

We find that edge reconstructions by SW defects de-
stroy magnetism. At high defect density, this leads to
a nonmagnetic metallic ground state and at lower defect
density magnetism survives with a weaker magnitude. In
this paper, our investigation is restricted to the regime of
high defect density (where all or most of the zigzag edges
have been reconstructed by SW defects - see Fig. 2(h)-
(l)) and we do not discuss the issue of magnetism any
further. The states at EF arise primarily from the edges
for all the zigzag GNRs.

The DOS and simulated STM image (bias voltage -0.2
eV) of a ∠ SW (5 − 7 defect) edge reconstructed ZGNR

FIG. 8: (color online) DOS and STM image of Z2L
∠57, simulated

with a sample bias of -0.2 eV. The image shows the spatial
distribution of occupied LDOS.

(see Fig. 8) reveal a nonzero DOS at EF (=0) and that the
ground state is of a nonmagnetic metal. The STM im-
age shows the formation of nearly isolated dimers along
the edge. Reconstruction of ZGNR edge by ‖ SW defect
(5− 7− 5 defect) does not alter the electronic properties
qualitatively. Such ZGNRs are also nonmagnetic metal-
lic with planar as well as warped geometries (not shown
here). However, these are very high energy edges and are
unlikely to be preferred over 5− 7 SW reconstructions in
ZGNRs. The 5 − 7 defects can act as interface of hy-
brid graphene and hybrid GNRs, having both armchair
and zigzag like features. Such materials have remarkable
electronic and magnetic properties.29

4. CONCLUSION

In conclusion, the sign of stress induced by a SW-defect
in a GNR depends on the orientation of the SW-defect
with respect to the ribbon edge, and the relaxation of the
structure to relieve this stress drives its stability. Local
warping or wrinkles arise in the GNR when the stress
is compressive, while the structure remains planar other-
wise. The specific consequences to AGNR and ZGNR can
be understood from the anisotropy of the stress induced
by a SW defect embedded in bulk graphene. Using the
analogy between a SW-defect and a dislocation, it should
be possible to capture the interaction between a SW de-
fect in the interior of a GNR and its edge within a contin-
uum framework that includes images of SW-defects in the
edges. As the images of SW-defects are also SW-defects,
their interactions can be readily captured within the con-
tinuum framework of Ref. 25. Our work shows how warp-
ing of GNRs can be nucleated at the SW-defects localized
at the edges and be responsible for flake-like shapes of
graphene samples seen commonly in experiments. Such
warping results in delocalization of electrons in the defect
states. In ZGNRs, magnetic ordering weakens due to the
presence of SW defects at the edges and the ground state
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is driven towards that of a nonmagnetic metal.
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