
ELSEVIER Anilicial Intelligence 82 (1996) 237-257

Artificial
Intelligence

Searching game trees under a partial order *

Pallab Dasgupta, P.P. Chakrabarti *, S.C. DeSarkar
Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpul; India 721302

Received January 1994; revised November 1994

Abstract

The problem of partial order game tree search arises from game playing situations where
multiple, conflicting and non-commensurate criteria dictate the merit of a position of the game.
In partial order game trees, the outcomes evaluated at the tip nodes are vectors, where each
dimension of the vector represents a distinct criterion of merit. This leads to an interesting variant
of the game tree searching problem where corresponding to every game playing strategy of a
player, several outcomes are possible depending on the individual priorities of the opponent. In
this paper, we identify the necessary and sufficient conditions for a set of outcomes to be inferior
to another set of outcomes for every strategy. Using an algebra called Dominance Algebra on
sets of outcomes, we describe a bottom-up approach to find the non-inferior sets of outcomes at
the root node. We also identify shallow and deep pruning conditions for partial order game trees
and present a partial order search algorithm on lines similar to the cu-p pruning algorithm for

conventional game trees.

1. Introduction

Current game tree searching methods assume that a given position of the game can

be evaluated as a single numerical value which indicates the merit of that position.
In normal two-player games, a MIN-MAX value [4] is defined, which indicates the
best alternative available to a player. Depth-first algorithms like a-p pruning [l] and
best-first algorithms like S’S’ [6] are known to efficiently determine this MIN-MAX
value. These studies have also been extended to multiplayer games [21.

In this paper, we study a variant of the game tree search problem, where the costs

evaluated at the tip nodes of the game tree are vectors. The objective of such a framework

*Originally submitted as Research Note.
* Corresponding author. This author acknowledges the support of the Indian National Science Academy for

partial support of this work.

0004.3702/96/$15.00 @ 1996 Elsevier Science B.V. AI1 rights reserved
SSDlOOO4-3702(94)00085-9

238 R Dasgupta et al./Artificial Intelligence 82 (1996) 237-257

is to model game playing situations where the merit of a position of the game is dictated
by multiple non-commensurate criteria. In such game playing situations, a position of

the game can be better than another in some criteria of merit and worse in some of the
other criteria. The individual priorities of each player decides which position would be
most desirable for it.

It is well known that the presence of an adversary can lead to game playing situations
in optimization problems. Such an adversary may appear as an actual competitor (as
in competitive markets) or as random factors that emerge during problem solving and

affect the final outcome. For example, the problem of searching for a maximum capacity
path in a flow tree has been modeled as a game tree search problem [4] when the edge
capacities are random. Papadimitriou and Yannakakis [?] have described an extension

of the Traveling Salesperson Problem (TSP) called Canadian TSP that can be modeled
as a game playing problem.

Optimization problems involving multiple, conflicting and non-commensurate objec-
tives have motivated a new search model introduced by Stewart and White [51. In
this model, the cost structure is vector-valued, where each dimension of the cost vector

represents a distinct criterion to be optimized. A partial order called dominance is used
to eliminate clearly inferior solutions and obtain the set of non-inferior solutions in the
search space. In this paper, we extend the same framework for modeling game playing
situations involving multiple non-commensurate criteria.

Multiobjective game playing situations may be modeled by game trees where the tip
nodes have vector-valued costs. Each dimension of the cost vector represents a distinct
criterion of merit. The partial order game tree search problem is to find the non-inferior

options of a player by using the following partial order.

Definition 1.1 (Dominance). Let y’ = (yi , yi, . . . , yk) and y2 = (y:, ~22,. . . , yi) be
two K-dimensional vectors. Then y’ dominates y2 iff:

y; 3 Y,’ Vi 1 < i < K and y’ # y2.

A vector y E Y is said to be “non-dominated” in Y if there does not exist another vector

y’ E Y such that y’ dominates y.

The definition of dominance is similar to that used by Stewart and White [5] to
define the partial order for searching multiobjective OR-graphs.

In conventional game trees, there exists a total order on the values (outcomes)
evaluated at the tip nodes. Given a set of outcomes at a MAX-node, player-l chooses

the maximum one. Likewise, the minimum outcome is chosen by player-2 at MIN-
nodes. In partial order game trees, we can eliminate the clearly inferior outcomes using
the dominance relation, but the choice of the desired outcome from the remaining non-
dominated set of outcomes will depend on the individual preferences of the player. We
call the preferences of a player combined with the resulting selection procedure the
strategy of the player.

It is easy to see that if the individual strategies of both players are known, then
by applying the strategy of player-l at MAX-nodes and the strategy of its opponent
(player-2) at the MIN-nodes, we can solve the problem using conventional game tree

R Dasgupta et al/Artificial Intelligence 82 (1996) 237-257 239

search strategies. If the individual strategies of the players are not known, then for each
strategy of player-l, several outcomes are possible depending on the strategy adopted by
the opponent. Corresponding to each move from a node, a set of outcomes is possible for

every strategy of the player. The objective of the partial order game tree search problem

is to find the non-inferior sets of outcomes through each move from the root node of the
game tree. Player-l can then apply its own strategy on these sets of outcomes and select
the move that returns the best set of outcomes based on its strategy. We shall show that
even if the strategy of either player is known, it cannot be used in the interior nodes of
the game tree, and hence it is necessary to find every non-inferior set of outcomes at

the root node.
In this paper, we analyze the partial order game tree search problem and identify the

necessary and sufficient conditions for a set of outcomes to be inferior to another set
of outcomes for every strategy. For convenience of representation, we use an algebra
called Dominance Algebra on the sets of outcomes to describe the non-inferior sets of
outcomes and a bottom-up approach to determine the non-inferior sets of outcomes at

the nodes of the game tree. Finally, we identify shallow and deep pruning conditions for
partial order game trees and on the basis of those pruning conditions, we present a partial
order search algorithm on lines similar to the a-/I pruning algorithm for conventional

game trees.
The paper is organized as follows. In Section 2 we describe the partial order game tree

search problem. The use of Dominance Algebra is described in Section 3. In Section 4
we describe a brute force method to determine the non-inferior sets of outcomes for a
player. The shallow and deep pruning conditions, as well as the search algorithm which
uses the pruning conditions are described in Section 5.

2. The partial order game tree search problem

In the conventional game tree search problem, the values at the tip nodes of the
game tree are members of a totally ordered set. Given the MIN-MAX values [4] of the

children of a node, it is possible to determine the MIN-MAX value of the parent simply

by using the total order to decide which value is the best. Using a bottom-up approach
it is possible to determine the MIN-MAX value corresponding to each move at the root
node of the game tree.

In the partial order game tree search problem, we only have a partial order on the
the vector-valued outcomes. In the cases where the partial order can determine the
better outcome, the choice is obvious. For example, in Fig. l(a) it is obvious that
player-l at the MAX-node P will select the move with outcome (11,5) since (11,s)
dominates both (9,4) and (7,3). Likewise, in Fig. 1 (b) player-2 will select the move
with outcome (7,3) from node Q. In such situations, it is possible to decide the best
move without any knowledge of the individual preferences of the players. On the other
hand, consider the situation in Fig. 2(a). At node Q, player-2 has a choice between the
outcomes (11,5) and (5,7). Since none dominates the other, the decision will be based
on the preferences of player-2.

240 P: Dasgupta et al./Artijcial Intelligence 82 (1996) 237-257

Fig. 1. Cases illustrating simple dominance.

P
~(11.5Li5.7)~ a b m.fM7.3)~ A?% Q R

lii.51 (5.7) (6.81 (7.3) 1ii.51 f
(5.71

Fig. 2. Examples showing multiple sets of outcomes.

At node Q of Fig. 2(a), if the preferences of player-2 are not known, then it is not
possible for player-l to decide which outcome will be selected. Therefore, corresponding
to move a at node P, we have a set of possible outcomes S, = ((11,5), (5,7)}. In

a similar manner, corresponding to move b at node P, we have a set of outcomes

S/, = {(6,8),(7,3)}. Th us, at node P, player-l has to choose between the sets of

outcomes S,, and Sb, and accordingly take either move a or move b. This choice will
depend on the preferences of player-l. The question which arises at this point is: how

does a player use its preferences to choose between such sets of outcomes?

Thus the problem of the player is to choose between two sets of outcomes (such as
S,, and Sh) with the knowledge that the preferences of the opponent (which are not
known to this player) will decide the final outcome from the selected set. Let x’ denote

the worst outcome in a given set based on the preferences of the player. Then the best
that the given set can guarantee for the player is X: This is similar to the familiar notion
of MIN in conventional game tree search. Therefore, to compare two sets of outcomes

based on individual preferences, we compare the worst outcome from each set based
on those preferences. In case of a tie, we compare the other outcomes. The complete
procedure is as follows:

CompaHSi, S2, d>

To compare sets of outcomes St and S2 on the basis of preferences 4
1. If only St is empty, then declare Sz as better.

Likewise, if only S2 is empty, then declare St as better.
If both Si and S2 are empty then

select Si or S2 randomly and declare it to be better.

P. Dasgupta et al./Artijtcial Intelligence 82 (1996) 237-257 241

2. Let x’t be the worst outcome in St and
Jz, be the worst outcome in S2 based on 4.

3. If x’t and 22 are of equal preference then
3.1 Drop all outcomes from St and ST that are of

equal preference to x’t

3.2 Goto [Step 1]
4. If x’t is better than x’;! based on 4, then declare St as better

else declare S:! as better.

As an example, if the preferences of player-l are such that (5, ‘7) is preferred over
(11,5) and (11,5) ispreferredover (13,3),thentheset {(13,3),(5,7)}ispreferred
over the set {(13,3),(11,5)}. Also the set {(13,3),(5,7)} is preferred over the set
{ (13,3) }, since depending on the preferences of the opponent there is a possibility of

reaching the better outcome (5,7) from the former set.

It should also be noted that two outcomes may have equal preference. Thus, the
preferences of a player do not exactly induce a total order on the set of vector-valued
outcomes; rather, they induce a many-to-one mapping from the set of outcomes to a
totally ordered set which preserves the partial order imposed by the dominance relation.

It is easy to see that the way in which a player will behave can be described by its
individual preferences and a procedure for comparing sets of outcomes. Throughout this

paper we assume that the players use the procedure Compare to compare the sets of
outcomes. We define the strategy of a player as follows.

Definition 2.1 (Strategy). The strategy of a player is a selection mechanism based on
the procedure Compare and the individual preferences of the player which is consistent
with the partial order imposed by the dominance relation. Thus if x’ is an outcome,
which dominates an outcome y, then for all strategies of player- 1, x’ is better than y’ and
for all strategies of player-2, y’ is better than X:

Initially we analyze the situation that arises when the strategy of neither player is
known. Later we shall show that even if the strategy of either of the players is known,
the search problem remains the same.

In Fig. 2(a), corresponding to each move at node P we had only one set of outcomes.
The following example illustrates that corresponding to a move, it is possible to have
multiple sets of outcomes.

Example 2.2. Consider the game tree in Fig. 2(b). At node T player-l will obviously

select the outcome { (3,9)}. At node U player-l can choose either (6,8) or (7,3)
depending on its strategy. This strategy is not known to player-2; therefore, at node V,
it has to choose between the sets { (6,8), (7,3)} and { (3,9)}. Player-2 may choose
either set depending on its own strategy.

Now suppose the strategy of player-l is such that it prefers (6,8) over (7,3). If the
game reaches node U, then it will select (6,8). Therefore, corresponding to this strategy

of player-l, move b (at node P) presents the set of outcomes {(3,9), (6,8)} such that
the opponent’s strategy decides whether (3,9) or (6,8) will be reached. On the other
hand, if player-l prefers (7,3) over (6,8), then corresponding to that strategy, move

242 II Dasgupta et d/Artificial Intelligence 82 (1996) 237-257

~120.101 (60.601 (50.20) l20.501 l120.201 (20.201 L50.201 l40.2501

Fig. 3. Game tree illustrating that a strategy should not be used at interior nodes

b presents the set of outcomes { (3,9>, (7,3)}. Thus, if move b is selected at node P,

then the outcome will either belong to the set { (3,9), (6,8)} or the set { (3,9), (7,3)}
depending on the strategy adopted by player-l.

In a similar situation at node Q, player-2 has to choose between the sets { (12,7)} and
{(11,5),(5,7)}.In th’ is case, since both (11,5) and (5,7) are dominated by (12,7),
player-2 will always select the move to node R. Therefore, corresponding to move a,
we have two singleton sets, namely { (11,5)} and { (5,7)}.

At node P of Fig. 2(b), we can provide player-l with four sets of outcomes to choose
from, namely {(11,5)}, {(5,7)}, {(3,9), (6,8)} and {(3,9), (7,3)}. Are all these
sets candidates for selection? Let us compare the sets { (11,5)} and { (3,9), (7,3)}.
Since (11,5) dominates (7,3), it is easy to see (through the procedure Compare) that

there can be no strategy for player-l that prefers the set { (3,9>, (7,3)}. This set is

therefore an inferior set of outcomes.

Example 2.2 shows that even if the individual strategies of the players are not known,
certain sets of outcomes can be clearly discarded. The objective of partial order game
tree search is to discard such sets of outcomes and provide the player at the root node
with the non-inferior sets of outcomes.

Before giving the formal definition of the problem, it is necessary to make one further

observation. Suppose that each player knows its own strategy but not that of its opponent.
In the game tree representation, this means that only the strategy of player-l is known.
Can we use the strategy at the interior MAX-nodes of the game tree to prune away
several sets of outcomes? The following example shows that the answer is negative in

general.

Example 2.3. Consider the game tree in Fig. 3. Let the strategy of player-l be such
that given any two outcomes, the outcome which is greater in the first dimension is

preferred. If two outcomes are equal in the first dimension, then the outcome with the
larger second dimension is preferred. Let us first analyze the problem using the strategy
of player-l at the interior nodes. At node n3 player-l will choose the outcome (120, lo),
and at node n,~ it will select (50,20) based on its strategy. At node Ott, it is not known
whether player-2 will select (120,lO) or (50,20), and so corresponding to move a

P Dasgupia et al./Art$cial hdelligence 82 (1996) 237-257 243

at node P, we have the set of outcomes { (120, lo), (50,20)}. Likewise, player-l will
select (120,20) at node ns and (50,20) at node &j. At node n2, player-2 will definitely
select (50,20) since it is dominated by (120,20). Thus corresponding to move b we
have the set { (50,20)}. If we compare the sets corresponding to move a and b on the
basis of the strategy of player-l, we find that the set { (120, lo), (50,20)} is preferred

over the set {(50,20)}, and so, move a appears to be better.
In this analysis, we have overlooked one vital point, that is, the opponent does not

know the strategy of player-l. Therefore, from the point of view of player-2, player-l

can select either of the outcomes at nodes ng and 124. Therefore, at node nt, player-2 has
to choose between the sets { (120, IO), (60,60)} and { (50,20), (20,50)}. Since both
(50,20) and (20,50) are better than (60,60) for every strategy of player-2, therefore

player-2 will always select the set { (50,20), (20,50)} and take the move to node n4.
Thus, corresponding to move ~1, we have two sets of outcomes, namely { (50,20)} and

{(20,50)}. Forth e given strategy of player-l, the set { (50,20)} is preferred.
Using a similar reasoning, at node n2, player-2 will have to select between the sets

{ (120,20)} and { (50,20), (40,250)). Player-2 can select either set depending on its

strategy, therefore corresponding to move b, we have two sets of outcomes, namely
{ (120,20), (50,20)} and { (120,20), (40,250)). For the given strategy of player-l,
the set { (120,20), (50,20)} is preferred. By comparing this set with the set { (50,20)}
(which was preferred through move a) we find that actually move b is better for
player- 1.

The above example shows that unless the strategies of both players are known, we
cannot apply the individual strategy of either player at an internal node while determining
the sets of outcomes. Therefore, we can eliminate only those sets of outcomes that are

inferior with respect to every strategy. In other words, we have to find the non-inferior

packets of outcomes, where a packet of outcomes is defined as follows.

Definition 2.4 (Packet of outcomes). At a node n a set of outcomes P corresponding
to a move a will be called a packet for a player iff it has the following two properties:

(1) There exists a strategy of the player, such that after taking move a, irrespective
of the strategy adopted by the opponent, the final outcome will be better than or
equal to an outcome in that set in every dimension.

(2) For every outcome x’ in P, there exists an opponent strategy such that if move a
is taken, then the final outcome is X:

From the previous discussion it follows that there may be several packets corresponding
to a single move. The set of packets at a node is the union of the set of packets
corresponding to every move at that node.

The second property of a packet ensures that redundant outcomes (that is, outcomes
which will never be reached) are not included in a packet. For example in Fig. 3, the
set of outcomes { (120, lo), (50,20)} corresponding to move a at node s satisfies the
first property, but is not a packet for player-l since the opponent at node nl will always
select the move to nq (see Example 2.3), and therefore there is no opponent strategy to
reach the outcome (120,lO).

244 P: Dasppta et al./Artijicial Intelligence 82 (1996) 237-257

Fig. 4. Dominance by freedom of choice.

If we can find the entire set of packets at the root node of the game tree, then what

we have is the sets of outcomes corresponding to every strategy of the player at the root

node. Out of the entire set of packets, some packets may be inferior to other packets
for every strategy of the player. What are the necessary and sufficient conditions for a
packet to be inferior among the set of packets at a node? We identify two conditions as

follows.

Clear Dominance. A packet P is inferior to a packet P’ for a player if:

(1) each outcome in P’ is either equal to some outcome in P or is strictly better
than some outcome in P, and

(2) there exists at least one outcome in P’ which is strictly better than some outcome
in P.

In such cases we say that P’ dominates P by clear dominance.

Dominance by Freedom of Choice. A packet P is inferior to a set of packets PI, . . . , PJ
if each packet Pi contains fewer outcomes than P, and the union of them yields P. In

such cases we say that PI,. . . , PJ dominates P by freedom of choice.

Before proving that these are the necessary and sufficient conditions for a packet to be
inferior, we illustrate the idea of dominance by freedom of choice through an example.
Note that the idea of clear dominance has already been illustrated in Example 2.2 and

Example 2.3.

Example 2.5. Consider the game tree in Fig. 4. At node P, player-2 will always se-

lect the set {(11,5),(5,7)} from the two sets {(11,5),(5,7)} and {(11,12)}. Thus
corresponding to move a at node G, we have two sets of outcomes, namely { (11,5) }
and { (5,7)}. At the nodes T and U, player-l will always select (11,5) and (5,7)
respectively. Thus, at node Q, player-2 can either select (11,5) or (5,7) depend-

ing on its strategy. Therefore, corresponding to move b we have the set of outcomes

{(11,5)> (597)).
If the strategy of player-l is such that (11,5) is preferred over (5,7), then the set

{(11,5)} will b e preferred over { (11,5), (5,7) } based on the procedure Compare. On

P Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257 245

the other hand, if the strategy of player-l is such that (5,7) is preferred over (11,5),
then { (5,7)} will be preferred over { (11,5), (5,7) >. Thus, whatever be the strategy
of player-l, the set {(11,5),(5,7)} will never be selected. The sets {(11,5)} and
{ (5,7)} together provide more freedom of choice than the union { (11,5), (5,7)} and
therefore dominate the set {(11,5),(5,7)}.

Theorem 2.6. The conditions of clear dominance and dominance by freedom of choice
are s@icient conditions for a packet to be inferior among a set of packets.

Proof. Suppose a packet P’ dominates a packet P by clear dominance. Consider a

strategy ST of the player. Let x’ be the worst outcome in P’ based on ST. From the
definition of clear dominance, there exists some outcome y’ in P which is either equal
to x’ or worse for every strategy. If y’ is worse than x’ then P is obviously inferior. If x’ is
equal to 7, we drop them from P and P’, and use the same reasoning on the next worst
outcome. Since there exists at least one outcome in P’ which is strictly better than an

outcome in P, it follows that P is inferior to P’ for every strategy ST.

Suppose the set of packets PI,. . . , PJ dominates a packet P by freedom of choice.

Consider a strategy ST of the player. Let x’ be the best outcome in P on the basis of
ST. From the definition of dominance by freedom of choice, there exists a packet P,

which is a subset of P and contains J?. Let us compare Pi and P on the basis of ST. If

the worst outcome in P does not belong to Pi, then P is inferior. Otherwise, we drop
that outcome from both sets and consider the next worst outcome and so on. Since Pi

contains the best outcome in P and contains fewer outcomes than P, we find that P is

inferior to Pi for the strategy ST. It follows that P is inferior to at least one of the of
packets PI, . . , PJ for every strategy. 0

Theorem 2.7. For a packet to be inferior among a set of packets S, either of the

conditions clear dominance or dominance by freedom of choice is necessary.

Proof. Let us consider a packet P which is neither dominated by clear dominance, nor
by freedom of choice. Let P, denote the union of all packets in S which are subsets of

P. Let P’ denote the set of outcomes in P that are not in P,,. Since P is not dominated
by freedom of choice, P’ is non-empty. We now consider a strategy as follows:

(1) Every outcome in P, has equal priority. Every outcome in P’ has equal priority.

Outcomes from P’ are preferred over outcomes from P,,.

(2) Every outcome that does not dominate an outcome in P, or is not equal to an

outcome in P, has a lower priority than every outcome in P.
Since P’ is non-empty and its outcomes are preferred over those in P,, it follows that
P is preferred over all packets which are subsets of P. P is not dominated by clear
dominance; therefore every packet that is not a subset of P must contain an outcome

which neither dominates nor is equal to an outcome in P. Therefore, P is preferred over
such packets as well. It follows that P is the most preferred packet based on the above
strategy, and therefore not an inferior packet. 0

The game tree search problem studied in this paper may now be defined as follows.

246 P Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257

The Partial Order Game Tree Search Problem.
l Given: A game tree where the values at the tip nodes are K-dimensional vectors.
l To Jind: The set of non-inferior packets at the root node of the game tree.

To address the above problem, we will first analyze the problem of finding the minimal
set of packets at a node n when the set of packets for the player at node IE is given.

For this purpose we shall use an algebra called Dominance Algebra. Subsequently, we
shall address the problem of determining the set of packets at a node using partial order

game tree search.

3. Dominance Algebra

Given the set of packets at a node, we have to identify the set of non-inferior packets
(that is, those that may be selected by the player at that node). For convenience of
representation we use an algebra to describe the type of operations that take place at the
MAX- and MIN-nodes.

At a given node n, we have a set of packets Pi,. . . , P,, for the player who makes the
move at that node. If n is a MAX-node, then we denote the options of player-l at node

n by a MAX-expression F,, as follows:

6, = PI fma, 4 +max . . + +max Pm.

The operator fmax is a commutative operator. Following the definition of packet dom-

inance, we define another property of the +max operator through the following MAX-

absorption law.

MAX-absorption Law. A packet Pi at a MAX-node n can be absorbed under the
following two situations:

l Clear Dominance, There exists a packet Pj at node n such that each outcome in
ci dominates (or is equal to) some outcome in Pi, and at least one outcome in Pj

dominates an outcome in Pi. If this condition holds then:

In other words, Pi is absorbed in the MAX-expression F, at node n.

l Dominance by Freedom of Choice. There exists a set of packets P,‘, . . . , PJ at node
n such that each of them contains fewer outcomes than Pi, and the union of them

yields Pi. If this condition holds then:

(PI +max ’ ’ . +max Pi) +max Pi = P[+max ’ ’ ’ +max Pj.

In other words, Pi is absorbed in the MAX-expression F,, at node n.

Thus the fm, operator is actually the dominance operator over packets of outcomes.
Using the MAX-absorption law, we can obtain a minimal MAX-expression at node n.

A MAX-expression is actually a set of packets over which we can apply the MAX-
absorption law to eliminate dominated packets. Therefore, throughout this paper we may

I? Dasgupta et al./Artijcial Intelligence 82 (1996) 237-257 241

use statements such as “a packet belongs to a MAX-expression” or “a packet is in a
MAX-expression”.

We now prove that given the set of packets at node n, application of the MAX-
absorption law leads to a unique minimal MAX-expression F,, for that node. The fol-
lowing lemma shows that the sequence in which dominated packets are absorbed does
not affect the final MAX-expression.

Lemma 3.1. If F is a MAX-expression and PI and P2 are packets such that F -I-,,,~~

PI +n,ux P2 = F (through some sequence of application of MAX-absorption law) then

F +ux PI = F and F +max P2 = F.

Proof. It is easy to see that, if F+,,,Pl # F and F+,,P2 + F, then F+,,Pl +max PZ
cannot be equal to F. Without loss of generality, let F Smax PI = F. (There is no loss
of generality because +max is commutative.) Now, if PI is not instrumental in the
absorption of P2, then the result follows trivially. Let us consider the cases where PI is
used in the absorption of P2. If PI is used in the absorption of P2, then each outcome

in P1 must either dominate or be equal to some outcome in P2.
The MAX-expression F can absorb PI through clear dominance or through freedom

of choice. We analyze both situations:
l Clear Dominance. If F absorbs P1 through clear dominance, then there exists a

packet Pi in the MAX-expression F, such that P;: clearly dominates PI. Then each

outcome in Pi either dominates or is equal to some outcome in PI, and at least one
outcome in Pi dominates an outcome in PI. Since each outcome in P1 in turn either

dominates or is equal to some outcome in P2, we find that Pi absorbs Pz through
clear dominance.

l Dominance by Freedom of Choice. If F absorbs PI through freedom of choice then
we can have two cases:
(1) If P1 absorbs P2 through clear dominance, then there exists an outcome x’ in

PI that dominates an outcome in P2. Each outcome in PI must belong to some
packet Pi in the MAX-expression F (from the definition of absorption by
freedom of choice). Let Pi be the packet containing x’. Since every outcome

in Pi is equal to some outcome in PI, we find that Pi absorbs P2 through clear
dominance.

(2) Since F absorbs P1 through freedom of choice, there exist packets P,‘, . . . , Pi
in the MAX-expression F, such that the set of packets St = {P:, . . . , Pj}
dominates PI by freedom of choice. Now if PI is used to absorb P2 by
freedom of choice then there exists a set S2 of packets in the MAX-expression
F, such that S2 U {PI} absorbs PT. It is easy to see then that Sz U S1 can absorb
P2 by freedom of choice. Therefore F absorbs P2 by freedom of choice. 0

The lemma effectively states that if PI is instrumental in the absorption of P2, and PI
is absorbed by F before the absorption of P2 then F will also absorb Pz.

Theorem 3.2. Given the set of packets for player-l at a MAX-node n, application of
the MAX-absorption law leads to a unique minimal MAX-expression for node n.

248 fl Dasgupta et al./Art@cial Intelligence 82 (1996) 237-257

Proof. If a packet is instrumental in the absorption of another packet then Lemma 3.1
shows that even if the former packet is absorbed earlier, the latter packet will still be
absorbed. Thus the absorption of the dominated packets is independent of the order in
which the packets are absorbed. The result follows. 0

Given the set of packets for player-l at a MAX-node we can individually test each

packet to see whether it is absorbed by the other packets. Theorem 3.2 shows that this
will lead to an unique minimal set of packets at the node. It may be easily shown

that a similar analysis may be applied to the packets for player-2 (the opponent) at a
MIN-node. If n is a MIN-node, then we denote the options of player-2 at node n by a
MIN-expression F, as follows:

F,, = P, +min Pz +min . + . +min pm,

where PI, . . , P,, are packets for player-2 at node n. The operator +tin is a commutative

operator similar to +max except that it obeys the following MIN-absorption law.

MIN-absorption Law. A packet Pi at a MIN-node n can be absorbed under the fol-
lowing two situations:

l Clear Dominance. There exists a packet F’i at node n such that each outcome in
l’j is dominated by (or is equal to) some outcome in Pi, and at least one outcome

in F’j is dominated by an outcome in Pi. If this condition holds then:

cj +min Pi = pj,

l Dominance by Freedom of Choice. There exists a set of packets P,‘, . . . , Pj at node
n such that each of them contains fewer outcomes than Pi, and the union of them

yields Pi. If this condition holds then:

Theorem 3.3. Given the set of packets for player-2 at a MIN-node n, application of
the MIN-absorption law leads to a unique minimal MIN-expression for node n.

Proof. On lines similar to the proof of Theorem 3.2. 0

Theorem 3.2 and Theorem 3.3 effectively prove that the +max and +min operators
are associative. Dominance Algebra consists of sets (packets) of K-dimensional vectors
and the two commutative and associative operators +max and +min. Given the MAX-
expression at a MAX-node (or a MIN-expression at a MIN-node), we can use the
MAX-absorption law (MIN-absorption law) to obtain the minimal MAX-expression

(MIN-expression) at that node.

4. Finding the packets

The question that has been answered so far is how to determine the minimal set of
packets at a node when the entire set of packets at that node is given. Let us now

P: Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257 249

address the problem of identifying the set of packets at a node. In particular, we address
the following problems:

(1) How to find the minimal set of packets for player-l at a given MAX-node n
when the minimal set of packets for player-2 at the child MIN-nodes is given.

(2) How to find the minimal set of packets for player-2 at a given MIN-node n when
the minimal set of packets for player-l at the child MAX-nodes is given.

For the first problem, we define a function called MZN-to-MAX that converts a given

MIN-expression to a MAX-expression. The function is based on the following result.

Lemma 4.1. Let {PI, . . . , P,,,} be the minimal set of packets for player-2 at a MIN-

node n. If we construct a set S of outcomes by selecting one outcome from each Pi,
1 < i < m, then S is a packet for the parent MAX-node of n.

Proof. We show that there exists a strategy for player-l such that the final outcome
either dominates or is equal to some outcome in S. If player-2 does not make a mistake,

then it will select one of the packets PI,. . . , P,,,. Without loss of generality, let us assume

that player-2 selects the packet Pi. Then from the definition of a packet there exists a

strategy for player-l to reach any desired outcome from Pi. The result follows because,
by the construction of S, one outcome in P; belongs to S.

If player-2 makes a mistake, then it will select a packet P’ that can be absorbed by

PI fmin ’ . fmin P,,,. Then, every outcome in those packets that are instrumental in the

absorption of P’ will be either dominated by or equal to some outcome in P’. Thus, if

player-2 selects P’, then there exists a strategy for player-l to reach an outcome from
P’ which is either better than some outcome in S or equal to it. It follows that S is a
packet for player- 1. 0

MIN-to-MAX(F: MIN-expression)

(1) Let F = PI fmin PZ +tin . . . +tin P,,,.
(2) Construct all possible sets of outcomes by selecting one outcome from each

packet Pi, 1 < i 6 m. Let these sets be St, S2, . . . , SJ.
(3) Using the MAX-absorption law, minimize the MAX-expression:

F’ = Sl fmax S2 +max . . . +max SJ.

(4) Return the MAX-expression F’.

Lemma 4.2. If nt is the ith child of the MAX-node n and F,,, is the MIN-expression

corresponding to the MIN-node ni, then the set of packets for player- 1 at node n through

the child ni can be represented by the MAX-expression returned by MIN-to-MAX(F,,).

Proof. From Lemma 4.1 it follows that the set of packets constructed by the function
MIN-to-MAX are packets for player-l at node n. Once the game reaches node ni, there
exists a strategy for player-2 to ensure that the game reaches either some outcome from
the selected packet at node ni, or an outcome that is dominated by some outcome from
the selected packet. Therefore, through node ni player-l can (at best) reach only those
outcomes that are present in the packets at node ni. The result follows. 0

250 P Dasgupta et al./Arr@cial Intelligence 82 (1996) 237-257

Theorem 4.3. If Fni denotes the MIN-expression of the ith child of the MAX-node n,
then the MAX-expression of the node n is:

F,, = MIN-to-MAX(F,,,) +max MIN-to-MAX(F,,) smax . . ’ +mx MIN-to-MAX(F,,",) ,

where m denotes the number of children of node n.

Proof. Follows from Lemma 4.2. 0

The above analysis shows that using the MIN-to-MAX function, we can construct the

set of packets (for player- 1) at a MAX-node when the set of packets (for player-2) is
given for each child MIN-node. The set of packets at a MIN-node can be constructed
in a very similar fashion using the following MAX-to-MIN function.

MAX-to-MIN(F: MAX-expression)

(1) Let F=Pl +maxPz+max...+maxPnr.
(2) Construct all possible sets of outcomes by selecting one outcome from each

packet Pi, 1 < i 6 m. Let these sets be St, S2,. . . , SJ.
(3) Using the MIN-absorption law, minimize the MIN-expression:

F’=Sl +tin&+tin...+minS~.

(4) Return the MIN-expression F’.

Theorem 4.4. If F,, denotes the MAX-expression of the ith child of the MIN-node n,
then the MIN-expression of the node n is:

F,, = MAX-to-MIN(FnI) +min MAX-to-MIN(Fnz) +min * * . +min MAX-to-MIN(Fan,) 9

where m denotes the number of children of node n.

Proof. On lines similar to the proof of Theorem 4.3. Cl

At the leaf nodes of the game tree, the values themselves are the packets. Using the
MAX-to-MIN and MIN-to-MAX functions and the absorption laws, we can now compute
(in a bottom-up manner) the minimal set of packets at each node of the game tree (and
ultimately those at the root node). Let us consider an example.

Example 4.5. Consider the game tree in Fig. 5. Let Fi denote the MAX-expression at
the MAX-node i and the MIN-expression at the MIN-node i. It is easy to see that F4 =

{(5,4)}fmin ((3,lO)) and FS = {(11,5)}+ti,,{(5,9)}. Therefore, MIN-to-MAX(F4)
is {(5,4), (3,lO)) and MZN-to-MAX(Fg) is {(11,5), (5,9)}. The MAX-expression F3

can be computed as:

F3 = {(5,4), (3,lO)) +max {(11,5), (599)) = {(11,5), (579)).

Likewise, it is easy to see that F7 = {(12,7)} +min {(7,12)} and FIS = {(13,6)} +min
{(6,13)}. Th ere ore, f MIN-to-MAX(F7) is {(12,7), (7,12)} and MD-to-MAX(Fls) is

{(13,6), (6,13)}. The MAX- expression Fe can be computed as:

F! Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257 251

.(5.91)+ma, (18.7))

-- -- -_ --
(5.4) (3TO) 111.51 1

(5.91
(12.7),,<21 (13a’3)&3j (4.5) I<*) 18.71 ,ggg, (9.91 ,z8) (6.9) (Ej)

Fig. 5. Game tree showing partial order pruning.

F6={(12,7),(7,12)}+max{(13,6),(6,13)}.

MAX-to-MZN(F3) can be computed as { (11,5)} +tin { (5,9)}. Also, MAX-to-MZN(F’)

can be computed as:

{(12,7),(13,6)}+~~{(12,7),(6,13)}+~~{(7,12),(13~6)}

+,,{ (7712)) (613)).

The MIN-expression F2 can now be computed as:

F~={(12,7),(13,6)}+,,{(12,7),(6,13)}+~~{(7,12),(13,6)}

+min{(7,12), (6913)) +tin {(11*5)}+ti” ((599))

={(11,5)}+mi”{(5~9)}.

Looking at the other side of the game tree, the MIN-expression at node 10 is FIO =
{ (4,5)} +min { (5,2)} and that at node 11 (using the MIN-absorption law) is Fi 1 =
{ (8,7)}. Using, the MZN-to-MAX function on FIO and FII we obtain the MAX-

expression at node 9 as follows:

F9 = {(4,5), (592)) +max {(8,7)}= ((897)).

Similarly, using the MIN-absorption law we have Fis = {(8,8)} and F14 = {(3,3)}.
Therefore the MAX-expression at node 12 is:

F12 = {t&W} +mm ((393)) = ((898)).

The MIN-expression at node 8 can now be computed as:

Fs = ((877)) +min {(8,8)} = ((897)).

Now, MN-to-MAX(F2) is {(11,5),(5,9)} and MZN-to-MAX(Fg) is {(8,7)}. There-
fore, the MAX-expression at node 1 is:

Fi = {(11,5), (599)) +max ((877)).

Thus at the root node of the game tree of Fig. 5, player-l has two packets to choose

from, namely {(11,5),(5,9)} and {(8,7)}.

252 R Daqupta et d/Artificial Intelligence 82 (1996) 237-257

(bl

Fig. 6. Shallow pruning.

5. Partial order w-j? pruning

In the previous section, we have seen how the set of non-dominated packets can be
identified. However, the bottom-up approach is a brute force method that may require

too much time and space. If we can find conditions under which certain branches of
the game tree can be pruned, then we can apply techniques

achieve our objective more efficiently.
We define two boolean functions max_prune(Fl, F2) and

lows:

Definition 5.1 (Dominance test for pruning).

similar to cu-/? pruning to

minprune(Fl , F2) as fol-

l max-prune(Fl , F2) : If every packet in the MAX-expression F2 is absorbed by the
MAX-expression Fl using clear dominance (of the MAX-absorption law), then

mux-prune(Fl , F2) is true, else it is false.
l minprune(Fl , F2): If every packet in the MIN-expression Fz is absorbed by the

MIN-expression F, using clear dominance (of the MIN-absorption law), then

minprune(Fl , F2) is true, else it is false.

Using the above functions, we define pruning conditions in partial order game trees
which are somewhat analogous to cy-p pruning in conventional game trees.

5. I. Shallow a-j? pruning

The following lemmas help in identifying shallow pruning conditions.

Lemma 5.2. Consider the game tree in Fig. 6(a). Fl denotes the MAX-expression

obtained at node A by collecting the packets vor player-l) backed up by the children

n1,..., ni only. F2 denotes the MAX-expression for the entire set of packets ($or player-

1) backed up at node C. Fs denotes the MIN-expression for the entire set of packets

backed up (for player-2) at node B. If max-prune(Fl, F2) is true, then the following
equality holds.

F, +n,ax MZN-to-MAX(FE) = FI.

P: Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257 2.53

Proof. Let us assume the contrary. Then there exists a packet P in MZN-to-MAX(FB)
which cannot be absorbed by Fl. This means that if player-l takes the move to B,

there exists a strategy of player-l to reach an outcome in P or some outcome which
dominates an outcome in P. Thus, even if player-2 takes the move to C, then there

exists a subset P’ of P, such that player-l is able to reach some outcome in P’ (or
some outcome that dominates an outcome in P’). Therefore P’ is either a packet at
node C, or dominated by some packet at node C. In either case, P’ can be absorbed by
some packet Pi in Fl using clear dominance. Since P’ is a subset of P, it follows that
P can also be absorbed by Pi using clear dominance. This contradicts our assumption
that the packet P cannot be absorbed by F]. The result follows. 0

Lemma 5.2 shows that shallow pruning can be effected on the other successors of
node B when max-prune(Fl, F2) is true, where Fl and F2 are as described in the state-
ment of the lemma. It may be noted that in Fig. 6(a), if F, absorbs a packet of F2
using freedom of choice (in the MAX-absorption law), then the pruning is not possible.

For example, let FI be {(11,5)} fm, {(5,7)} and F2 be {(11,5),(5,7)}. Let the
MAX-expression Fo at node D be { (2,9)}. Let there be no other children of node B
(except nodes C and 0). Then node B can back up the packet {(11,5), (5,7), (2,9)}
at node A, which cannot be absorbed by Fl. If node D would have been pruned,

then this packet would not be backed up. This is the reason for our using only
the clear dominance criteria (of the absorption laws) for defining the pruning con-
ditions.

Reasoning in a similar way, we can define pruning conditions where the function
minprune is applicable.

Lemma 5.3. Consider the game tree in Fig. 6(b). Fl denotes the MIN-expression ob-

tained at node A by collecting the packets (for player-%) backed up by the children

n1,..., n; only. F2 denotes the MIN-expression for the entire set of packets Cfor player-
2) backed up at node C. FB denotes the MAX-expression for the entire set of packets

backed up (for player-l) at node B. If minprune(Fl, F2) is true, then the following

equality holds.

FI +,,lin MAX-to-MIN(FB) = Fl.

Proof. On lines similar to the proof of Lemma 5.2. 0

5.2. Deep a-P pruning

Deep pruning conditions can also be identified for partial order game trees as follows.

Lemma 5.4. Consider a path in a game tree as shown in Fig. 7 (a). Fi denotes the

MAX-expression formed by collecting the set of packets Cfor player-l) backed up by

those children of MAX-node ni which are to the left of the child in the given path.

FC denotes the set of packets Cfor player-l) at node C. Let F denote the following
MAX-expression:

254 F? Dasgupta et al./Artijicial Intelligence 82 (1996) 237-257

(al Lb1

Fig. 7. Deep pruning.

F = FI +,,ux F2 +,,uu . . . +max FJ,

If maxprune(E Fc) is true, then at node nJ the move to node B will never be selected
by player- 1.

Proof. Let us assume the contrary, that is, player-l selects the move to node B when

the game reaches node nJ. Since player-2 can then select the move to node C, it is easy
to see that each packet (for player- 1) backed up by node B to nJ must contain a subset
which is either a packet at node C or dominated by a packet at node C.

In the partial order game tree search problem, player-l will have a set of packets
of outcomes to choose from at the root node nt. By definition, if the player-l selects
a packet, then there exists a strategy for it to ensure that the final outcome is either
some outcome from that set or dominates some outcome from that set. Therefore, if the

strategy of player-l is such that it selects the packet P from the set of packets at the
root node, then the game will go through those MAX-nodes ni that has a non-dominated
packet which is either some subset of P, or dominates some subset of P (and therefore,
dominates P) .

Therefore, if the game reaches node B, then player-l must have selected a packet P
at the root node such that there exists a packet P’ (for player-l) backed up by node B
to node nJ which is either a subset of P or dominates P. It follows that in each node ni
in the path to nJ, there exists a non-dominated packet Pi such that either P’ is a subset
of Pi, or P’ dominates Pi.

Since P’ is a packet backed up by node B, it contains a subset which is either a packet
PC at node C or dominated by a packet PC at node C. Since minprune(E Fc) is true,
there exists a packet P[at some node ni which dominates PC using clear dominance.
P/ will then also dominate P’ and therefore, will dominate Pi. Thus Pi is a dominated
packet at node ni which brings us to a contradiction. The result follows. 0

P Dasgupta et al. /Artificial Intelligence 82 (1996) 237-257

Using similar reasoning, we can prove the following lemma.

255

Lemma 5.5. Consider a path in a game tree as shown in Fig. 7(b). Fi denotes the
MN-expression formed by collecting the set of packets (for player-2) backed up by
those children of MN-node ni which are to the left of the child in the given path.
Fc denotes the set of packets (for player-2) at node C. Let F denote the following
MAX-expression:

F = FI +m;n F2 +min . . . +min FJ.

If min_prune(E Fc) is true, then at node nJ, the move to node B will never be selected
by player- 1,

Proof. On lines similar to the proof of Lemma 5.4. 0

Lemma 5.4 and Lemma 5.5 allows us to define a-expressions for MIN-nodes and
P-expressions for MAX-nodes (using the idea of the LY and j3 bounds in conventional

game tree search).

Definition 5.6 (a-expression). The a-expression at a MIN-node B is the MAX-express-
ion formed by collecting the packets (for player-l) currently backed up at all MAX

ancestors of B.

Lemma 5.4 shows that the exploration of a MIN-node B can be terminated as soon as

the MAX-expression backed up by any of its children is absorbed by the a-expression

at B (using clear dominance).

Definition 5.7 (P-expression). The P-expression at a MAX-node B is the MIN-express-
ion formed by collecting the packets (for player-2) currently backed up at all MIN-

ancestors of B.

Lemma 5.5 shows that the exploration of a MAX-node B can be terminated as soon
as the MIN-expression backed up by any of its children is absorbed by the P-expression
at B (using clear dominance).

Using these results, we may now develop an algorithm on lines similar to the a-P
pruning algorithm of conventional game tree search. Given heuristic vector estimates
e(n) at each terminal node n, the following procedure uses a technique similar to
(Y-P pruning to determine the set of non-dominated packets for player-l. The call

F(s, -65, +&) returns the MAX-expression at node s. +& is a packet containing a
single K-dimensional outcome which has all dimensions equal to +oo. Likewise -66
is a packet containing a single K-dimensional outcome which has all dimensions equal

to -03.

Procedure F(n, a, p)
1. IF n is a terminal node THEN Return e(n)
2. Generate successors ml, m2, . . . , mb of n

256 P Dasgupta et al. /Artificial Intelligence 82 (1996) 237-257

2.1. Set i +- 1
2.2. IF IZ is a MAX-node THEN

2.2.1. Set F, t -66
2.2.2. Repeat the following steps until i > b

2.2.2.1. Set F,,# +- F(mi, a, p>
2.2.2.2. IF F,,,! f -ot, THEN

Set cy + LY +max Fnl,
Set F,, + 6, +max F,,,
IF minprune(p,MAX-to-MZN(F,,)) is true THEN

Return -155

2.2.2.3. Set i +- i + 1
2.2.3. Return F,

2.3. IF n is a MIN-node THEN
2.3.1. Set F,, c +oZ
2.3.2. Repeat the following steps until i > b

2.3.2.1. Set F,,, +- F(mi, CY, p)
2.3.2.2. IF F,, # -66 THEN

Set p c p +in MAX-to-MIN(F,,,)
Set F, c F,+ti” MAX-to-MIN(F”,, >
IF mux-prune(a, F,,;) is true THEN

Return -07,

2.3.2.3. Set i + i+ 1
2.3.3. Return MN-to-MAX(F,,)

The working of the algorithm is illustrated on the game tree of Fig. 5. The sequence
of nodes visited, and the corresponding values of LL and /3 is as shown in Table 1.

In MAX-nodes, F(n) denotes the MAX-expression and in MIN-nodes, F(n) denotes
the MIN-expression. For convenience of writing, we have written packets containing a
single outcome (a, b) as “(a, b)” instead of “{(a, b)}“.

6. Conclusion

The problem of searching game trees under a total order has been well studied in the

past. In this paper we have investigated the more general problem of searching a game
tree under a partial order.

The contents of this paper focuses on the general issues in partial order game tree

searching. The pruning conditions and basic search strategies can be enhanced to cater to
the formulations of specific problems. For example, it is likely that if a problem involves
many criteria, and each of them are modeled as separate dimensions of the cost vector,
then very little pruning is possible as most outcomes become non-dominated. In order
to enhance the pruning in such situations a judicious combination of some of the criteria
may be called for. In the other extreme case, when all the criteria can be meaningfully
combined, the proposed pruning conditions collapses to the pruning conditions of total
order game tree search.

Table I

P: Dasguptu et al./Art$icial Intelligence 82 (1996) 237-257 251

Sequence of nodes visited by procedure F on the game tree of Fig. 5

IZ F(n) a P

(5,4) +min (3,lO)

(11~5) +min (5,9)

{(5,4), (3,lO))

+max {(11,5),(5,9)}

={(11,5),(5,9)}

(12.7) fmin (7.12)

_

(1135) +min (5.9)

_

(8,7) +m,n (9,9) = (8,7)

(827)
_

(9.9) +min (8.8) = (8,8)

-&

;(~4),(3.10)~

{ (5,4),(3.10))

{(11,5),(5.9))

-07,

-&

{(l’LV,U,l2)}
_

;(:,5).(5,9)1

{(11,5).(5.9)}

{(11,5),(5,9))

{(11,5).(5,9))

{(11,5)>(5,9)}

{(11,5),(5,9))

{(11,5)>(5,9))

{(11,5),(5,9))+max (8.8)

{(11,5).(5,9))

{(11,5).(5,9)}+1n,x(8,7) {(11,5),(5,9)}+m,, (8,7)

fo7

(5~~) fmin (3310)

+07,

(11,5) +min (5.9)

+07,

(11,5) +min (5,9)

(I135) +min (5.9)

+min (1237) +min (7,12)

=(11,5) +min (5.9)

(ll.5) fmin (5.9)

(11,5) +min (5-9)

+CZ

(4.5)

+CZ

(8.7)

+CZ

(8.7)

(8.7) +min (898) = (8,7)

(8.7)

(8,7)

+CG

il Pruning occurs at these nodes.

Acknowledgements

The authors would like to thank the reviewers for their comments, which helped in
improving both the contents as well as the style of presentation of the paper.

References

1 1] D.E. Knuth and R.W. Moore, An analysis of alpha-beta pruning, Artif: Infell. 6 (1975) 293-326.

12] R.E. Korf, Multi-player alpha-beta pruning, Artif: Intell. 48 (199 1) 99-l 11.

13 1 C.H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theorer. Cornput. Sci. 84 (199 1)

127-150.

[4 1 .I. Pearl, Heuristics (Addison-Wesley, Reading, MA 1984).

[5 1 B.S. Stewart and C.C. White, Multiobjective A*, J. ACM 38 (1991) 775-814.
(61 G.C. Stockman, A minimax algorithm better than alpha-beta?, Arti$ Intell. 12 (1979) 179-196.

