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Abstract 

The problem of partial order game tree search arises from game playing situations where 
multiple, conflicting and non-commensurate criteria dictate the merit of a position of the game. 
In partial order game trees, the outcomes evaluated at the tip nodes are vectors, where each 
dimension of the vector represents a distinct criterion of merit. This leads to an interesting variant 
of the game tree searching problem where corresponding to every game playing strategy of a 
player, several outcomes are possible depending on the individual priorities of the opponent. In 
this paper, we identify the necessary and sufficient conditions for a set of outcomes to be inferior 
to another set of outcomes for every strategy. Using an algebra called Dominance Algebra on 
sets of outcomes, we describe a bottom-up approach to find the non-inferior sets of outcomes at 
the root node. We also identify shallow and deep pruning conditions for partial order game trees 
and present a partial order search algorithm on lines similar to the cu-p pruning algorithm for 

conventional game trees. 

1. Introduction 

Current game tree searching methods assume that a given position of the game can 

be evaluated as a single numerical value which indicates the merit of that position. 
In normal two-player games, a MIN-MAX value [4] is defined, which indicates the 
best alternative available to a player. Depth-first algorithms like a-p pruning [l] and 
best-first algorithms like S’S’ [6] are known to efficiently determine this MIN-MAX 
value. These studies have also been extended to multiplayer games [ 21. 

In this paper, we study a variant of the game tree search problem, where the costs 

evaluated at the tip nodes of the game tree are vectors. The objective of such a framework 
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is to model game playing situations where the merit of a position of the game is dictated 
by multiple non-commensurate criteria. In such game playing situations, a position of 

the game can be better than another in some criteria of merit and worse in some of the 
other criteria. The individual priorities of each player decides which position would be 
most desirable for it. 

It is well known that the presence of an adversary can lead to game playing situations 
in optimization problems. Such an adversary may appear as an actual competitor (as 
in competitive markets) or as random factors that emerge during problem solving and 

affect the final outcome. For example, the problem of searching for a maximum capacity 
path in a flow tree has been modeled as a game tree search problem [4] when the edge 
capacities are random. Papadimitriou and Yannakakis [?] have described an extension 

of the Traveling Salesperson Problem (TSP) called Canadian TSP that can be modeled 
as a game playing problem. 

Optimization problems involving multiple, conflicting and non-commensurate objec- 
tives have motivated a new search model introduced by Stewart and White [ 51. In 
this model, the cost structure is vector-valued, where each dimension of the cost vector 

represents a distinct criterion to be optimized. A partial order called dominance is used 
to eliminate clearly inferior solutions and obtain the set of non-inferior solutions in the 
search space. In this paper, we extend the same framework for modeling game playing 
situations involving multiple non-commensurate criteria. 

Multiobjective game playing situations may be modeled by game trees where the tip 
nodes have vector-valued costs. Each dimension of the cost vector represents a distinct 
criterion of merit. The partial order game tree search problem is to find the non-inferior 

options of a player by using the following partial order. 

Definition 1.1 (Dominance). Let y’ = (yi , yi, . . . , yk) and y2 = (y:, ~22,. . . , yi) be 
two K-dimensional vectors. Then y’ dominates y2 iff: 

y; 3 Y,’ Vi 1 < i < K and y’ # y2. 

A vector y E Y is said to be “non-dominated” in Y if there does not exist another vector 

y’ E Y such that y’ dominates y. 

The definition of dominance is similar to that used by Stewart and White [5] to 
define the partial order for searching multiobjective OR-graphs. 

In conventional game trees, there exists a total order on the values (outcomes) 
evaluated at the tip nodes. Given a set of outcomes at a MAX-node, player-l chooses 

the maximum one. Likewise, the minimum outcome is chosen by player-2 at MIN- 
nodes. In partial order game trees, we can eliminate the clearly inferior outcomes using 
the dominance relation, but the choice of the desired outcome from the remaining non- 
dominated set of outcomes will depend on the individual preferences of the player. We 
call the preferences of a player combined with the resulting selection procedure the 
strategy of the player. 

It is easy to see that if the individual strategies of both players are known, then 
by applying the strategy of player-l at MAX-nodes and the strategy of its opponent 
(player-2) at the MIN-nodes, we can solve the problem using conventional game tree 
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search strategies. If the individual strategies of the players are not known, then for each 
strategy of player-l, several outcomes are possible depending on the strategy adopted by 
the opponent. Corresponding to each move from a node, a set of outcomes is possible for 

every strategy of the player. The objective of the partial order game tree search problem 

is to find the non-inferior sets of outcomes through each move from the root node of the 
game tree. Player-l can then apply its own strategy on these sets of outcomes and select 
the move that returns the best set of outcomes based on its strategy. We shall show that 
even if the strategy of either player is known, it cannot be used in the interior nodes of 
the game tree, and hence it is necessary to find every non-inferior set of outcomes at 

the root node. 
In this paper, we analyze the partial order game tree search problem and identify the 

necessary and sufficient conditions for a set of outcomes to be inferior to another set 
of outcomes for every strategy. For convenience of representation, we use an algebra 
called Dominance Algebra on the sets of outcomes to describe the non-inferior sets of 
outcomes and a bottom-up approach to determine the non-inferior sets of outcomes at 

the nodes of the game tree. Finally, we identify shallow and deep pruning conditions for 
partial order game trees and on the basis of those pruning conditions, we present a partial 
order search algorithm on lines similar to the a-/I pruning algorithm for conventional 

game trees. 
The paper is organized as follows. In Section 2 we describe the partial order game tree 

search problem. The use of Dominance Algebra is described in Section 3. In Section 4 
we describe a brute force method to determine the non-inferior sets of outcomes for a 
player. The shallow and deep pruning conditions, as well as the search algorithm which 
uses the pruning conditions are described in Section 5. 

2. The partial order game tree search problem 

In the conventional game tree search problem, the values at the tip nodes of the 
game tree are members of a totally ordered set. Given the MIN-MAX values [4] of the 

children of a node, it is possible to determine the MIN-MAX value of the parent simply 

by using the total order to decide which value is the best. Using a bottom-up approach 
it is possible to determine the MIN-MAX value corresponding to each move at the root 
node of the game tree. 

In the partial order game tree search problem, we only have a partial order on the 
the vector-valued outcomes. In the cases where the partial order can determine the 
better outcome, the choice is obvious. For example, in Fig. l(a) it is obvious that 
player-l at the MAX-node P will select the move with outcome ( 11,5) since ( 11,s) 
dominates both (9,4) and (7,3). Likewise, in Fig. 1 (b) player-2 will select the move 
with outcome (7,3) from node Q. In such situations, it is possible to decide the best 
move without any knowledge of the individual preferences of the players. On the other 
hand, consider the situation in Fig. 2(a). At node Q, player-2 has a choice between the 
outcomes ( 11,5) and (5,7). Since none dominates the other, the decision will be based 
on the preferences of player-2. 
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Fig. 1. Cases illustrating simple dominance. 

P 
~(11.5Li5.7)~ a b m.fM7.3)~ A?% Q R 

lii.51 (5.7) (6.81 (7.3) 1ii.51 f 
(5.71 

Fig. 2. Examples showing multiple sets of outcomes. 

At node Q of Fig. 2(a), if the preferences of player-2 are not known, then it is not 
possible for player-l to decide which outcome will be selected. Therefore, corresponding 
to move a at node P, we have a set of possible outcomes S, = (( 11,5), (5,7)}. In 

a similar manner, corresponding to move b at node P, we have a set of outcomes 

S/, = {(6,8),(7,3)}. Th us, at node P, player-l has to choose between the sets of 

outcomes S,, and Sb, and accordingly take either move a or move b. This choice will 
depend on the preferences of player-l. The question which arises at this point is: how 

does a player use its preferences to choose between such sets of outcomes? 

Thus the problem of the player is to choose between two sets of outcomes (such as 
S,, and Sh) with the knowledge that the preferences of the opponent (which are not 
known to this player) will decide the final outcome from the selected set. Let x’ denote 

the worst outcome in a given set based on the preferences of the player. Then the best 
that the given set can guarantee for the player is X: This is similar to the familiar notion 
of MIN in conventional game tree search. Therefore, to compare two sets of outcomes 

based on individual preferences, we compare the worst outcome from each set based 
on those preferences. In case of a tie, we compare the other outcomes. The complete 
procedure is as follows: 

CompaHSi, S2, d> 

To compare sets of outcomes St and S2 on the basis of preferences 4 
1. If only St is empty, then declare Sz as better. 

Likewise, if only S2 is empty, then declare St as better. 
If both Si and S2 are empty then 

select Si or S2 randomly and declare it to be better. 
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2. Let x’t be the worst outcome in St and 
Jz, be the worst outcome in S2 based on 4. 

3. If x’t and 22 are of equal preference then 
3.1 Drop all outcomes from St and ST that are of 

equal preference to x’t 

3.2 Goto [Step 1 ] 
4. If x’t is better than x’;! based on 4, then declare St as better 

else declare S:! as better. 

As an example, if the preferences of player-l are such that (5, ‘7) is preferred over 
(11,5) and (11,5) ispreferredover (13,3),thentheset {(13,3),(5,7)}ispreferred 
over the set {(13,3),(11,5)}. Also the set {(13,3),(5,7)} is preferred over the set 
{ ( 13,3) }, since depending on the preferences of the opponent there is a possibility of 

reaching the better outcome (5,7) from the former set. 

It should also be noted that two outcomes may have equal preference. Thus, the 
preferences of a player do not exactly induce a total order on the set of vector-valued 
outcomes; rather, they induce a many-to-one mapping from the set of outcomes to a 
totally ordered set which preserves the partial order imposed by the dominance relation. 

It is easy to see that the way in which a player will behave can be described by its 
individual preferences and a procedure for comparing sets of outcomes. Throughout this 

paper we assume that the players use the procedure Compare to compare the sets of 
outcomes. We define the strategy of a player as follows. 

Definition 2.1 (Strategy). The strategy of a player is a selection mechanism based on 
the procedure Compare and the individual preferences of the player which is consistent 
with the partial order imposed by the dominance relation. Thus if x’ is an outcome, 
which dominates an outcome y, then for all strategies of player- 1, x’ is better than y’ and 
for all strategies of player-2, y’ is better than X: 

Initially we analyze the situation that arises when the strategy of neither player is 
known. Later we shall show that even if the strategy of either of the players is known, 
the search problem remains the same. 

In Fig. 2(a), corresponding to each move at node P we had only one set of outcomes. 
The following example illustrates that corresponding to a move, it is possible to have 
multiple sets of outcomes. 

Example 2.2. Consider the game tree in Fig. 2(b). At node T player-l will obviously 

select the outcome { (3,9)}. At node U player-l can choose either (6,8) or (7,3) 
depending on its strategy. This strategy is not known to player-2; therefore, at node V, 
it has to choose between the sets { (6,8), (7,3)} and { (3,9)}. Player-2 may choose 
either set depending on its own strategy. 

Now suppose the strategy of player-l is such that it prefers (6,8) over (7,3). If the 
game reaches node U, then it will select (6,8). Therefore, corresponding to this strategy 

of player-l, move b (at node P) presents the set of outcomes {(3,9), (6,8)} such that 
the opponent’s strategy decides whether (3,9) or (6,8) will be reached. On the other 
hand, if player-l prefers (7,3) over (6,8), then corresponding to that strategy, move 
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Fig. 3. Game tree illustrating that a strategy should not be used at interior nodes 

b presents the set of outcomes { (3,9>, (7,3)}. Thus, if move b is selected at node P, 

then the outcome will either belong to the set { (3,9), (6,8)} or the set { (3,9), (7,3)} 
depending on the strategy adopted by player-l. 

In a similar situation at node Q, player-2 has to choose between the sets { ( 12,7)} and 
{(11,5),(5,7)}.In th’ is case, since both (11,5) and (5,7) are dominated by (12,7), 
player-2 will always select the move to node R. Therefore, corresponding to move a, 
we have two singleton sets, namely { ( 11,5)} and { (5,7)}. 

At node P of Fig. 2(b), we can provide player-l with four sets of outcomes to choose 
from, namely {(11,5)}, {(5,7)}, {(3,9), (6,8)} and {(3,9), (7,3)}. Are all these 
sets candidates for selection? Let us compare the sets { ( 11,5)} and { (3,9), (7,3)}. 
Since ( 11,5) dominates (7,3), it is easy to see (through the procedure Compare) that 

there can be no strategy for player-l that prefers the set { (3,9>, (7,3)}. This set is 

therefore an inferior set of outcomes. 

Example 2.2 shows that even if the individual strategies of the players are not known, 
certain sets of outcomes can be clearly discarded. The objective of partial order game 
tree search is to discard such sets of outcomes and provide the player at the root node 
with the non-inferior sets of outcomes. 

Before giving the formal definition of the problem, it is necessary to make one further 

observation. Suppose that each player knows its own strategy but not that of its opponent. 
In the game tree representation, this means that only the strategy of player-l is known. 
Can we use the strategy at the interior MAX-nodes of the game tree to prune away 
several sets of outcomes? The following example shows that the answer is negative in 

general. 

Example 2.3. Consider the game tree in Fig. 3. Let the strategy of player-l be such 
that given any two outcomes, the outcome which is greater in the first dimension is 

preferred. If two outcomes are equal in the first dimension, then the outcome with the 
larger second dimension is preferred. Let us first analyze the problem using the strategy 
of player-l at the interior nodes. At node n3 player-l will choose the outcome ( 120, lo), 
and at node n,~ it will select (50,20) based on its strategy. At node Ott, it is not known 
whether player-2 will select ( 120,lO) or (50,20), and so corresponding to move a 
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at node P, we have the set of outcomes { (120, lo), (50,20)}. Likewise, player-l will 
select ( 120,20) at node ns and (50,20) at node &j. At node n2, player-2 will definitely 
select (50,20) since it is dominated by ( 120,20). Thus corresponding to move b we 
have the set { (50,20)}. If we compare the sets corresponding to move a and b on the 
basis of the strategy of player-l, we find that the set { ( 120, lo), (50,20)} is preferred 

over the set {(50,20)}, and so, move a appears to be better. 
In this analysis, we have overlooked one vital point, that is, the opponent does not 

know the strategy of player-l. Therefore, from the point of view of player-2, player-l 

can select either of the outcomes at nodes ng and 124. Therefore, at node nt, player-2 has 
to choose between the sets { ( 120, IO), (60,60)} and { (50,20), (20,50)}. Since both 
(50,20) and (20,50) are better than (60,60) for every strategy of player-2, therefore 

player-2 will always select the set { (50,20), (20,50)} and take the move to node n4. 
Thus, corresponding to move ~1, we have two sets of outcomes, namely { (50,20)} and 

{(20,50)}. Forth e given strategy of player-l, the set { (50,20)} is preferred. 
Using a similar reasoning, at node n2, player-2 will have to select between the sets 

{ ( 120,20)} and { (50,20), (40,250)). Player-2 can select either set depending on its 

strategy, therefore corresponding to move b, we have two sets of outcomes, namely 
{ ( 120,20), (50,20)} and { ( 120,20), (40,250)). For the given strategy of player-l, 
the set { ( 120,20), (50,20)} is preferred. By comparing this set with the set { (50,20)} 
(which was preferred through move a) we find that actually move b is better for 
player- 1. 

The above example shows that unless the strategies of both players are known, we 
cannot apply the individual strategy of either player at an internal node while determining 
the sets of outcomes. Therefore, we can eliminate only those sets of outcomes that are 

inferior with respect to every strategy. In other words, we have to find the non-inferior 

packets of outcomes, where a packet of outcomes is defined as follows. 

Definition 2.4 (Packet of outcomes). At a node n a set of outcomes P corresponding 
to a move a will be called a packet for a player iff it has the following two properties: 

( 1) There exists a strategy of the player, such that after taking move a, irrespective 
of the strategy adopted by the opponent, the final outcome will be better than or 
equal to an outcome in that set in every dimension. 

(2) For every outcome x’ in P, there exists an opponent strategy such that if move a 
is taken, then the final outcome is X: 

From the previous discussion it follows that there may be several packets corresponding 
to a single move. The set of packets at a node is the union of the set of packets 
corresponding to every move at that node. 

The second property of a packet ensures that redundant outcomes (that is, outcomes 
which will never be reached) are not included in a packet. For example in Fig. 3, the 
set of outcomes { ( 120, lo), (50,20)} corresponding to move a at node s satisfies the 
first property, but is not a packet for player-l since the opponent at node nl will always 
select the move to nq (see Example 2.3), and therefore there is no opponent strategy to 
reach the outcome (120,lO). 
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Fig. 4. Dominance by freedom of choice. 

If we can find the entire set of packets at the root node of the game tree, then what 

we have is the sets of outcomes corresponding to every strategy of the player at the root 

node. Out of the entire set of packets, some packets may be inferior to other packets 
for every strategy of the player. What are the necessary and sufficient conditions for a 
packet to be inferior among the set of packets at a node? We identify two conditions as 

follows. 

Clear Dominance. A packet P is inferior to a packet P’ for a player if: 

( 1) each outcome in P’ is either equal to some outcome in P or is strictly better 
than some outcome in P, and 

(2) there exists at least one outcome in P’ which is strictly better than some outcome 
in P. 

In such cases we say that P’ dominates P by clear dominance. 

Dominance by Freedom of Choice. A packet P is inferior to a set of packets PI, . . . , PJ 
if each packet Pi contains fewer outcomes than P, and the union of them yields P. In 

such cases we say that PI,. . . , PJ dominates P by freedom of choice. 

Before proving that these are the necessary and sufficient conditions for a packet to be 
inferior, we illustrate the idea of dominance by freedom of choice through an example. 
Note that the idea of clear dominance has already been illustrated in Example 2.2 and 

Example 2.3. 

Example 2.5. Consider the game tree in Fig. 4. At node P, player-2 will always se- 

lect the set {(11,5),(5,7)} from the two sets {(11,5),(5,7)} and {(11,12)}. Thus 
corresponding to move a at node G, we have two sets of outcomes, namely { ( 11,5) } 
and { (5,7)}. At the nodes T and U, player-l will always select ( 11,5) and (5,7) 
respectively. Thus, at node Q, player-2 can either select ( 11,5) or (5,7) depend- 

ing on its strategy. Therefore, corresponding to move b we have the set of outcomes 

{(11,5)> (597)). 
If the strategy of player-l is such that ( 11,5) is preferred over (5,7), then the set 

{( 11,5)} will b e preferred over { ( 11,5), (5,7) } based on the procedure Compare. On 
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the other hand, if the strategy of player-l is such that (5,7) is preferred over ( 11,5), 
then { (5,7)} will be preferred over { ( 11,5), (5,7) >. Thus, whatever be the strategy 
of player-l, the set {(11,5),(5,7)} will never be selected. The sets {(11,5)} and 
{ (5,7)} together provide more freedom of choice than the union { ( 11,5), (5,7)} and 
therefore dominate the set {(11,5),(5,7)}. 

Theorem 2.6. The conditions of clear dominance and dominance by freedom of choice 
are s@icient conditions for a packet to be inferior among a set of packets. 

Proof. Suppose a packet P’ dominates a packet P by clear dominance. Consider a 

strategy ST of the player. Let x’ be the worst outcome in P’ based on ST. From the 
definition of clear dominance, there exists some outcome y’ in P which is either equal 
to x’ or worse for every strategy. If y’ is worse than x’ then P is obviously inferior. If x’ is 
equal to 7, we drop them from P and P’, and use the same reasoning on the next worst 
outcome. Since there exists at least one outcome in P’ which is strictly better than an 

outcome in P, it follows that P is inferior to P’ for every strategy ST. 

Suppose the set of packets PI,. . . , PJ dominates a packet P by freedom of choice. 

Consider a strategy ST of the player. Let x’ be the best outcome in P on the basis of 
ST. From the definition of dominance by freedom of choice, there exists a packet P, 

which is a subset of P and contains J?. Let us compare Pi and P on the basis of ST. If 

the worst outcome in P does not belong to Pi, then P is inferior. Otherwise, we drop 
that outcome from both sets and consider the next worst outcome and so on. Since Pi 

contains the best outcome in P and contains fewer outcomes than P, we find that P is 

inferior to Pi for the strategy ST. It follows that P is inferior to at least one of the of 
packets PI, . . , PJ for every strategy. 0 

Theorem 2.7. For a packet to be inferior among a set of packets S, either of the 

conditions clear dominance or dominance by freedom of choice is necessary. 

Proof. Let us consider a packet P which is neither dominated by clear dominance, nor 
by freedom of choice. Let P, denote the union of all packets in S which are subsets of 

P. Let P’ denote the set of outcomes in P that are not in P,,. Since P is not dominated 
by freedom of choice, P’ is non-empty. We now consider a strategy as follows: 

( 1) Every outcome in P, has equal priority. Every outcome in P’ has equal priority. 

Outcomes from P’ are preferred over outcomes from P,,. 

(2) Every outcome that does not dominate an outcome in P, or is not equal to an 

outcome in P, has a lower priority than every outcome in P. 
Since P’ is non-empty and its outcomes are preferred over those in P,, it follows that 
P is preferred over all packets which are subsets of P. P is not dominated by clear 
dominance; therefore every packet that is not a subset of P must contain an outcome 

which neither dominates nor is equal to an outcome in P. Therefore, P is preferred over 
such packets as well. It follows that P is the most preferred packet based on the above 
strategy, and therefore not an inferior packet. 0 

The game tree search problem studied in this paper may now be defined as follows. 
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The Partial Order Game Tree Search Problem. 
l Given: A game tree where the values at the tip nodes are K-dimensional vectors. 
l To Jind: The set of non-inferior packets at the root node of the game tree. 

To address the above problem, we will first analyze the problem of finding the minimal 
set of packets at a node n when the set of packets for the player at node IE is given. 

For this purpose we shall use an algebra called Dominance Algebra. Subsequently, we 
shall address the problem of determining the set of packets at a node using partial order 

game tree search. 

3. Dominance Algebra 

Given the set of packets at a node, we have to identify the set of non-inferior packets 
(that is, those that may be selected by the player at that node). For convenience of 
representation we use an algebra to describe the type of operations that take place at the 
MAX- and MIN-nodes. 

At a given node n, we have a set of packets Pi,. . . , P,, for the player who makes the 
move at that node. If n is a MAX-node, then we denote the options of player-l at node 

n by a MAX-expression F,, as follows: 

6, = PI fma, 4 +max . . + +max Pm. 

The operator fmax is a commutative operator. Following the definition of packet dom- 

inance, we define another property of the +max operator through the following MAX- 

absorption law. 

MAX-absorption Law. A packet Pi at a MAX-node n can be absorbed under the 
following two situations: 

l Clear Dominance, There exists a packet Pj at node n such that each outcome in 
ci dominates (or is equal to) some outcome in Pi, and at least one outcome in Pj 

dominates an outcome in Pi. If this condition holds then: 

In other words, Pi is absorbed in the MAX-expression F, at node n. 

l Dominance by Freedom of Choice. There exists a set of packets P,‘, . . . , PJ at node 
n such that each of them contains fewer outcomes than Pi, and the union of them 

yields Pi. If this condition holds then: 

(PI +max ’ ’ . +max Pi) +max Pi = P[ +max ’ ’ ’ +max Pj. 

In other words, Pi is absorbed in the MAX-expression F,, at node n. 

Thus the fm, operator is actually the dominance operator over packets of outcomes. 
Using the MAX-absorption law, we can obtain a minimal MAX-expression at node n. 

A MAX-expression is actually a set of packets over which we can apply the MAX- 
absorption law to eliminate dominated packets. Therefore, throughout this paper we may 



I? Dasgupta et al./Artijcial Intelligence 82 (1996) 237-257 241 

use statements such as “a packet belongs to a MAX-expression” or “a packet is in a 
MAX-expression”. 

We now prove that given the set of packets at node n, application of the MAX- 
absorption law leads to a unique minimal MAX-expression F,, for that node. The fol- 
lowing lemma shows that the sequence in which dominated packets are absorbed does 
not affect the final MAX-expression. 

Lemma 3.1. If F is a MAX-expression and PI and P2 are packets such that F -I-,,,~~ 

PI +n,ux P2 = F (through some sequence of application of MAX-absorption law) then 

F +ux PI = F and F +max P2 = F. 

Proof. It is easy to see that, if F+,,,Pl # F and F+,,P2 + F, then F+,,Pl +max PZ 
cannot be equal to F. Without loss of generality, let F Smax PI = F. (There is no loss 
of generality because +max is commutative.) Now, if PI is not instrumental in the 
absorption of P2, then the result follows trivially. Let us consider the cases where PI is 
used in the absorption of P2. If PI is used in the absorption of P2, then each outcome 

in P1 must either dominate or be equal to some outcome in P2. 
The MAX-expression F can absorb PI through clear dominance or through freedom 

of choice. We analyze both situations: 
l Clear Dominance. If F absorbs P1 through clear dominance, then there exists a 

packet Pi in the MAX-expression F, such that P;: clearly dominates PI. Then each 

outcome in Pi either dominates or is equal to some outcome in PI, and at least one 
outcome in Pi dominates an outcome in PI. Since each outcome in P1 in turn either 

dominates or is equal to some outcome in P2, we find that Pi absorbs Pz through 
clear dominance. 

l Dominance by Freedom of Choice. If F absorbs PI through freedom of choice then 
we can have two cases: 
( 1) If P1 absorbs P2 through clear dominance, then there exists an outcome x’ in 

PI that dominates an outcome in P2. Each outcome in PI must belong to some 
packet Pi in the MAX-expression F (from the definition of absorption by 
freedom of choice). Let Pi be the packet containing x’. Since every outcome 

in Pi is equal to some outcome in PI, we find that Pi absorbs P2 through clear 
dominance. 

(2) Since F absorbs P1 through freedom of choice, there exist packets P,‘, . . . , Pi 
in the MAX-expression F, such that the set of packets St = {P:, . . . , Pj} 
dominates PI by freedom of choice. Now if PI is used to absorb P2 by 
freedom of choice then there exists a set S2 of packets in the MAX-expression 
F, such that S2 U {PI} absorbs PT. It is easy to see then that Sz U S1 can absorb 
P2 by freedom of choice. Therefore F absorbs P2 by freedom of choice. 0 

The lemma effectively states that if PI is instrumental in the absorption of P2, and PI 
is absorbed by F before the absorption of P2 then F will also absorb Pz. 

Theorem 3.2. Given the set of packets for player-l at a MAX-node n, application of 
the MAX-absorption law leads to a unique minimal MAX-expression for node n. 
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Proof. If a packet is instrumental in the absorption of another packet then Lemma 3.1 
shows that even if the former packet is absorbed earlier, the latter packet will still be 
absorbed. Thus the absorption of the dominated packets is independent of the order in 
which the packets are absorbed. The result follows. 0 

Given the set of packets for player-l at a MAX-node we can individually test each 

packet to see whether it is absorbed by the other packets. Theorem 3.2 shows that this 
will lead to an unique minimal set of packets at the node. It may be easily shown 

that a similar analysis may be applied to the packets for player-2 (the opponent) at a 
MIN-node. If n is a MIN-node, then we denote the options of player-2 at node n by a 
MIN-expression F, as follows: 

F,, = P, +min Pz +min . + . +min pm, 

where PI, . . , P,, are packets for player-2 at node n. The operator +tin is a commutative 

operator similar to +max except that it obeys the following MIN-absorption law. 

MIN-absorption Law. A packet Pi at a MIN-node n can be absorbed under the fol- 
lowing two situations: 

l Clear Dominance. There exists a packet F’i at node n such that each outcome in 
l’j is dominated by (or is equal to) some outcome in Pi, and at least one outcome 

in F’j is dominated by an outcome in Pi. If this condition holds then: 

cj +min Pi = pj, 

l Dominance by Freedom of Choice. There exists a set of packets P,‘, . . . , Pj at node 
n such that each of them contains fewer outcomes than Pi, and the union of them 

yields Pi. If this condition holds then: 

Theorem 3.3. Given the set of packets for player-2 at a MIN-node n, application of 
the MIN-absorption law leads to a unique minimal MIN-expression for node n. 

Proof. On lines similar to the proof of Theorem 3.2. 0 

Theorem 3.2 and Theorem 3.3 effectively prove that the +max and +min operators 
are associative. Dominance Algebra consists of sets (packets) of K-dimensional vectors 
and the two commutative and associative operators +max and +min. Given the MAX- 
expression at a MAX-node (or a MIN-expression at a MIN-node), we can use the 
MAX-absorption law (MIN-absorption law) to obtain the minimal MAX-expression 

(MIN-expression) at that node. 

4. Finding the packets 

The question that has been answered so far is how to determine the minimal set of 
packets at a node when the entire set of packets at that node is given. Let us now 
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address the problem of identifying the set of packets at a node. In particular, we address 
the following problems: 

( 1) How to find the minimal set of packets for player-l at a given MAX-node n 
when the minimal set of packets for player-2 at the child MIN-nodes is given. 

(2) How to find the minimal set of packets for player-2 at a given MIN-node n when 
the minimal set of packets for player-l at the child MAX-nodes is given. 

For the first problem, we define a function called MZN-to-MAX that converts a given 

MIN-expression to a MAX-expression. The function is based on the following result. 

Lemma 4.1. Let {PI, . . . , P,,,} be the minimal set of packets for player-2 at a MIN- 

node n. If we construct a set S of outcomes by selecting one outcome from each Pi, 
1 < i < m, then S is a packet for the parent MAX-node of n. 

Proof. We show that there exists a strategy for player-l such that the final outcome 
either dominates or is equal to some outcome in S. If player-2 does not make a mistake, 

then it will select one of the packets PI,. . . , P,,,. Without loss of generality, let us assume 

that player-2 selects the packet Pi. Then from the definition of a packet there exists a 

strategy for player-l to reach any desired outcome from Pi. The result follows because, 
by the construction of S, one outcome in P; belongs to S. 

If player-2 makes a mistake, then it will select a packet P’ that can be absorbed by 

PI fmin ’ . fmin P,,,. Then, every outcome in those packets that are instrumental in the 

absorption of P’ will be either dominated by or equal to some outcome in P’. Thus, if 

player-2 selects P’, then there exists a strategy for player-l to reach an outcome from 
P’ which is either better than some outcome in S or equal to it. It follows that S is a 
packet for player- 1. 0 

MIN-to-MAX( F: MIN-expression) 

(1) Let F = PI fmin PZ +tin . . . +tin P,,,. 
(2) Construct all possible sets of outcomes by selecting one outcome from each 

packet Pi, 1 < i 6 m. Let these sets be St, S2, . . . , SJ. 
(3) Using the MAX-absorption law, minimize the MAX-expression: 

F’ = Sl fmax S2 +max . . . +max SJ. 

(4) Return the MAX-expression F’. 

Lemma 4.2. If nt is the ith child of the MAX-node n and F,,, is the MIN-expression 

corresponding to the MIN-node ni, then the set of packets for player- 1 at node n through 

the child ni can be represented by the MAX-expression returned by MIN-to-MAX( F,,). 

Proof. From Lemma 4.1 it follows that the set of packets constructed by the function 
MIN-to-MAX are packets for player-l at node n. Once the game reaches node ni, there 
exists a strategy for player-2 to ensure that the game reaches either some outcome from 
the selected packet at node ni, or an outcome that is dominated by some outcome from 
the selected packet. Therefore, through node ni player-l can (at best) reach only those 
outcomes that are present in the packets at node ni. The result follows. 0 
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Theorem 4.3. If Fni denotes the MIN-expression of the ith child of the MAX-node n, 
then the MAX-expression of the node n is: 

F,, = MIN-to-MAX( F,,, ) +max MIN-to-MAX( F,,) smax . . ’ +mx MIN-to-MAX( F,,",) , 

where m denotes the number of children of node n. 

Proof. Follows from Lemma 4.2. 0 

The above analysis shows that using the MIN-to-MAX function, we can construct the 

set of packets (for player- 1) at a MAX-node when the set of packets (for player-2) is 
given for each child MIN-node. The set of packets at a MIN-node can be constructed 
in a very similar fashion using the following MAX-to-MIN function. 

MAX-to-MIN( F: MAX-expression) 

(1) Let F=Pl +maxPz+max...+maxPnr. 
(2) Construct all possible sets of outcomes by selecting one outcome from each 

packet Pi, 1 < i 6 m. Let these sets be St, S2,. . . , SJ. 
(3) Using the MIN-absorption law, minimize the MIN-expression: 

F’=Sl +tin&+tin...+minS~. 

(4) Return the MIN-expression F’. 

Theorem 4.4. If F,, denotes the MAX-expression of the ith child of the MIN-node n, 
then the MIN-expression of the node n is: 

F,, = MAX-to-MIN( FnI ) +min MAX-to-MIN( Fnz ) +min * * . +min MAX-to-MIN( Fan, ) 9 

where m denotes the number of children of node n. 

Proof. On lines similar to the proof of Theorem 4.3. Cl 

At the leaf nodes of the game tree, the values themselves are the packets. Using the 
MAX-to-MIN and MIN-to-MAX functions and the absorption laws, we can now compute 
(in a bottom-up manner) the minimal set of packets at each node of the game tree (and 
ultimately those at the root node). Let us consider an example. 

Example 4.5. Consider the game tree in Fig. 5. Let Fi denote the MAX-expression at 
the MAX-node i and the MIN-expression at the MIN-node i. It is easy to see that F4 = 

{(5,4)}fmin ((3,lO)) and FS = {(11,5)}+ti,,{(5,9)}. Therefore, MIN-to-MAX(F4) 
is {(5,4), (3,lO)) and MZN-to-MAX(Fg) is {(11,5), (5,9)}. The MAX-expression F3 

can be computed as: 

F3 = {(5,4), (3,lO)) +max {(11,5), (599)) = {(11,5), (579)). 

Likewise, it is easy to see that F7 = {( 12,7)} +min {(7,12)} and FIS = {(13,6)} +min 
{(6,13)}. Th ere ore, f MIN-to-MAX(F7) is {( 12,7), (7,12)} and MD-to-MAX(Fls) is 

{(13,6), (6,13)}. The MAX- expression Fe can be computed as: 
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.(5.91)+ma, (18.7)) 

-- -- -_ -- 
(5.4) (3TO) 111.51 1 

(5.91 
(12.7),,<21 (13a’3)&3j (4.5) I<*) 18.71 ,ggg, (9.91 ,z8) (6.9) (Ej) 

Fig. 5. Game tree showing partial order pruning. 

F6={(12,7),(7,12)}+max{(13,6),(6,13)}. 

MAX-to-MZN( F3) can be computed as { ( 11,5)} +tin { (5,9)}. Also, MAX-to-MZN( F’) 

can be computed as: 

{(12,7),(13,6)}+~~{(12,7),(6,13)}+~~{(7,12),(13~6)} 

+,,{ (7712)) (613)). 

The MIN-expression F2 can now be computed as: 

F~={(12,7),(13,6)}+,,{(12,7),(6,13)}+~~{(7,12),(13,6)} 

+min{(7,12), (6913)) +tin {(11*5)}+ti” ((599)) 

={(11,5)}+mi”{(5~9)}. 

Looking at the other side of the game tree, the MIN-expression at node 10 is FIO = 
{ (4,5)} +min { (5,2)} and that at node 11 (using the MIN-absorption law) is Fi 1 = 
{ (8,7)}. Using, the MZN-to-MAX function on FIO and FII we obtain the MAX- 

expression at node 9 as follows: 

F9 = {(4,5), (592)) +max {(8,7)}= ((897)). 

Similarly, using the MIN-absorption law we have Fis = {(8,8)} and F14 = {(3,3)}. 
Therefore the MAX-expression at node 12 is: 

F12 = {t&W} +mm ((393)) = ((898)). 

The MIN-expression at node 8 can now be computed as: 

Fs = ((877)) +min {(8,8)} = ((897)). 

Now, MN-to-MAX(F2) is {(11,5),(5,9)} and MZN-to-MAX(Fg) is {(8,7)}. There- 
fore, the MAX-expression at node 1 is: 

Fi = {(11,5), (599)) +max ((877)). 

Thus at the root node of the game tree of Fig. 5, player-l has two packets to choose 

from, namely {(11,5),(5,9)} and {(8,7)}. 
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Fig. 6. Shallow pruning. 

5. Partial order w-j? pruning 

In the previous section, we have seen how the set of non-dominated packets can be 
identified. However, the bottom-up approach is a brute force method that may require 

too much time and space. If we can find conditions under which certain branches of 
the game tree can be pruned, then we can apply techniques 

achieve our objective more efficiently. 
We define two boolean functions max_prune( Fl, F2) and 

lows: 

Definition 5.1 (Dominance test for pruning). 

similar to cu-/? pruning to 

minprune( Fl , F2) as fol- 

l max-prune( Fl , F2) : If every packet in the MAX-expression F2 is absorbed by the 
MAX-expression Fl using clear dominance (of the MAX-absorption law), then 

mux-prune( Fl , F2) is true, else it is false. 
l minprune( Fl , F2): If every packet in the MIN-expression Fz is absorbed by the 

MIN-expression F, using clear dominance (of the MIN-absorption law), then 

minprune( Fl , F2) is true, else it is false. 

Using the above functions, we define pruning conditions in partial order game trees 
which are somewhat analogous to cy-p pruning in conventional game trees. 

5. I. Shallow a-j? pruning 

The following lemmas help in identifying shallow pruning conditions. 

Lemma 5.2. Consider the game tree in Fig. 6(a). Fl denotes the MAX-expression 

obtained at node A by collecting the packets vor player-l) backed up by the children 

n1,..., ni only. F2 denotes the MAX-expression for the entire set of packets ($or player- 

1) backed up at node C. Fs denotes the MIN-expression for the entire set of packets 

backed up (for player-2) at node B. If max-prune( Fl, F2) is true, then the following 
equality holds. 

F, +n,ax MZN-to-MAX( FE) = FI. 
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Proof. Let us assume the contrary. Then there exists a packet P in MZN-to-MAX( FB ) 
which cannot be absorbed by Fl. This means that if player-l takes the move to B, 

there exists a strategy of player-l to reach an outcome in P or some outcome which 
dominates an outcome in P. Thus, even if player-2 takes the move to C, then there 

exists a subset P’ of P, such that player-l is able to reach some outcome in P’ (or 
some outcome that dominates an outcome in P’). Therefore P’ is either a packet at 
node C, or dominated by some packet at node C. In either case, P’ can be absorbed by 
some packet Pi in Fl using clear dominance. Since P’ is a subset of P, it follows that 
P can also be absorbed by Pi using clear dominance. This contradicts our assumption 
that the packet P cannot be absorbed by F]. The result follows. 0 

Lemma 5.2 shows that shallow pruning can be effected on the other successors of 
node B when max-prune( Fl, F2) is true, where Fl and F2 are as described in the state- 
ment of the lemma. It may be noted that in Fig. 6(a), if F, absorbs a packet of F2 
using freedom of choice (in the MAX-absorption law), then the pruning is not possible. 

For example, let FI be {(11,5)} fm, {(5,7)} and F2 be {(11,5),(5,7)}. Let the 
MAX-expression Fo at node D be { (2,9)}. Let there be no other children of node B 
(except nodes C and 0). Then node B can back up the packet {(11,5), (5,7), (2,9)} 
at node A, which cannot be absorbed by Fl. If node D would have been pruned, 

then this packet would not be backed up. This is the reason for our using only 
the clear dominance criteria (of the absorption laws) for defining the pruning con- 
ditions. 

Reasoning in a similar way, we can define pruning conditions where the function 
minprune is applicable. 

Lemma 5.3. Consider the game tree in Fig. 6(b). Fl denotes the MIN-expression ob- 

tained at node A by collecting the packets (for player-%) backed up by the children 

n1,..., n; only. F2 denotes the MIN-expression for the entire set of packets Cfor player- 
2) backed up at node C. FB denotes the MAX-expression for the entire set of packets 

backed up (for player-l) at node B. If minprune( Fl, F2) is true, then the following 

equality holds. 

FI +,,lin MAX-to-MIN( FB ) = Fl. 

Proof. On lines similar to the proof of Lemma 5.2. 0 

5.2. Deep a-P pruning 

Deep pruning conditions can also be identified for partial order game trees as follows. 

Lemma 5.4. Consider a path in a game tree as shown in Fig. 7 (a). Fi denotes the 

MAX-expression formed by collecting the set of packets Cfor player-l) backed up by 

those children of MAX-node ni which are to the left of the child in the given path. 

FC denotes the set of packets Cfor player-l) at node C. Let F denote the following 
MAX-expression: 
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Fig. 7. Deep pruning. 

F = FI +,,ux F2 +,,uu . . . +max FJ, 

If maxprune(E Fc ) is true, then at node nJ the move to node B will never be selected 
by player- 1. 

Proof. Let us assume the contrary, that is, player-l selects the move to node B when 

the game reaches node nJ. Since player-2 can then select the move to node C, it is easy 
to see that each packet (for player- 1) backed up by node B to nJ must contain a subset 
which is either a packet at node C or dominated by a packet at node C. 

In the partial order game tree search problem, player-l will have a set of packets 
of outcomes to choose from at the root node nt. By definition, if the player-l selects 
a packet, then there exists a strategy for it to ensure that the final outcome is either 
some outcome from that set or dominates some outcome from that set. Therefore, if the 

strategy of player-l is such that it selects the packet P from the set of packets at the 
root node, then the game will go through those MAX-nodes ni that has a non-dominated 
packet which is either some subset of P, or dominates some subset of P (and therefore, 
dominates P) . 

Therefore, if the game reaches node B, then player-l must have selected a packet P 
at the root node such that there exists a packet P’ (for player-l) backed up by node B 
to node nJ which is either a subset of P or dominates P. It follows that in each node ni 
in the path to nJ, there exists a non-dominated packet Pi such that either P’ is a subset 
of Pi, or P’ dominates Pi. 

Since P’ is a packet backed up by node B, it contains a subset which is either a packet 
PC at node C or dominated by a packet PC at node C. Since minprune( E Fc) is true, 
there exists a packet P[ at some node ni which dominates PC using clear dominance. 
P/ will then also dominate P’ and therefore, will dominate Pi. Thus Pi is a dominated 
packet at node ni which brings us to a contradiction. The result follows. 0 
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Using similar reasoning, we can prove the following lemma. 

255 

Lemma 5.5. Consider a path in a game tree as shown in Fig. 7(b). Fi denotes the 
MN-expression formed by collecting the set of packets (for player-2) backed up by 
those children of MN-node ni which are to the left of the child in the given path. 
Fc denotes the set of packets (for player-2) at node C. Let F denote the following 
MAX-expression: 

F = FI +m;n F2 +min . . . +min FJ. 

If min_prune(E Fc) is true, then at node nJ, the move to node B will never be selected 
by player- 1, 

Proof. On lines similar to the proof of Lemma 5.4. 0 

Lemma 5.4 and Lemma 5.5 allows us to define a-expressions for MIN-nodes and 
P-expressions for MAX-nodes (using the idea of the LY and j3 bounds in conventional 

game tree search). 

Definition 5.6 (a-expression). The a-expression at a MIN-node B is the MAX-express- 
ion formed by collecting the packets (for player-l) currently backed up at all MAX 

ancestors of B. 

Lemma 5.4 shows that the exploration of a MIN-node B can be terminated as soon as 

the MAX-expression backed up by any of its children is absorbed by the a-expression 

at B (using clear dominance). 

Definition 5.7 (P-expression). The P-expression at a MAX-node B is the MIN-express- 
ion formed by collecting the packets (for player-2) currently backed up at all MIN- 

ancestors of B. 

Lemma 5.5 shows that the exploration of a MAX-node B can be terminated as soon 
as the MIN-expression backed up by any of its children is absorbed by the P-expression 
at B (using clear dominance). 

Using these results, we may now develop an algorithm on lines similar to the a-P 
pruning algorithm of conventional game tree search. Given heuristic vector estimates 
e(n) at each terminal node n, the following procedure uses a technique similar to 
(Y-P pruning to determine the set of non-dominated packets for player-l. The call 

F( s, -65, +&) returns the MAX-expression at node s. +& is a packet containing a 
single K-dimensional outcome which has all dimensions equal to +oo. Likewise -66 
is a packet containing a single K-dimensional outcome which has all dimensions equal 

to -03. 

Procedure F( n, a, p) 
1. IF n is a terminal node THEN Return e(n) 
2. Generate successors ml, m2, . . . , mb of n 
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2.1. Set i +- 1 
2.2. IF IZ is a MAX-node THEN 

2.2.1. Set F, t -66 
2.2.2. Repeat the following steps until i > b 

2.2.2.1. Set F,,# +- F(mi, a, p> 
2.2.2.2. IF F,,,! f -ot, THEN 

Set cy + LY +max Fnl, 
Set F,, + 6, +max F,,, 
IF minprune( p,MAX-to-MZN( F,, ) ) is true THEN 

Return -155 

2.2.2.3. Set i +- i + 1 
2.2.3. Return F, 

2.3. IF n is a MIN-node THEN 
2.3.1. Set F,, c +oZ 
2.3.2. Repeat the following steps until i > b 

2.3.2.1. Set F,,, +- F(mi, CY, p) 
2.3.2.2. IF F,, # -66 THEN 

Set p c p +in MAX-to-MIN( F,,,) 
Set F, c F,+ti” MAX-to-MIN( F”,, > 
IF mux-prune(a, F,,;) is true THEN 

Return -07, 

2.3.2.3. Set i + i+ 1 
2.3.3. Return MN-to-MAX( F,,) 

The working of the algorithm is illustrated on the game tree of Fig. 5. The sequence 
of nodes visited, and the corresponding values of LL and /3 is as shown in Table 1. 

In MAX-nodes, F(n) denotes the MAX-expression and in MIN-nodes, F(n) denotes 
the MIN-expression. For convenience of writing, we have written packets containing a 
single outcome (a, b) as “(a, b)” instead of “{(a, b)}“. 

6. Conclusion 

The problem of searching game trees under a total order has been well studied in the 

past. In this paper we have investigated the more general problem of searching a game 
tree under a partial order. 

The contents of this paper focuses on the general issues in partial order game tree 

searching. The pruning conditions and basic search strategies can be enhanced to cater to 
the formulations of specific problems. For example, it is likely that if a problem involves 
many criteria, and each of them are modeled as separate dimensions of the cost vector, 
then very little pruning is possible as most outcomes become non-dominated. In order 
to enhance the pruning in such situations a judicious combination of some of the criteria 
may be called for. In the other extreme case, when all the criteria can be meaningfully 
combined, the proposed pruning conditions collapses to the pruning conditions of total 
order game tree search. 
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Sequence of nodes visited by procedure F on the game tree of Fig. 5 

IZ F(n) a P 

(5,4) +min (3,lO) 

(11~5) +min (5,9) 

{(5,4), (3,lO)) 

+max {(11,5),(5,9)} 

={(11,5),(5,9)} 

(12.7) fmin (7.12) 

_ 

(1135) +min (5.9) 

_ 

(8,7) +m,n (9,9) = (8,7) 

(827) 
_ 

(9.9) +min (8.8) = (8,8) 

-& 

;(~4),(3.10)~ 

{ (5,4),(3.10)) 

{(11,5),(5.9)) 

-07, 

-& 

{(l’LV,U,l2)} 
_ 

;(:,5).(5,9)1 

{(11,5).(5.9)} 

{(11,5),(5,9)) 

{(11,5).(5,9)) 

{(11,5)>(5,9)} 

{(11,5),(5,9)) 

{(11,5)>(5,9)) 

{(11,5),(5,9))+max (8.8) 

{(11,5).(5,9)) 

{(11,5).(5,9)}+1n,x(8,7) {(11,5),(5,9)}+m,, (8,7) 

fo7 

(5~~) fmin (3310) 

+07, 

(11,5) +min (5.9) 

+07, 

(11,5) +min (5,9) 

(I135) +min (5.9) 

+min (1237) +min (7,12) 

=(11,5) +min (5.9) 

(ll.5) fmin (5.9) 

(11,5) +min (5-9) 

+CZ 

(4.5) 

+CZ 

(8.7) 

+CZ 

(8.7) 

(8.7) +min (898) = (8,7) 

(8.7) 

(8,7) 

+CG 

il Pruning occurs at these nodes. 
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