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Specific forms of the exchange correlation energy functionals in first-principles density functional
theory-based calculations, such as the local density approximation (LDA) and generalized-gradient
approximations (GGA), give rise to structural lattice parameters with typical errors of−2 % and 2 %.
Due to a strong coupling between structure and polarization, the order parameter of ferroelectric
transitions, they result in large errors in estimation of temperature dependent ferroelectric structural
transition properties. Here, we employ a recently developed GGA functional of Wu and Cohen
[Phys. Rev. B, 73, 235116 (2006)] and determine total-energy surfaces for zone-center distortions
of BaTiO3, PbTiO3, and SrTiO3, and compare them with the ones obtained with calculations
based on standard LDA and GGA. Confirming that the Wu and Cohen functional allows better
estimation of structural properties at 0 K, we determine a new set of parameters defining the effective
Hamiltonian for ferroelectric transition in BaTiO3. Using the new set of parameters, we perform
molecular-dynamics (MD) simulations under effective pressures p = 0.0 GPa, p = −2.0 GPa, and p =
−0.005T GPa. The simulations under p = −0.005T GPa, which is for simulating thermal expansion,
show a clear improvement in the cubic to tetragonal transition temperature and c/a parameter
of its ferroelectric tetragonal phase, while the description of transitions at lower temperatures to
orthorhombic and rhombohedral phases is marginally improved. Our findings augur well for use of
Wu-Cohen functional in studies of ferroelectrics at nano-scale, particularly in the form of epitaxial
films where the properties depend crucially on the lattice mismatch.

PACS numbers: 64.60.De, 77.80.B-, 77.84.-s

I. INTRODUCTION

It is well known that first-principles density functional
theory based calculations within the local density approx-
imation (LDA) underestimate lattice constants slightly
(1–2%), and consequently calculated double-well total-
energy surfaces1,2 for ferroelectric structural distortions
of ABO3 perovskite-type ferroelectrics are shallower giv-
ing the theoretical transitions temperatures much lower
than their observed values (TC = 403 K = 0.0347 eV
for BaTiO3, for example)3. In Monte-Carlo (MC)
simulations4 and molecular-dynamics (MD) simulations5

of BaTiO3, a perovskite-type ferroelectric, an effective
Hamiltonian1,4 constructed from LDA calculations was
used. To overcome the limitation of underestimation of
lattice constant, these simulations were carried out with
a negative pressure of −5 GPa. Similarly, Monte Carlo
simulations for PbTiO3 were carried out with an effective
Hamiltonian6 constructed from LDA calculations at the
experimental lattice constant. However, both of these
schemes resulted in underestimation of TC.

There are two main sources of errors in estimation of
TC in such simulations: (a) neglect of anharmonic cou-
pling between soft modes and higher energy phonons in
construction of effective Hamiltonian, and (b) those aris-
ing from underestimation of lattice constants in DFT cal-
culations. While the former was assessed to be small
in earlier work7 and can be partly corrected using a T-
dependent pressure to yield a correct thermal expansion,
a systematic investigation of the latter would be useful

in planning and evaluating future first-principles simula-
tions of ferroelectrics.

To overcome the limitation of DFT calculations in es-
timation of structural parameters in ferroelectrics, Wu
and Cohen introduced a new flavor of generalized gra-
dient approximation (GGA), and obtained an excellent
agreement between calculated and experimentally ob-
served lattice constants at zero Kelvin for PbTiO3 and
BaTiO3

8. Recent theoretical works9,10 further strength-
ened that the Wu and Cohen functional gives acceptable
structural properties of ABO3 ferroelectrics such as lat-
tice constants, c/a ratio, atomic displacements, phonon
frequencies, Born effective charges, etc.

Here, we use the Wu and Cohen GGA-functional and
determine possibly more realistic total-energy surfaces
of polar distortions of BaTiO3, PbTiO3, and SrTiO3

than those from LDA calculations. Further, we con-
struct an effective Hamiltonian for BaTiO3 with a set of
parameters determined from first-principles calculations
based on Wu-Cohen functional, and estimate the three of
its transition temperatures, and temperature dependent
structural properties. Through comparison with transi-
tions properties obtained with the LDA-based effective
Hamiltonian and from experiment, we evaluate the effi-
cacy of Wu-Cohen functional in determination of finite-
temperature properties.

In Sec. II, we describe the formalism of methods used
in computations, with a focus on details of the proce-
dure for determination of the set of parameters of the
effective Hamiltonian, which is slightly different from the
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earlier works4,6. In Sec. III, we present a comparative
analysis of calculated total-energy surfaces of BaTiO3,
PbTiO3, and SrTiO3 and include results of MD simu-
lations of BaTiO3, and finally summarize our work and
conclusions in Sec. IV.

II. METHODS OF CALCULATION AND

FORMALISM

A. First-principles methods

All calculations are performed with ABINIT code11,12.
Bloch wave functions of electrons are expanded in terms
of plane waves with a cut-off energy of 60 Hartree, and
are sampled on an 8×8×8 grid of k-points in the first Bril-
louin zone. We use different choices of exchange correla-
tion energy functionals. For LDA calculations, we use the
one parametrized by Teter13 along with Teter’s extended
norm-conserving pseudopotentials14. For GGA calcu-
lations, we use “PBE”15 and “Wu and Cohen”8 func-
tionals, along with Rappe’s optimized pseudopotentials16

generated with Opium code17 and compare their results.

B. Total-energy surface

In 1994, King-Smith and Vanderbilt studied the total-
energy surface for zone-center distortions of perovskite-
type ferroelectric oxides ABO3 at zero tempera-
ture using first-principles calculations with ultrasoft-
pseudopotentials and a plane-wave basis set.1 Starting
from the centrosymmetric cubic perovskite structure,
and using the normalized Γ15 soft-mode eigenvector ξα
(= ξx = ξy = ξz, due to the cubic symmetry) of the
interatomic force constant (IFC) matrix18, they define
displacements vτα of atoms τ (=A, B, OI, OII, OIII) in
the Cartesian directions α(= x, y, z) as

vα =













vAα
vBα
vOI

α

vOII

α

vOIII

α













= uαξα = uα













ξAα
ξBα
ξOI

α

ξOII

α

ξOIII

α













, (1)

with the scalar soft-mode amplitude uα. Under the con-
dition that the strain components ηi (i = 1, · · · , 6; Voigt
notation; η1 = exx, η4 = eyz) minimize the total energy
for each u = (ux, uy, uz), they expressed the total energy
as

Etot = E0 + κu2 +α′u4 + γ′(u2
xu

2
y + u2

yu
2
z + u2

zu
2
x) , (2)

where u2 = u2
x+u2

y+u2
z, E

0 is the total energy of the cu-
bic structure, κ is half the eigenvalue of the Γ15 soft mode,
and α′ and γ′ are anharmonic coefficients including the
contribution of relaxation of strain through its coupling
with atomic displacements. Similar analysis is used in
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FIG. 1. (Color online) Total-energy surfaces for zone-center
distortions of a ferroelectric ABO3 perovskite on a two-
dimensional subspace (vAz , vBz ) of the atomic-displacement

space (vAz , vBz , vOI
z , vOII

z , vOIII
z ). (a) Schematic contour plot for

atomic displacements from the centrosymmetric cubic struc-
ture (b), ezz = 0, is compared to (c) that from the tetragonal
structure (d), ezz > 0. Thick solid lines are the valley lines for
fixed ezz’s. Dashed lines show the direction of the Γ15 soft-
mode eigenvector ξ at zero strain. Note that the direction is
tangential to the valley line at vτz = 0 for ezz = 0, but this is
not the case for ezz 6= 0.

constructions of effective Hamiltonian in Refs. 4 and 6,
which assumes that anharmonic coupling between soft
modes and other IR-active modes is vanishingly small.

In 2004, Hashimoto, Nishimatsu et al. included some
of these anharmonic effects by redefining uα as

uα =

√

(vAα )
2
+ (vBα )

2
+
(

vOI

α

)2

+
(

vOII

α

)2

+
(

vOIII

α

)2

,

(3)
and developed automatic computational method to de-
termine valley line of the total-energy surface in the 15-
dimensional coordinate space of atomic displacements2

(See Fig. 1). This method reveals that normalized “direc-
tion” ξ of the atomic displacements from the centrosym-
metric cubic phase to the distorted minima is not con-
stant as in Eq. (2), but a function of u, i.e. ξ(u), and the
total-energy surface generally cannot be expressed with
a 4th order function of atomic displacement amplitude
u as in Eq. (2). ξ(u) is determined by minimizing en-
ergy with respect to all atomic displacements {vτα} such
that {uα} in Eq. (3) is fixed. In this paper, we em-
ploy this valley line tracing method as implemented in
the Patched ABINIT version 5.7.3 to determine accurate
total-energy surfaces. The patch file for ABINIT is in
the EPAPS19. The valley lines can be also calculated
under any positive or negative pressure, through use of
enthalpy H = E + pV and correspondingly the enthalpy
differences H−H0 should be compared rather than total
energy E − E0.
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C. Effective Hamiltonian

The effective Hamiltonian constructed from first-
principles calculations and used in MD simulations is ba-
sically the same as that in Ref. 5 and 6,

Heff =
M∗

dipole

2

∑

R,α

u̇2
α(R) +

M∗

acoustic

2

∑

R,α

ẇ2
α(R)

+ V self({u}) + V dpl({u}) + V short({u})

+ V elas, homo(η1, · · ·, η6) + V elas, inho({w})

+ V coup,homo({u}, η1, · · ·, η6) + V coup, inho({u}, {w})

− Z∗

∑

R

E ·u(R) . (4)

Detailed explanation of symbols in the effective Hamilto-
nian can be found in Refs. 1, 4, and 5. We newly intro-
duced 6th-order terms with coefficients k1, k2, and k3 and
an 8th-order term k4u

8(R) to the local-mode self-energy
V self({u}) as

V self({u}) =
∑

R

{

κ2u
2(R) + αu4(R)

+ γ
[

u2
y(R)u2

z(R) + u2
z(R)u2

x(R) + u2
x(R)u2

y(R)
]

+ k1u
6(R) + k2

[

u4
x(R)(u2

y(R) + u2
z(R))

+ u4
y(R)(u2

z(R) + u2
x(R)) + u4

z(R)(u2
x(R) + u2

y(R))
]

+ k3u
2
x(R)u2

y(R)u2
z(R) + k4u

8(R)
}

, (5)

where u2(R) = u2
x(R) + u2

y(R) + u2
z(R). We introduced

this 6th-order terms to follow-up the total-energy surface
precisely. The 8th-order term is for preventing the |u| →
∞ breakdown under negative k1.
In next sections IID and II E, we explain how to de-

termine the parameters for the effective Hamiltonian of
Eq. (4) in detail.

D. Elastic coefficients and total-energy surface

Elastic constants expressed in energy unit B11 = a30C11

and B12 = a30C12, where a0 is the equilibrium lattice con-
stant in cubic structure, can be calculated by deforming
the cubic unit cell of ABO3 with strain tensors

←→ǫ =





δ 0 0
0 δ 0
0 0 δ



 (6)

and

←→ǫ =





0 0 0
0 0 0
0 0 δ



 . (7)

Deformation in Eq. (6) alters the total energy from its
equilibrium value E0 by

E(δ) = E0 +
3

2
(B11 + 2B12)δ

2 +O(δ4) . (8)

More precisely, volume dependence of total energy
may be fitted with the Birch-Murnaghan equation of
state20–22. Deformation in Eq. (7) gives

E(δ) = E0 +
1

2
B11δ

2 +O(δ4) . (9)

For B44 = a30C44, deformation

←→ǫ =





0 δ δ
δ 0 δ
δ δ 0



 (10)

and

E(δ) = E0 +
3

2
B44δ

2 +O(δ4) (11)

can be used.
B1xx, B1yy, and B4yz, the coupling coefficients defined

in Ref. 1, are determined from quadratic u dependence
of strain. In the case of [110] distortion (see Fig. 2(e), for
example),

exx = axxu
2 (12a)

exy = axyu
2 (12b)

ezz = azzu
2 (12c)

emerge

B1xx = −4B11axx + 2(B11 − 2B12)azz (13a)

B1yy = −4B12axx − 2B11azz (13b)

B4yz = −2B44axy . (13c)

Anharmonic coefficients in the on-site energy α, γ,
k1, k2, k3, and k4 in Eq. (5) are determined from u-
dependences of total energies of [001], [110], and [111]
distortions as

E001(u) =κu2 + α′u4 + k1u
6 + k4u

8, (14a)

E110(u) =κu2 + (α′ +
1

4
γ′)u4 + (k1 +

1

4
k2)u

6 + k4u
8,

(14b)

E111(u) =κu2 + (α′ +
1

3
γ′)u4

+ (k1 +
2

9
k2 +

1

27
k3)u

6 + k4u
8 . (14c)

With Eq. (19a) and (19b) in Ref. 1, α′ and γ′ can be
converted into α and γ. It should be mentioned that
it is quite difficult to express the total-energy surfaces
even with up to 8th order polynomial in wide range of u.
Therefore, we fit Eqs. (14a)–(14c) only to the calculated
data points within narrow range of u, e.g. |u| ≤ 0.3 [Å]
for BaTiO3.

E. Response-function calculations

We perform some response-function (RF)
calculations18 with ABINIT, determine IFC matri-
ces at the k-points of Γ, X, M, R, and center of the Σ
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axis (See Fig. 3(A)), then calculate their eigenvalues and
eigenvectors.
We can determine local and short-range interaction

parameters κ2 and j1, · · · , j7 in Ref. 4 from selected
eigenvalues 2κ(ΓTO), 2κ(X1), 2κ(X5), 2κ(M3′), 2κ(M5′),

2κ(R25′), and 2κ(ΣLO). Here, it is emphasised that κ(ki)
is half of the mode-i eigenvalue 2κ(ki) of the IFC matrix
at each k-point. Practically, κ2 and j1, · · · , j7 are deter-
mined by solving linear equation as described in Ref. 4,
in CGS units,

κ(ΓTO) = −
2

3
π

Z∗2

ǫ∞a30
+ κ2 +2j1 + j2 +4j3 + 2j4 + 4j6 (15a)

κ(X1) = 4.84372
Z∗2

ǫ∞a30
+ κ2 +2j1 − j2 −4j3 + 2j4 − 4j6 (15b)

κ(X5) = −2.42186
Z∗2

ǫ∞a30
+ κ2 + j2 − 2j4 − 4j6 (15c)

κ(M3′) = −2.67679
Z∗2

ǫ∞a30
+ κ2 −2j1 + j2 −4j3 + 2j4 + 4j6 (15d)

κ(M5′) = 1.33839
Z∗2

ǫ∞a30
+ κ2 − j2 − 2j4 + 4j6 (15e)

κ(R25′) = κ2 −2j1 − j2 +4j3 + 2j4 − 4j6 (15f)

κ(ΣLO) = 2.93226
Z∗2

ǫ∞a30
+ κ2 +j1 −2j5 −4j7 , (15g)

and

0 = j6 − j7 . (16)

Moreover, we newly assume that j5 = 0 and j7 = 0. With
this assumption, we can omit one RF calculation for the
center of the Σ axis, and we do not use Eq. (15g) and
Eq. (16). We can employ this assumption because j5 and
j7 do not affect low energy polarization modes.
There may be an inconsistency between κ from

Eqs. (14a)–(14c) and κ(ΓTO) in Eq. (15a). To keep the
total-energy surfaces unchanged, κ from Eqs. (14a)–(14c)
should be adopted. Therefore, We add the difference be-
tween κ and κ(ΓTO) to κ2 as

κ2 ← κ2 + [κ− κ(ΓTO)] . (17)

This correction can be employed, because correction of κ2

just leads parallel elevation of dispersion, e.g. Fig. 3(B).
From the calculated normalized Γ15 soft-mode eigen-

vector ξα, we determine the Born effective charge Z∗ and
the effective mass M∗

dipole of the soft mode. For Z∗, we
also use the calculated effective charge tensor Z∗τ

zz for
each atom τ ,

Z∗ =
∑

τ

ξτz Z∗τ
zz . (18)

The effective mass will be

M∗

dipole =
∑

τ

{ξτz }
2M τ , (19)

where M τ is the mass of atom τ .
The optical dielectric constant ǫ∞ can be also deter-

mined in RF calculations.

F. Conditions of molecular-dynamics simulations

MD simulations for BaTiO3 with the effective Hamilto-
nian of Eq. (4) are performed with our original MD code
feram (http://loto.sourceforge.net/feram/). De-
tails of the code can be found in Ref. 5. Temperature
is kept constant in each temperature step in the canoni-
cal ensemble using the Nosé-Poincaré thermostat.23 This
simplectic thermostat is so efficient that we can set the
time step to ∆t = 2 fs. In our present MD simulations, we
thermalize the system for 180,000 time steps, after which
we average the properties for 20,000 time steps. We used
a supercell of system size Lx × Ly × Lz = 14 × 14 × 14
and small temperature steps in heating-up (+1 K/step)
and cooling-down (−1 K/step) simulations. It should be
noted that the larger supercell size and the more rapid
heating-up and cooling-down result in the larger temper-
ature hysteresis. The initial configuration are generated
randomly: 〈uα〉 = 0.11 Å and 〈u2

α〉 − 〈uα〉
2 = (0.02 Å)2.

We have checked that there is no dependence of results
of these simulations on initial configurations.

http://loto.sourceforge.net/feram/
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TABLE I. Calculated equilibrium lattice constants a0 for cu-
bic phases are compared to experimental values observed just
above TC. Experimental values are cited from Refs. 24 and 3
for BaTiO3 (TC = 403 K), Ref. 25 for PbTiO3 (TC = 763 K),
and Ref. 26 for SrTiO3 (TC = 106 K).

BaTiO3 PbTiO3 SrTiO3

experiment 4.010 Å 3.960 Å 3.896 Å

LDA (Teter) 3.938 Å 3.880 Å 3.845 Å

GGA (PBE) 4.034 Å 3.976 Å 3.946 Å

GGA (W&C) 3.986 Å 3.930 Å 3.901 Å

LDA under 3.989 Å 3.905 Å 3.899 Å

negative pressure −7.0 GPa −4.0 GPa −8.0 GPa

III. RESULTS AND DISCUSSION

Calculated total-energy curves along [001], [110], and
[111] distortion directions of BaTiO3 with three function-
als are shown in Fig. 2. It is clear that LDA results in
shallow double wells and GGA (PBE) results in rather
deep wells, while GGA (Wu and Cohen) results in in-
termediate depths of the double well potentials. Note
that, in Fig. 2(a), double wells of LDA results cannot be
recognized in this scale of energy. It can be said that
GGA (Wu and Cohen) succeeds in reproducing total-
energy surfaces at 0 K. These results can be understood
from estimated equilibrium cubic lattice constants a0 =
3.938, 4.034, and 3.986 Å, respectively (See also Table I.).
GGA (Wu and Cohen) results also reveal that the “di-
rection” ξ(u) of atomic displacements largely depends on
u, as shown in Fig. 2(f) even in BaTiO3, which exhibits
relatively small polar structural distortions across its fer-
roelectric transition. For emphasizing that the depth of
the double wells are strongly affected by equilibrium cu-
bic lattice constant, total-energy surfaces calculated with
LDA under negative pressure −7.0 GPa (a0 = 3.989 Å)
are calculated and show in Fig. 2(d). This value of neg-
ative pressure, −7.0 GPa, is selected to get similar total-
energy surfaces as the GGA (Wu and Cohen) results from
−1.0,−2.0, · · · ,−9.0 GPa calculations. It can be seen
that LDA under certain negative pressure gives results
similar to those of GGA (Wu and Cohen).

From our calculations with GGA (Wu and Cohen), i.e.
total-energy surfaces, u-dependence of strain (Fig. 2(e)),
IFC matrices, etc., we construct a new parameter set
of effective Hamiltonian for BaTiO3. The parameters
from Refs. 1 and 4 and those of present work are com-
pared in Table II. As shown in Fig. 3(A), without short-
range interaction, pure dipole-dipole long-range interac-
tion results in an antiferroelectric cell-doubling state as
the most stable structure, corresponding to the strongest
instability at M point. However, as shown in Fig. 3(B),
introduction of short-range interactions κ2 and j1, · · · , j7
results in the ferroelectric state as the most stable struc-
ture at the Γ point.

In Fig. 4, dipole moment per unit cell as a function of
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FIG. 2. (Color online) (a)–(d) Total-energy surfaces for zone-
center distortions of BaTiO3. (e) u-dependence of strain along
[110] distortion. (f) “Direction” ξ(u) of atomic displacements
along [001] distortion.
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TABLE II. Comparison of two set of parameters for the
BaTiO3 effective Hamiltonian. “—” indicates that values was
not in use. “n.a.” indicates that values are not available. p
is constant or temperature T [K] dependent effective negative
pressures applied while MD simulations. κ in Eqs. (14a)–
(14c) and κ(ki) in Eqs. (15a)–(15g) are also listed. They are
used to determine κ2 and j1, · · · , j7. ξτz are the soft-mode
eigenvector.

Refs. present

parameter 1 and 4 work

p [GPa] −4.8 −0.005T

a0 [Å] 3.95 3.986

B11 [eV] 127.0 126.73

B12 [eV] 44.9 41.76

B44 [eV] 50.3 49.24

B1xx [eV/Å2] −211. −185.35

B1yy [eV/Å2] −19.3 −3.2809

B4yz [eV/Å2] −7.75 −14.550

α [eV/Å4] 111. 78.99

γ [eV/Å4] −164. −115.48

k1 [eV/Å6] — −267.98

k2 [eV/Å6] — 197.50

k3 [eV/Å6] — 830.20

k4 [eV/Å8] — 641.97

m∗ [amu] — 38.24

Z∗ [e] 9.956 10.33

ǫ∞ 5.24 6.87

κ2 [eV/Å2] 5.52 8.534

j1 [eV/Å2] −2.657 −2.084

j2 [eV/Å2] 3.906 −1.129

j3 [eV/Å2] 0.901 0.689

j4 [eV/Å2] −0.792 −0.611

j5 [eV/Å2] 0.564 0.000

j6 [eV/Å2] 0.360 0.277

j7 [eV/Å2] 0.180 0.000

κ [eV/Å2] −1.695 −1.518

κ(ΓTO) [eV/Å2] n.a. −1.906

κ(X1) [eV/Å2] n.a. 17.128

κ(X5) [eV/Å2] n.a. −1.422

κ(M3′) [eV/Å2] n.a. −1.143

κ(M5′) [eV/Å2] n.a. 16.333

κ(R25′) [eV/Å2] n.a. 13.871

ξAz 0.20 0.166

ξBz 0.76 0.770

ξOI
z −0.21 −0.202

ξOII
z −0.21 −0.202

ξOIII
z −0.53 −0.546

Z∗A
zz [e] 2.75 2.741

Z∗B
zz [e] 7.16 7.492

Z∗OI
zz [e] −2.11 −2.150
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FIG. 3. (Color online) (A) Half of eigenvalues of the 3 ×

3 long-range dipole-dipole interaction matrix Φ̃(k) (Fourier
transform of Eq. (10) in Ref. 5) are plotted along symmetric
axes in the the first Brillouin zone of the simple-cubic lattice.
Special points and k/(2π/a) = ( 1

4
, 1

4
, 0) (the center of the Σ

axis) are indicated with vertical dotted lines. Labels (a)–(g)
corresponds to Eqs. (15a)–(15g), respectively. Tics in the unit

of Z∗2

ǫ∞a3
0

is placed in left side. Tics in the unit of eV, in the

case of the parameter set of Table II, is placed in right side.
(B) Half of eigenvalues of the total (long-range + short-range)

interaction matrix Φ̃quad(k) (Eq. (13) in Ref. 5).

u for atomic displacements along [001] distortion calcu-
lated with the Berry-phase theory27 is shown. As com-
pared with Z∗u, it can be seen that linearity is broken
at large u. Since following MD simulations are based
in energetics, effects of this nonlinear Z∗(u) mainly get
folded into anharmonic terms, i.e. α, γ, k1, k2, k3, and
k4. However, still, there might be issues with intersite
anharmonic interactions. We leave the issues for future
studies.

From the Table II, it is evident that most parameters
in the effective Hamiltonian are sensitive to the choice
of exchange-correlation functional, with the exception of
elastic constants and the mode effective charge. Largest
change is seen in the parameters of coupling between
strain and polarization, as is expected from the fact that
Wu-Cohen functional gives a better estimate of lattice
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FIG. 4. (Color online) Calculated dipole moment per unit
cell as a function of u for atomic displacements along [001]
distortion (solid line). Z∗u is also plotted for comparison
(dashed line).

parameters and that they couple strongly with polariza-
tion. Electronic contribution to the dielectric constant
ǫ∞ is further overestimated with Wu-Cohen functional
(it is typically 20 % overestimated in an LDA-based cal-
culation). Due to the use of Hashimoto-Nishimatsu’s val-
ley tracing technique, description of the on-site potential
energy curve requires anharmonic terms expanded up to
8th order.

Using the Wu-Cohen functional-based parametrized ef-
fective Hamiltonian, we perform heating-up and cooling-
down MD simulations. In Fig. 5, lattice parameters
as functions of temperature are plotted under (a) p =
0.0 GPa, (b) p = −2.0 GPa, and (c) p = −0.005T GPa,
where T is the temperature in Kelvin. p = −2.0 GPa
and p = −0.005T are used to obtain a lattice con-
stant of 4.010 Å just above TC = 403 K. Note that,
at T = 400 K, p = −0.005T = −2.0 GPa. The lat-
ter temperature-dependent effective negative pressure is
for simulating thermal expansion.28,29 We note that ad-
justment of the lattice constant through a negative pres-
sure(s) results in significant improvement in the temper-
ature of transition from cubic to tetragonal phase, while
the description of the lower two transitions improves only
slightly. Results with Wu-Cohen functional (in all the
three schemes, 0.0, −2.0, and −0.005T GPa pressures)
show a significant improvements in cubic-to-tetragonal
transition temperature compared to the LDA-based re-
sults of previous MC4 and MD5 calculations, but not in
the lower two transitions. These mal-improvements in
the lower two transitions may be coming from difficulties
in accurate first-principles calculations and polynomial
fittings of almost degenerated bottom of double wells of
[001], [110], and [111] distortions. In Table III, simulated
transition temperatures are compared to the previous
MD simulations5 with LDA-based parameters and exper-
imentally observed values. Comparing them to experi-
mentally observed temperature dependence of lattice pa-
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FIG. 5. (Color online) Simulated temperature dependence
of lattice parameters under (a) p = −0.0 GPa, (b) p =
−2.0 GPa, (c) p = −0.005T GPa.

rameters in Ref. 24, we also note that p = −0.005T GPa
gives better temperature dependence of c/a of tetragonal
phase than p = 0.0 or p = −2.0 GPa, though c/a is still
slightly overestimated.
We also calculated total-energy surfaces for zone-center

distortions of PbTiO3 and SrTiO3 in Figs. 6 and 7, re-
spectively. Note that SrTiO3 is not a ferroelectric ma-
terial and the polarizing zone-center distortion is not to
be realized. However, these may be useful data for in-
vestigating epitaxial constraint SrTiO3 films where the
polarization properties depend crucially on the lattice
mismatch. In both cases, similar trends in energetics
as those in BaTiO3 can be seen: LDA results in shal-
low double wells and GGA (PBE) results in rather deep
wells, while GGA (Wu and Cohen) results in intermediate
depths of the double well potentials. Again, LDA calcu-
lations under negative pressures, −4.0 GPa for PbTiO3

and −8.0 GPa for SrTiO3, give similar results to those
of GGA (Wu and Cohen). Equilibrium cubic lattice con-
stants are compared in Table I.
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TABLE III. Simulated cubic ↔ tetragonal, tetragonal ↔ or-
thorhombic, and orthorhombic ↔ rhombohedral transition
temperatures are compared to the previous MD simulations5

with LDA-based parameters and experimentally observed val-
ues. Heating-up and cooling-down transition temperatures
are averaged when corresponding transition has temperature
hysteresis.

XC functional and ortho. tetra. cubic

effective negative pressure rhombo. ortho. tetra.

GGA (W&C), 0.0 GPa 102 K 160 K 288 K

GGA (W&C), −2.0 GPa 117 K 218 K 408 K

GGA (W&C), −0.005T GPa 103 K 187 K 411 K

LDA, 0.0 GPa 95 K 110 K 137 K

LDA, −5.0 GPa 210 K 245 K 320 K

experiment (after Refs. 24 and 3) 183 K 278 K 403 K

IV. SUMMARY

In this work, we have evaluated the improvement in
the description of energy surface at 0 K relevant to ferro-
electricity in perovskite-based titanates with use of Wu-
Cohen GGA functional for exchange correlation energy
in first-principles density functional theoretical calcula-
tions to correctly estimate lattice constants and crys-
tallographic anisotropy such as c/a ratio. We have
demonstrated that the new GGA (Wu and Cohen)
functional based calculations and LDA calculations un-
der certain negative pressures are capable of yielding
fairly accurate and comparable total-energy surfaces of
zone-center distortions for ABO3 perovskite-type ferro-
electrics; BaTiO3, PbTiO3, and SrTiO3. We have shown
that their polar structural distortions are highly sensi-
tive to their lattice constants, and hence much of the
improvement with Wu-Cohen functional comes from its
ability to correctly estimate lattice constants. We note
that the use of Wu-Cohen functional has little influence
elastic parameters, the soft mode eigenvectors and mode
effective charges which govern the long-range dipolar in-
teractions. What is most affected are the terms of the

cubic anisotropy, as reflected in the strain coupling term
B1yy and anharmoinc terms, and hence in the relative
energy well-depths of polar distortions along [001], [110],
and [111] directions. This is not quite surprising as the
motivation in development of the Wu-Cohen functional
was to get structural properties such as c/a ratio and
lattice constants with better accuracy.
We then analyzed consequences of this improvement

in energy functional to finite temperature ferroelectric
transition, taking an example of BaTiO3. To this end,
starting from calculations with GGA (Wu and Cohen)
functional, we constructed a new parameter set for effec-
tive Hamiltonian of BaTiO3 employing the valley-tracing
technique that effectively includes anharmonic coupling
of the soft polar mode with higher energy polar modes.
Comparing this and an LDA-based effective Hamiltonian
with MD simulations, we find that the use of Wu-Cohen
functional leads to a clear improvement in description of
the highest temperature transition from cubic to tetrag-
onal phase. We also confirmed that, as already men-
tioned in Refs. 28 and 29, the effect of thermal expan-
sion, which is basically coming from the odd order en-
ergy terms of atomic displacements and their coupling
with strains, cannot be ignored as these materials ex-
hibit strong electro-mechanical couplings. Secondly, ac-
counting for thermal expansion approximately through
the temperature-dependent effective negative pressure in
effective Hamiltonian, a more realistic description of fer-
roelectric phase transition can be obtained.
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