
Open Computation Tree Logic for Formal Verification of Modules

Pallab Dasgupta� Arindam Chakrabarti�

P.P. Chakrabarti�

Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur, INDIA 721302

pallab,ppchak@cse.iitkgp.ernet.in

Abstract

Modules of large VLSI circuits are often designed by dif-
ferent designers spread across the globe. One of the main
challenges of the designer is to guarantee that the module
he/she designs will work correctly in the global design, the
details of which, is often unknown to him/her. Modules are
open systems whose behavior is subject to the inputs it re-
ceives from its environment. It has been shown that veri-
fication of open systems (modules) is computationally very
hard (EXPTIME complete [7]) when we consider all pos-
sible environments. On the other hand we show that in-
tegrating the specification of the properties to be verified
with the specification of only the valid input patterns (under
which the module is expected to function correctly) gives
us a powerful syntax which can be verified in polynomial
time. We call the proposed logic Open-CTL (CTL for open
systems). The convenience of being able to specify the prop-
erty and the environment in a unified way in Open-CTL is
demonstrated through a study of the PCI Bus properties.
We present a symbolic BDD-based verification scheme for
checking Open-CTL formulas, and present experimental re-
sults on modules from the Texas-97 Verification Benchmark
circuits [12].

1 Introduction

Components of a large VLSI circuit are often designed
in different places by different designers. Due to the in-
creasing complexity of the overall designs, it has become
very important for the designer to guarantee that the com-
ponent he/she designs will work in all valid environments
where it is to be used. With the recent emphasis on com-
ponent reusability, this has become even more significant,

�The authors acknowledge the support of Sun Microsystems, USA, for
this work. Pallab Dasgupta further acknowledges the support of the In-
dian National Science Academy. P.P. Chakrabarti further acknowledges
the support of Dept. of Sci & Tech, Govt. of India.

since the environment where it is reused may be entirely
different from the one for which it was originally designed.
Temporal logic model checking [3, 4] has emerged as

one of the most powerful techniques for automated formal
verification of hardware. In this approach, the design is
modeled as a finite state non-deterministic transition sys-
tem. The correctness property that needs to be verified on
the design is specified in terms of a temporal logic formula.
Computation Tree Logic (CTL) is one of the most popu-
lar temporal logics, and is the formal specification language
behind many verification tools such as SMV [10], VIS [13]
and FormalCheck [5].
The bulk of research in model checking has focussed on

the verification of closed systems, that is, systems which
are self contained and have no external inputs. While this
may be the case for the circuit as a whole, it is certainly not
the case for the individual modules in the circuit which will
typically receive inputs from the other modules. A module
is an open system whose behavior is a function of the in-
puts it receives from its environment. Verification of open
systems (referred to as module checking) has been shown
to be much more complex than the verification of closed
systems [7, 8]. For example, while CTL verification in
closed systems is polynomial in the size of the system times
the length of the formula, CTL verification in modules is
EXPTIME-complete.
In reality, the designer is typically required to guarantee

that the module works correctly under certain valid environ-
ments only. These are the environments that the test bench
attempts to model. For example, the designer of a PCI com-
pliant device may be required to validate the device under
valid PCI Bus environments.
In this paper, we present a temporal logic called Open-

CTL for the verification of open systems (modules). The
novelty of this logic is that it integrates the specification of
the CTL property to be verified with the valid input patterns
under which it is expected to hold. For example, while the
CTL property EFq asks whether q holds sometime in the
future, the Open-CTL property EFIq asks whether q holds

sometime in the future provided we continue to assert the
input I . We show that Open-CTL is useful for express-
ing properties of modules, since it allows the specification
of properties and input constraints in a unified way. We
demonstrate the expressibility of Open-CTL through exam-
ples and a study of the PCI Bus protocol.
Open-CTL allows us to validate a module in absence of

details about the other modules in the design. Since we do
not have to consider all the modules together (to get a closed
system) we avoid the state explosion problem which is the
main bottleneck in model checking. Open-CTL is also use-
ful in the assume-guarantee style of reasoning [6], where
conditions guaranteed by the other modules in the design
are used as assumptions about the environment of the mod-
ule to be verified.
We establish that Open-CTL verification is also compu-

tationally attractive. Given a module which is explicitly
specified as a FSM, Open-CTL verification works in time
linear in the size of the module times the length of the Open-
CTL formula. While this is good news, it is usually the case
that module descriptions specified in high-level languages
such as Verilog or SystemC are succinct in nature. Extract-
ing the FSM explicitly from such specifications is by itself
an expensive task.
On the other hand it is more convenient to translate the

succinct description of a module to a equivalent BDD rep-
resentation (which is also succinct). Our Open-CTL ver-
ification tool performs this task by accepting Verilog de-
scriptions as input. We then present a symbolic BDD-based
method for verifying Open-CTL formulae and present ex-
perimental results on the Texas-97 Verification Bench-
marks [12].
The paper is organized as follows. The first two sec-

tions presents the foundations of Open-CTL. In Section 2,
we present the syntax and semantics of Open-CTL, while
in Section 3, we establish the complexity of Open-CTL
verification on explicit modules. In Section 4 we consider
succinct modules and illustrate the semantics of Open-CTL
on succinct modules through examples. Section 5 presents
a symbolic BDD-based verification method for Open-CTL
verification in succinct modules. Section 6 demonstrates the
expressibility of Open-CTL in modelling properties of PCI
compliant master and slave devices. We present experimen-
tal results in Section 7.

2 Syntax and Semantics

Formally, we define a module as a tuple, J =
hAP ;S;I;τ;s0;F i, where:

� AP is a set of atomic propositions,

� S is a finite set of states,

� I is a finite set of inputs,

� τ : S� 2I! S is the next-state function. Given a state
si 2 S and input vector η, s j = τ(si;η) is the next state
of si under input η,

� s0 2 S is the initial state,

� F : S! 2AP is a labeling of states with atomic propo-
sitions true in that state.

A path, π, in the module is an infinite sequence of state-
input pairs, (s0;η0);(s1;η1); : : :, such that for all i, si 2 S,
ηi 2 2Iand si+1 = τ(si;ηi). s0 is called the starting state of
π. Since the module has a finite set of states, one or more
states will appear multiple number of times on a path. In
other words, a path (as defined here) is an infinite walk over
the state transition graph.
We further define a I -consistent path as follows. A

boolean function I over the inputs I is said to be satis-
fied by a input vector η iff I evaluates to true on the in-
put η. Given a boolean function I over the inputs I, a path
π = (s0;η0);(s1;η1); : : : is I -consistent if ηi satisfies I for
all i. It may be noted that since the next state of a state is
well defined for every input vector, there exists at least one
I -consistent path starting from each state whenever I is sat-
isfiable. Since many different input vectors may satisfy I ,
there may be multiple I -consistent paths from a state.
The formal syntax of Open-CTL is as follows:

� Each p 2 AP is an Open-CTL formula,

� If f and g are Open-CTL formulas, then so are : f ,
f _g, f ^g, EXI f , AXI f , E(f UI g), A(f UI g), where
I is a boolean formula over inputs in I.

The syntax is similar to CTL, except that the X and U op-
erators are augmented with an input constraint, I . We use
the usual short forms EFI f for E(true UI f), and AGI f for
:EFI: f .
The semantics of Open-CTL is defined over a module J =
hAP ;S;I;τ;s0;F i. We use the notation s j= f to indicate
that the Open-CTL formula f is true at state s of the module.
Likewise, we use the notation π j=ψ to indicate that a Open-
CTL path formula, ψ (of the form fUI g) is true on the path
π. The formal semantics of Open-CTL is as follows:

� 8s 2 S;s j= True and s 6j= False

� s j= p iff p 2 F (s)

� s j= : f iff s 6j= f

� s j= f ^g iff s j= f and s j= g

� s j= f _g iff s j= f or s j= g

� s j= EXI f iff 9s0 = τ(s;η) such that s0 j= f and the
input vector η satisfies the constraint I

� s j= AXI f iff s j= EXI f and 8s0, such that s0 = τ(s;η)
for some η satisfying I , we have s0 j= f

� π j= fUI g iff π is I -consistent, and 9(si;ηi) 2 π such
that si j= g, and for all (s j;η j) preceding (si;ηi) in π,
si j= f

� s j= E(fUI g) iff there exists a path π starting from s,
such that π j= fUI g

� s j= A(fUI g) iff s j= E(fUI g) and for each I -
consistent path π starting from s, we have π j= fUI g

As mentioned earlier, an I -consistent path always exists
from a state s provided that I is satisfiable. In a Open-CTL
formula, I is used to specify the possible input patterns un-
der which we are to verify the module, and hence it is nat-
ural to assume that I is non-empty (satisfiable). Otherwise,
the formulas are vacuously false at all states. It is for this
reason that we have the requirement of s j= EXI f in the se-
mantics of s j= AXI f and the requirement of s j= E(fUI g)
in the semantics of s j= A(fUI g).

3 Complexity of Open-CTL Verification

In this section we examine the complexity of Open-CTL
verification in modules. It is easy to see that Open-CTL is
strictly more expressive than CTL. This is because, Open-
CTL reduces to CTL in the absence of input constraints, and
whenever a input constraint is given, the Open-CTL formula
cannot be expressed in CTL.

Theorem 1 An Open-CTL formula, ϕ, can be verified
at all states of a module, J = hAP ;S;I;τ;s0;F i, in
O(jϕj:jI �j:(jτj+ jSj)) time, where I � is the length of the
longest input constraint in ϕ.

Proof: It is known that in the absence of input con-
straints, verifying a CTL formula ψ requires O(jψj:(jτj+
jSj)) time [3]. Suppose ϕ is of the form EXI f , AXI f ,
E(f UI g) or A(f UI g). Given a transition (si;η;s j) we
can verify whether the input vector η satisfies I in jI j time.
Therefore, deleting all transitions not enabled by I can be
done in jI j:jτj time.
We now use induction on the length of the formula. Sup-

pose the states of the transition systems are labelled by the
subformulas of ϕ that are true in them. In order to ver-
ify ϕ, we first prune all transitions not enabled by I . We
then perform model checking of the unconstrained formula
on the pruned transition system using the labels of the sub-
formulas, which requires O(jI j:(jτj+ jSj)) time. Using the
worst case size of the input constraint, and by induction on
the length of ϕ, we obtain the complexity of verification as
O(jϕj:jI �j:(jτj+ jSj)). 2.

4 Succinct Modules

In the definition of a module, we have a transition from a
state si for every input vector. Theorem 1 gives us the com-
plexity of Open-CTL verification, when these transitions
are explicitly specified. However, designers often specify
the conditions enabling a transition as a boolean formula
f in the form of branching code with f as the branching
condition, or in the form of synchronization formulas (say
formulas using the @ construct in Verilog). It is therefore
natural to expect that the set of input vectors enabling a tran-
sition of the module is succinctly specified in the form of a
boolean formula. We refer to such module specifications as
succinct module.
The following example illustrates a typical succinct

module where each transition is labeled by the boolean for-
mula representing the set of input vectors for which the tran-
sition is taken. We also illustrate the syntax and semantics
of Open-CTL through the following example.

Example 1 Figure 1 shows a simple module in succinct form
with S = fs1;s2;s3;s4;s5;s6g, AP = f f ;g;hg and I= fi1; i2g. s1
is the initial state. The atomic propositions true in a state is shown
beside the state. The set of input vectors enabling a given transition
is shown as a boolean formula beside the transition. For example,
the transition from s1 to s4 is enabled by two input vectors, namely
η1 = (1;0) and η2 = (1;1), which are represented by the boolean
formula i1.

s1

s4 s6

s3

s2

s5
h

f

f

g

f,g g

i1

i1 i2

:i1

:i2
i1^ i2

:i1^ i2

:(i1^ i2)

:(i1_ i2)

:(i1_ i2)

i1_ i2

Figure 1. A simple module

Let us consider the following Open-CTL formulas:

ϕ1 = E(f UI g)

ϕ2 = A(f UI g)

where I = i1 ^:i2. Since g is true in the states fs2;s4;s6g, both
ϕ1 and ϕ2 are true in these states. At s1, the input constraint I is
satisfied only by the transition from s1 to s4, and therefore both
ϕ1 and ϕ2 are true at s1. On the other hand, at state s5, the input

constraint I is satisfied only by the transition from s5 to s3, and
hence both ϕ1 and ϕ2 are false at s5.
Now, suppose in ϕ1 and ϕ2, we have I = :i1. Under this con-

straint, the semantics of ϕ1 seeks to determine whether by provid-
ing appropriate values to the other input i2, the system can trace a
path satisfying (f U g). The semantics of ϕ2 seeks to determine
whether irrespective of the other input i2, the system can trace a
path satisfying (f U g). At s1, I is satisfied by the transitions to
s3 and s2. Therefore, ϕ1 is true at s1, while ϕ2 is false.
At s5, I is satisfied by the transition to s6 when we set i2 = 0.

More interestingly, it should be noted that the transition from s5
to s6 is enabled by a collection of three input vectors η0 = (0;1),
η1 = (1;0) and η2 = (1;1). Thus the transition shown in the dia-
gram actually consists of three alternative transitions each enabled
by a different input vector, but all leading to the same next state s3.
Since η0 satisfies I = :i1, the transition from s5 to s3 is enabled.
Therefore, ϕ1 is true at s5 (by virtue of the path to s6), but ϕ2 is
false (due to the path to s3).
The syntax of Open-CTL allows us to nest formulas with differ-

ent input constraints. For example, consider the following query:

Does there exist a path where by giving input :i1 we
reach a state satisfying h from which there exists a path
where by giving input i2 we reach a state satisfying g?

The above query can be expressed in Open-CTL as a formula:

ϕ = E(true U
:i1 h^E(true Ui2 g))

The subformula h^E(true Ui2 g) is true at state s3. Therefore ϕ is
true at s1 (due to the path s1;s4;s3). 2

Given the boolean formula, b, representing the set of in-
put vectors enabling a transition from si to s j , determin-
ing whether the transition is enabled under input constraint
I amounts to finding out whether b^ I is satisfiable. In
general this problem is NP-complete, and therefore Open-
CTL verification in succinctly specified modules is also NP-
complete.
Succinct representations of boolean functions are effi-

ciently handled by Binary Decision Diagrams (BDDs). The
BDD of a function actually represents the set of vectors
satisfying the function, hence satisfiability is trivial once
the BDD is constructed. Since BDDs can succinctly repre-
sent very large functions, BDD based symbolic CTL model
checking algorithms have been preferred over explicit graph
CTL model checking though the latter works in time poly-
nomial in the size of the system times the length of the for-
mula.
In the next section, we present a symbolic BDD-based

verification algorithm for Open-CTL verification of suc-
cinctly specified modules which has the same complexity
as symbolic model checking algorithms [2, 4] for CTL ver-
ification. Thereby we show that Open-CTL verification al-
lows us to verify open systems in the same complexity as
closed systems which is significant since CTLmodel check-
ing in open systems is EXPTIME-complete.

5 Symbolic Open-CTL verification

We have developed a BBD-based symbolic module
checking algorithm for Open-CTL verification. The al-
gorithm works in the same style as the symbolic model
checking algorithm for CTL verification, but our algorithm
matches the input variables with the input constraint during
fixpoint computation.
The next-state function τ is represented as a BDD for

the relation, N(V; I;V 0) where V denotes the present state, I
denotes the input vector, and V 0 denotes the next state. For
better space utilization, N(V; I;V 0) is stored as a partitioned
transition relation.
The verification procedure Check takes the Open-CTL

formula to be checked as its argument and returns an OBDD
that represents the states of the system which satisfy the for-
mula. The procedureCheck recursively handles formulas of
the form EXI f, AXI f, E[fUI g] and A[fUI g] as follows:

Check(EXI f) = CheckEX(I , Check(f))
Check(AXI f) = CheckAX(I , Check(f))
Check(E[fUI g]) = CheckEU(I , Check(f), Check(g))
Check(A[fUI g]) = CheckAU(I , Check(f), Check(g))

Given the BDD f (V 0) returned by Check(f), the BDD
N(V; I;V 0) for the transition relation, and the BDD C(I) for
the input constraint I , we have:

CheckEX(I , Check(f)) =
9V 09I [f (V 0)^N(V; I;V 0)^C(I)]

CheckAX(I , Check(f)) =
8V 09I [f (V 0)^N(V; I;V 0)^C(I)]

CheckEU(I , Check(f), Check(g)) =
lfp Z(V 0) [g(V 0)_ (f (V 0)^CheckEX(I ;Z(V 0)))]

CheckAU(I , Check(f), Check(g)) =
lfp Z(V 0) [g(V 0)_ (f (V 0)^CheckAX(I ;Z(V 0)))]

The CheckEU and CheckAU procedures for computing the
fixpoints are similar to CTL model checking procedures in
the literature [2, 4]. The only difference is that we choose
only the transitions enabled under the input constraint I .

6 Verifying the PCI-Bus Protocol

The PCI Local Bus, being a well-known and extensively
used industry standard can be considered as a suitable ex-
ample to demonstrate the applicability of the proposed ver-
ification approach to real problems encountered by system
designers.
A PCI-compliant system consists of master, target and

arbiter devices, each of which interact together according
to a set of well-defined rules that constitute the protocol.
A detailed description of the different signal pins and their
semantics can be found in the PCI Special Interest Group
documentation or in books such as [9] and [1].

IDLE BUS_BUSY

NORMAL

BACKOFF

DATA

BUSY

:BUSY
FRAME

FRAME

:FRAME

:FRAME

:FRAME

:(FRAME^ADDRESS)

FRAME^BUSY

FRAME^:BUSY

FRAME^ADDRESS^

FRAME^ADDRESS^
BUSY^RESPOND

:RESPOND

FRAME^ADDRESS^:BUSY^RESPOND

Figure 2. State transition diagram for a PCI slave

Figure 2 shows the state transition system for a PCI tar-
get (slave) device. For simplicity, we have removed the
states corresponding to the data path configurations. They
have been represented as part of the environment of the con-
trol module or as signals (like BUSY) derived as a logical
function of such data path components.
Let us consider a PCI subsystem with a single target

(slave) device. Our knowledge of this peculiarity of the sys-
tem tells us that the environment signal ADDRESS for the
target module can never be deasserted in the BUS BUSY
state. And as we know from the isolated descriptions of
all PCI-compliant master devices, the signal FRAME can
never be deasserted when the target device has just entered
BUS BUSY from IDLE. The CTL query

AG(IDLE) (AX(BUS BUSY)
AX(BACKOFF_DATA_BUS BUSY))))

evaluates to false on the system in Figure 2 because of the
false path in which a target machine enters state IDLE im-
mediately after entering BUS BUSY from IDLE. This path
is considered by the verifier when evaluating the formula as
f alse, not knowing the fact that such a path is not possible
in any execution of this target machine in reality.
In Open-CTL the query can be enhanced to incorporate

the available information. Thus the following Open-CTL
query which actually expresses the designer’s intent is true:

AG(IDLE) (AX(BUS BUSY)
AXI (DATA_BACKOFF_BUS BUSY))))

where I = FRAME^ADDRESS.
Let us consider another example. The CTL formula:

AG(IDLE)
AX(BUS BUSY) AX(BUS BUSY)

AX(BUS BUSY) AX(IDLE))))))

comes out to be false as the verifier does not know that the
PCI master would not continue to assert FRAME for more
than 3 clock cycles if the target does not respond by assert-
ing DEVSEL. Incoprporating this information we get the
following Open-CTL query which evaluates to true as ex-
pected.

AG(IDLE)
AX(BUS BUSY) AX(BUS BUSY)

AX(BUS BUSY) AXI (IDLE))))))

where I = :FRAME.

7 Results

We present experimental results of the Open-CTL ver-
ifier on modules from the Texas-97 Verification Bench-
marks [12]. These benchmarks consist of industrial grade
circuit modules specified in Verilog. The verifier was run on
a 300 MHz SUN Enterprise 250 workstation with 128 MB
RAM.We used a commercially available design analyzer to
parse the Verilog code, and the CUDD BDD-package [11]
for generating the BDDs.
Our verifier accepts modules written in a subset of syn-

thesizable Verilog. The transition relation extracted from a
module is stored in a BDD. In order to reduce the effective
state space of the modules, we developed an abstraction al-
gorithm, which removes portions of the circuit that do not
affect the state bits concerning the properties to be verified.
We observed that this simple algorithm removedmajor parts
of the data path while retaining the control path. We decom-
posed some of the CTL properties given in the Texas-97
Verification Benchmarks into Open-CTL formulas on the
individual modules.
Table 1 shows the results of abstraction. The second col-

umn specifies the module within the circuit specified in the

Pre-abstraction Post-abstraction
Circuit Module #States BDD #States BDD Our ref.

nodes nodes

MSI Cache Coherence Protocol 3-proc sys arbiter 256 409 8 295 CCP-1
2-proc sys arbiter 512 307 16 193 CCP-2

MPEG System Decoder timestamp 1024 60145 104 1287 MPEG-1
prefixcode 32 140 32 140 MPEG-2
parsepack 1021 6662563 128 1133 MPEG-3
packstart 32 398 32 398 MPEG-4

PI Bus (multimaster) slave 1041 - 32 4004 PI
PCI Local Bus master 1062 - 1012 16857 PCI-M

target 1023 462804 1013 24920 PCI-S

Table 1. Results of abstraction on Texas-97 Benchmarks

Circuit Extraction #Queries Verification
(our ref.) time time

CCP-1 40 ms 3 150 ms
CCP-2 80 ms 2 80 ms
MPEG-1 210 ms 3 1.5 sec
MPEG-2 30 ms 3 100 ms
MPEG-3 100 ms 4 610 ms
MPEG-4 80 ms 3 160 ms
PI 2 sec 2 540 ms

PCI-M 38.5 sec 4 6 sec
PCI-S 19.5 sec 4 5 sec

Table 2. Results of Open-CTL Verifier

first column. The last column in Table 1 shows the names
that we use to refer to these modules. We show the ap-
proximate number of states and the number of BDD nodes
before and after abstraction. In some cases, without abstrac-
tion CUDD failed to create the BDDs within our memory of
128 MB.

Table 2 shows the time required by our verifier. The ex-
traction time includes the time required by the design ana-
lyzer to parse the circuit, the time required by the abstrac-
tion algorithm to prune the circuit, and the time required by
CUDD to create the BDDs. The verification time denotes
the time required after extraction by the Open-CTL verifier
to check the number of properties given in the third column.
All times refer to CPU time.

As shown in Table 2, most of the modules were verified
in less than a second. In the case of the PCI master and PCI
slave modules, the verifier required nearly half a minute.
The results clearly indicate the advantage of verifying mod-
ules one at a time, and Open-CTL appears to be very well
suited for this style of verification.

References

[1] Anderson, D., and Shanley, T., PCI System Architecture,
Addison-Wesley Longman, 1995.

[2] Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., and
Dill, D.L., Symbolic model checking for sequential circuit
verification. IEEE Trans. on CAD, 13, 4, 401-424, 1994.

[3] Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications, ACM Trans. on Prog. Lang. and Sys-
tems, 8(2):244-263, 1986.

[4] Clarke, E.M., Grumberg, O., and Peled, D.A.,Model Check-
ing, MIT Press, 2000.

[5] Cadence Formalcheck Tool,
http://www.cadence.com/datasheets/formalcheck.html

[6] Grumberg, O., and Long, D.E., Model Checking and Mod-
ular Verification, ACM Trans. on Prog. Lang. and Systems,
16:843-872, 1994.

[7] Kupferman, O. and Vardi, M.Y., Module Checking. In Proc.
8th Int. Conf. on CAV, LNCS 1102, 75-86, 1996.

[8] Kupferman, O. and Vardi, M.Y., Module Checking revisited.
In Proc. 9th Int. Conf. on CAV, LNCS 1254, 36-47, 1997.

[9] Solari, E., and Willse, G., PCI Hardware and Software Ar-
chitecture and Design, 4th Edition, Annabooks, 1998.

[10] The SMV Model Checker,
http://www-cad.eecs.berkeley.edu/�kenmcmil/smv/

[11] Somenzi, F., CUDD: CU Decision Diagram Package, Re-
lease 2.3.0, User’s Manual, Dept. of Electrical and Com-
puter Engineering, University of Colorado, Boulder, 1998.

[12] Texas-97 Verification Benchmarks, http://www-
cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/

[13] VIS: A system for verification and synthesis, The VIS
Group, In Proc. of the 8th Int. Conf. on CAV, LNCS 1102,
428-432, 1996.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

