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Stochastic Energetics of Quantum Transport

Pulak Kumar Ghosh and Deb Shankar Ray∗

Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

We examine the stochastic energetics of directed quantum transport due to rectification of non-
equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in
presence and absence of an external load to characterize two quantifiers of efficiency. It has been
shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher
as compared to classical current and efficiency, respectively, at low temperature. The conventional
efficiency of the device in presence of load on the other hand is higher for a classical system in
contrast to its classical counterpart. The maximum conventional efficiency being independent of the
nature of the bath and the potential remains the same for classical and quantum systems.

PACS numbers: 05.40.-a, 05.60.Gg

I. INTRODUCTION

Forced thermal ratchet has been the paradigm for rec-
tification of non-equilibrium fluctuations[1, 2, 3, 4] for
usable work. In the simplest possible terms it represents
a Brownian particle in a periodic potential under over-
damped condition which exhibits a net drift provided the
system is subjected to an external force with zero mean
and with sufficient correlation so that the detailed bal-
ance is lost and the symmetry of the device is broken.
Over the years considerable attention has been devoted
to this area to understand functioning of molecular mo-
tors active in muscle contraction [5, 6, 7, 8], useful separa-
tion of particle [9] theoretical issues involving second law
[10, 11, 12, 13] and many other aspects[14, 15]. Since
a ratchet device is a typical machine which works at
a mesoscopic level in converting heat drawn from non-
equilibrium fluctuations into work, attempts have been
made to quantify the efficiency of such a machine. For
example, Sekimoto [13] has proposed a method for study-
ing several variants of thermal ratchet model analyzed
also by others[16]. Magnasco [4] has considered a Szi-
land’s heat engine and suggested an expression for net
power consumed by such an engine. The work of Julicher
et al [3] had provided the estimate of total energy con-
sumption. An interesting generalization of definition of
efficiency had been proposed by Derényi et al [24] for
motors without load.

We address in this paper the problem of stochastic en-
ergetics of a forced thermal ratchet in a quantum mechan-
ical context. A Brownian particle being a microscopic
object, the quantum effect is likely to be significant in
appropriate situation, e. g, in the transport of quantum
particles in quantum wires, superionic[17, 18, 19] con-
ductors and in other nanodevices[20], particularly at low
temperature and other important issues[21, 22, 23]. To
this end a number of attempts on quantum ratchet device
have been made. Reimann et al [26] investigated adia-
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batically rocked ratchet system to show that quantum
corrections enhance classical transport at low tempera-
ture. Two models of quantum ratchet have also been
proposed by Yukawa et al [27]. Based on the pertur-
bative approach Scheidl and Vinokur [28] have inves-
tigated quantum Brownian motor in ratchet potentials
to identify the characteristic scales of response functions
of the system. Carlo et al [29] have studied a typical
model quantum chaotic dissipative ratchet to analyze
the directed transport from a quantum strange attrac-
tor. Keeping in view of this development we note that
although quantum ratchet device has been the object of
interest for some time, its efficiency (i. e., quantum effi-
ciency) has largely remained unexplored. Based on the
quantum Langevin equation which implies an interplay
between several forces we analyze here the energetics of
directed transport by taking into consideration of how
the transducer which characterizes the state of system
mediates the energy among the basic components of a
forced ratchet, i. e., the external system, the load, and
the heat bath. It also important that frictional dissi-
pative energy in course of directed motion must also be
counted as a part of expenditure of useful energy for rec-
tification of Brownian motion. This implies that one can
also envisage a kind of Stokes efficiency in absence of
load. We take into account of these considerations in our
exploration of quantum energetics in presence and ab-
sence of load to characterize two distinct quantifiers of
efficiency in a quantum ratchet device. A relevant per-
tinent point that needs attention in this context is that
although quantization, in principle, adds new elements
into the theory, it is important that quantization must
not break the symmetry of the device, i. e., it should not
create a new load or tilt on the potential or break the
detailed balance. Secondly, forcing must be unbiased so
that after appropriate averaging over time or ensemble,
no directional component should appear as a fictitious
drift. With these considerations for thermodynamic con-
sistency we analyze the efficiency and current generation
in a quantum ratchet in relation to total consumption of
energy and dissipation both in presence and absence of
external load.

http://arXiv.org/abs/cond-mat/0602554v1
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II. A QUANTUM DYNAMICS IN A SPATIALLY
PERIODIC POTENTIAL AT EQUILIBRIUM

We consider a particle of mass m moving in a peri-
odic classical potential V (x). The particle is coupled
to a set of harmonic oscillators of unit mass acting as
a bath. This is represented by the following system-
reservoir Hamiltonian [30, 31]

Ĥ =
p̂2

2m
+ V (x̂) +

N
∑

j=1

{

p̂2
j

2
+

1

2
κj(q̂j − x̂)2

}

(2.1)

Here x̂ and p̂ are the coordinate and momentum oper-
ators of the particle and {q̂j, p̂j} are the set of coordi-
nate and momentum operators for the reservoir oscil-
lators coupled linearly through the coupling constants
κj(j = 1, 2, ...). For the spatially periodic potential, we
have V (x) = V (x + L),where L is the length of the pe-
riod.The coordinate and momentum operators follow the
usual commutation rules {x̂, p̂} = i~ and {q̂i, p̂j} = i~δij .
Eliminating the bath degrees of freedom in the usual way
we obtain the operator Langevin equation for the particle

m¨̂x+

∫ t

0

dt′γ(t− t′) ˙̂x(t′) + V ′(x̂) = Γ̂(t) (2.2)

(Overdots refers to differentiation with respect to time

t) where noise operator Γ̂(t) and the memory kernel are
given by

Γ̂(t) =
∑

j

[

{q̂j(0) − x̂(0)}κj cosωjt+ κ
1/2
j p̂j(0) sinωjt

]

(2.3)
and

γ(t) =
∑

j

κj cosωjt (2.4)

respectively, with κj = ω2
j

Following Ref. [39] we then carry out a quantum me-
chanical average 〈...〉 over the product separable bath
modes with coherent states and the system mode with
an arbitrary state at t = 0 in Eq.(2.2) to obtain a gener-
alized quantum Langevin equation[36, 38, 39] as

mẍ+

∫ t

0

dt′γ(t− t′)ẋ(t′) + V ′(x) = Γ(t) +Q(x, 〈δx̂n〉)

(2.5)
where the quantum mechanical mean value of the posi-
tion operator 〈x̂〉 = x and

Q(x, 〈δx̂n〉) = V ′(x) − 〈V ′(x̂)〉 (2.6)

which by expressing x̂(t) = x(t)+δx̂(t) in V (x̂) and using
a Taylor series expansion around x may be rewritten as

Q(x, 〈δx̂n〉) = −
∑

n≥2

1

n!
V n+1(x)〈δx̂n〉 (2.7)

The above expansion implies that the nonzero anhar-
monic terms beyond n ≥ 2 contain quantum dispersions
〈δx̂n〉. Although we develop this section in general terms,
we are specifically concerned here typically with periodic
nonlinear potentials of the type sin 2πx

L or cos 2πx
L or their

linear combinations and the like which have been used
earlier in several contexts. The nonlinearity of the po-
tential is an important source of quantum correction in
addition to the quantum noise of the heat bath. The
calculation of Q rests on the quantum correction terms
〈δx̂n〉 which one determines by solving a set of quan-
tum correction equations as given in the next section.
Furthermore the c-number Langevin[36, 38, 39] force is
given by

Γ(t) =
∑

j

[

〈q̂j(0)〉 − 〈x̂(0)〉κj cosωjt+ κ
1/2
j p̂j(0) sinωjt

]

(2.8)
which must satisfy noise characteristics of the bath at
equilibrium,

〈Γ(t)〉S = 0 (2.9)

〈Γ(t)Γ(t′)〉S =
1

2

∑

j

κj ~ωj

(

coth
~ωj

2kT

)

cosωj(t− t′)

(2.10)

Eq.(2.10) expresses the quantum fluctuation-dissipation
relation. The above conditions(2.9-2.10) can be fulfilled
provided the initial shifted co-ordinates {〈q̂j(0)〉−〈x̂(0)〉}
and momenta 〈p̂j(0)〉 of the bath oscillators are dis-
tributed according to the canonical thermal Wigner dis-
tribution [40, 41] of the form

Pj([〈q̂j(0)〉 − 〈x̂(0)〉], 〈p̂j(0)〉)

= N exp

{

−
1
2 〈p̂j(0)〉2 + 1

2κj [〈q̂j(0)〉 − 〈x̂(0)〉]2

~ωj [n(ωj) + 1
2 ]

}

(2.11)

so that the statistical averages 〈...〉s over the quantum
mechanical mean value O of the bath variables are de-
fined as

〈Oj〉s =

∫

Oj Pj d〈p̂j(0)〉 d{〈q̂j(0)〉 − 〈x̂(0)〉} (2.12)

Here n(ω) is given by Bose-Einstein distributions (e
~ω
kT −

1)−1. Pj is the exact solution of Wigner equation for har-
monic oscillator [40, 41] and forms the basis for descrip-
tion of the quantum noise characteristics of the bath kept
in thermal equilibrium at temperature T . In the contin-
uum limit the fluctuation-dissipation relation (2.10) can
be written as

〈Γ(t)Γ(t′)〉

=
1

2

∫ ∞

0

dω κ(ω) ρ(ω) ~ω coth(
~ω

2kT
) cosω(t− t′)

(2.13)
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where we have introduced the density of the modes ρ(ω).
Since we are interested in the Markovian limit in the
present context, we assume κ(ω)ρ(ω) = 2

πγ, Eq.(2.13)
then yields

〈Γ(t)Γ(t′)〉 = 2Dqδ(t− t′) (2.14)

with

Dq =
1

2
γ~ω0 coth

~ω0

2kT
(2.15)

(The passage from Eq.(2.13) to Eq.(2.14) is given in the
appendix A.)
ω0 refers to static frequency limit. Furthermore from

Eq.(2.4) in the continuum limit we have

γ(t− t′) = γ δ(t− t′) (2.16)

γ is the dissipation constant in the Markovian limit.
In this limit Eq.(2.5) therefore reduces to

mẍ+ γẋ+ V ′(x) = Γ(t) +Q(x, 〈δx̂n〉) (2.17)

It is useful to work with dimensionless variables for the
present problem to keep track of the relations between
the scales of energy, length and time. The period L of
the periodic potential V (x) determines in a natural way
the characteristic length scale of the system. Therefore
the position of the Brownian particle is scaled as

x = x/L

Next we consider the timescales of the system. In ab-
sence of the potential and the noise term the velocity of
the particle ẋ(t) ∼ exp(−t/τL) with τL = m/γ, which
represents the correlation time scale of the velocity the
Brownian particle. To identify the next characteristic
time τ0 we consider the deterministic overdamped mo-

tion due to the potential as γ dx
dt = − dV (x)

dx . Then τ0

is determined from γ L
τ0

= −∆V
L as τ0 = γL2

∆V where
∆V is the barrier height of the original potential. Hence
time is scaled as t = t

τ0
. Furthermore the potential, the

noise and the quantum correction terms are re-scaled as
V (x) = V (x)/∆V , Γ(t) = Γ(t)/(∆V/L) and Q/(∆V/L),
respectively.

Hence dimensionless quantum Langevin equation reads
as

µ∗ẍ+ ẋ = f(x) + Γ(t) (2.18)

Here over-dot(.) refers to differentiation with respect
to scaled time t. Dimensionless mass µ∗ = m

γτ0
= τL

τ0
and

f(x) = −V
′
(x) +Q(x, 〈δx̂n〉) (2.19)

The noise properties of the quantum bath are then
rewritten as

〈Γ(t)〉s = 0

〈Γ(t)Γ(t
′
)〉s = 2Dqδ(t− t

′
)

where

Dq =
1
2~ω0 coth ~ω0

2kT

∆V

From now onwards we drop the over-bars from all param-
eters and variables for simplicity. It may be shown[36, 37]
that quantum stochastic dynamics Eq.(2.18) does not
generate drift motion to a preferential direction. Since
the quantum correction Q(x, 〈δx̂n〉) , as expected, can
not break the detailed balance in the quantum system,
nor the symmetry of the potential. This conclusion is
an important check of the present formalism for a cor-
rect description of the equilibrium and thermodynamic
consistency.

III. QUANTUM TRANSPORT INDUCED BY
ZERO MEAN EXTERNAL FLUCTUATION

A. General features

Since equilibrium thermal fluctuations due to heat
bath can not break detailed balance in the quantum
stochastic dynamics, we introduce an external derive
with zero mean and with sufficient correlation to generate
drift motion on average in one direction. To analyze the
energetics of directed quantum transport, we now intro-
duce an external load to work against the global motion
of the forced thermal ratchet system. From Eq.(2.18)
it follows that the dynamics of the particle under over-
damped condition is described by the scaled equation (we
have dropped the over-bar)

ẋ = f(x) + Γ(t) +A(t) −
∂Vl

∂x
(3.1)

The quantum mechanical mean of the position opera-
tor, x represents the state of the energy transducer, that
is the state of the ratchet. Γ(t) is the internal quantum
noise of the thermal bath with the properties as noted
earlier. A(t) is an external field with temporal period
τ , A(t+ τ) = A(t), in the present problem. We consider
A(t) = A0 sinwt. It is important to note that for a move-
ment of transducer in a preferential direction A0 must lie
between two threshold values, maxxf(x) and -minxf(x)

[4]. ∂Vl

∂x = l, is a load against which transducer per-
forms work. The quantum nature of the problem there-
fore manifests itself in two ways; first, through quantum
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corrections in f(x) which we consider, in principle, to all
orders and secondly in quantum diffusion coefficient Dq

for the noise of the bath.
The Fokker-Planck equation corresponding to Eq.(3.1)

is given by

∂P (x, t)

∂t
= −

∂J(x, t)

∂x
(3.2)

where

J(x, t) = −Dq
∂P (x, t)

∂x
+ [f(x) +A(t) − l]P (x, t) (3.3)

If forcing frequency is very low, there is enough time for
the system to reach the steady state during the period τ
and the above equation can be solved analytically for J as
a function ofA, using period boundary and normalization
conditions

P (x+ 1) = P (x) ;

∫ c+1

c

P (x)dx = 1 ; (3.4)

We then obtain

J(A)

=
exp [ψ(1)] − exp [ψ(0)]

N
[

{exp [ψ(1)]}[
∫ 1

0
exp [ψ(x)]dx− C2] + C2 exp [ψ(0)]

]

(3.5)

where

N =
1

Dq

∫ 1

0

exp [ψ(x)]dx (3.6)

C2 =

∫ 1

0 exp [ψ(x)]dx
∫ x

0 dy exp [ψ(y)]
∫ 1

0
exp [ψ(x)]dx

(3.7)

ψ(x) =

∫ x

c

f(y) +A− l

Dq
dy; ψ(L) =

∫ 1

c

f(x) +A− l

Dq
dx

(3.8)
The average current over a forcing period is given by

Jav =
1

τ

∫ τ

0

J(A(t))dt (3.9)

Average square wave current of amplitude A0 is given by

Jsqr =
1

2
[J(A0) + J(−A0)] (3.10)

We now proceed to analyze the current under non-
equilibrium condition and the related quantum effects.
One of the prime quantities for this analysis is the po-
tential V (x) or the corresponding force term f(x) given
by

f(x) = −[V ′(x) −Q(x, 〈δx̂n〉)]

= −
∂

∂x
[V (x) +

∑

n≥2

1

n!
V n(x)〈δx̂n〉] (3.11)

The quantum correction terms can be determined as fol-
lows. We return to the operator equation (2.2) and
put x̂(t) = x(t) + δx̂(t) and p̂(t) = p(t) + δp̂(t) where
x(t) = 〈x̂(t)〉 and p(t) = 〈p̂(t)〉 are the quantum mechan-
ical mean values of the operators x̂ and p̂ respectively.
By construction [δx̂, δp̂] = i~ and 〈δx̂〉 = 〈δp̂〉 = 0. We
then obtain the quantum correction equation

mδ ¨̂x+

∫ t

0

dt′γ(t− t′)δ ˙̂x(t′) + V ′′(x)δx̂

+
∑

n≥2

1

n!
V n+1(x)(δx̂n − 〈δx̂n〉) = Γ̂(t) − Γ(t)

(3.12)

Again in the overdamped limit we discard the inertial
term mδ ¨̂x. We then perform a quantum mechanical av-
erage with initial product separable coherent states of
the oscillators of the bath only to get rid of the internal
noise term and to obtain the reduced operator equation
for the system as

γδ ˙̂x+V ′′(x)δx̂+
∑

n≥2

1

n!
V n+1(x)(δx̂n−〈δx̂n〉) = 0 (3.13)

With the help of (3.13) we then obtain the equations
for 〈δx̂n(t)〉

d

dt
〈δx̂2〉 =

1

γ

[

−2V ′′(x)〈δx̂2〉 − V ′′′(x)〈δx̂3〉
]

(3.14)

d

dt
〈δx̂3〉 =

1

γ

[

−3V ′′(x)〈δx̂3〉 −
3

2
V ′′′(x)〈δx̂4〉

]

+
3

2γ
V ′′′(x)〈δx̂2〉

2
(3.15)

and so on. Taking into account of the leading order con-
tribution 〈δx̂2〉 explicitly we may write (it is easy to ob-
serve that each successive order of quantum correction
decreases by a factor of O(1/γ) which implies that a
leading order contribution is sufficient in the overdamped
limit)

d〈δx̂2〉 = −
2

γ
V ′′(x)〈δx̂2〉dt (3.16)

The overdamped deterministic motion gives γdx =
−V ′(x)dt which when used in (3.16) yields after inte-
gration

〈δx̂2〉 = ∆q[V
′(x)]2 (3.17)

where ∆q =
〈δx̂2〉xc

[V (xc)]2
and xc is a quantum mechanical

mean position at which 〈δx̂2〉 become minimum, i. e.,
〈δx̂2〉xc

= 1
2~/ω0, ω0 being defined in Eq.( 2.15)
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In present problem we consider an asymmetric poten-
tial of period 2π,

V (x) = − sinx− 0.25 sin 2x (3.18)

The reference point xc can be determined by setting
d〈δx̂2〉

dx = 0 and quantum correction up to the leading
order and the potential force are given by

Q(x, 〈δx̂n〉) = −∆q[V
′(x)]2[V ′′′(x)] (3.19)

and

f(x) = −[V ′(x) + ∆qV
′′′(x)[V ′(x)]2] (3.20)

respectively, where ∆q = 2~

ω0
. We now emphasize an im-

portant point. If the potential is symmetric, then the
quantum correction in Eq.(3.20) is an odd function just
as V ′(x). This implies that quantum correction to clas-
sical potential has not destroyed the inversion symmetry
of V (x). Thus the approximation in deriving the lead-
ing order quantum effect is consistent with symmetry re-
quirement of the problem. It also clear that if potential
is periodic then the contribution due to quantum correc-
tion to the classical potential i., e.,

∫ x

0 Q(x, 〈δx̂n〉)dx is a
periodic function of x. Assuming the form of potential
of Eq.(3.18), the expression for quantum correction after
properly scaling (as described in the Sec.II) is given by

Q(x, 〈δx̂n〉) = −∆q[cos3 2πx+ 0.5 cos3 4πx

+ 3 cos2 2πx cos 4πx+ 2.25 cos 2πx cos2 4πx]

(3.21)

Quantum correction of the potential is entirely due to
nonlinearity. Physically the correction terms account for
the quantum fluctuation or dispersion around the clas-
sical path of a dynamical system. In presence of strong
dissipation these fluctuations are small since it is well-
known (also follows from analysis of Eqs(3.13-3.17)) that
dissipation enhances classicality[32]. The role of effec-
tive potential of the similar nature which gives rise to
leading order quantum correction to classical Langevin
force had also been noted earlier, e. g., in the analysis
of strong friction limit of quantum stochastic processes
etc. [33, 34, 35]. Since the corrections are perturba-
tive in nature they may differ in form but because of
nonlinearity of the potential they bear close kinship to
each other. We emphasize that the approximate forms
of quantum correction must satisfy the basic symmetry
requirement, appropriate equilibrium distribution and
other thermodynamic consistency condition as pointed
out earlier[36, 37]. In Fig.1 we illustrate the variation
of current as a function of temperature(T) for different
values of the amplitude of external derive(A0). One ob-
serves that with increase of Dq (proportional to temper-
ature) the magnitude of current increases to a maximum
followed by decrease and a current reversal at high tem-
perature. At higher temperature the system is thermal-
ized as a result of which organized motion in a preferen-
tial direction decreases and the motion towards the load

dominates. For fixed Dq with increase of the value of
A0 the magnitude of the current increases. The effect
of quantization of a classical ratchet is shown in Fig.2,
where we present a comparison of the current vs temper-
ature profile for the classical and the quantum cases. One
observes that at the low temperature region the classical
current is significantly lower in magnitude than quantum
current and at the higher temperature the effect of quan-
tization becomes insignificant. This may be interpreted
in terms of an interplay between quantum diffusion coef-
ficient Dq and the potential force term f(x). f(x) con-
tains quantum correction arising due to nonlinearity of
the potential. As temperature T → 0, Dq approaches
to the value 1

2~ω0, the vacuum limit in deep tunneling
region. The anharmonic terms in f(x) do not contribute
significantly. So the integrand in effective potential ψ(x)
increases sharply. On the other hand, as temperature
increases, Dq increases and also Dq and f(x) compete
with each other to merge quantum current to its classi-
cal counterpart.

B. Energetics of non-equilibrium fluctuation
induced quantum transport

Efficiency of the ratchet device is an important physical
quantity that quantifies the energetics of non-equilibrium
fluctuations in the transport processes. Depending on the
degree and presence of an external load two distinct ap-
proaches have been advocated. It has been shown that
although in many widely accepted cases efficiency is mea-
sured by applying the constant external force, there are
situations, where molecular motors are designed not to
pull loads (e. g., protein transport within a cell). In such
cases a minimum energy input is required to move a par-
ticle in a viscous medium. We therefore discuss the two
different situations separately.

1. Conventional efficiency in presence of an external load

To discuss the energetics of quantum transport induced
by zero mean external derive we consider the energy
transducer which interacts with the external derive and
the load so that the potential takes the following form

U(x, t) = V (x) −

∫

dx Q(x, 〈δx̂n〉) +A(t) x+ lx

(3.22)

where V (x) is the classical potential, second term repre-
sents the quantum corrections due to nonlinearity of the
classical potential and last two terms are due to exter-
nal system and the load, respectively. The interaction
of transducer with heat bath is assumed to be stochas-
tic, as usual. Thus for the movement of transducer from
xi(ti) → xf (tf ) the total potential energy change(∆U)
and dissipation energy(Ed), during the period ti < t < tf
are formally given by[13]
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∆U = U(xf (tf ), tf ) − U(xi(ti), ti) (3.23)

and

Ed =

∫ tf

ti

[−ẋ+ Γ(t)]dx(t) =

∫ tf

ti

−

[

∂U(x, t)

∂x

]

dx(t)

(3.24)

respectively.
Because of the conservation law, the sum of the poten-

tial energy change and dissipation energy must be equal
to the total consumption of energy Ec (△U +Ed ≡ Ec),
due to the external system A(t).

Ec =

∫ tf

ti

∂U(x, t)

∂t
dt (3.25)

In the present case the external system is a periodic func-
tion of time, so that the ensemble average of total con-
sumption energy(Ec) and dissipation energy(Ed) is given
by

〈Ec〉 =

∫ tf

ti

dt

∫

space

∂U(x, t)

∂t
P (x, t)dx(t)

=

∫ tf

ti

dt

∫

space

A(t)J(A(t))dx(t) (3.26)

and

〈Ed〉 =

∫ tf

ti

dt

∫

space

dx

[

−
∂U(x, t)

∂x

]

J(A(t)) (3.27)

respectively. For the square wave with the amplitude A0,

〈(Ec)sqr〉 =
1

2
A0 [J(A0) − J(−A0)] (3.28)

〈(Ed)sqr〉 =
1

2
A0{J(A0) − J(−A0)}

−
1

2
l{J(A0) + J(−A0)} (3.29)

Hence the work, that the ratchet system extracts from
the external system A(t) is given by

〈Wsqr〉 = 〈(Ec)sqr〉 − 〈(Ed)sqr〉 =
1

2
l [J(A0) + J(−A0)]

= l × Jsqr (3.30)

So the work extracted from external system is directly
proportional to square wave current. The conventional
efficiency of the ratchet system is thus calculated on the
basis of external load can be written as

η =
lJsqr

Ec

=
l [J(A0) + J(−A0)]

A0 [J(A0) − J(−A0)]
(3.31)

We now numerically illustrate the behavior of efficiency
of the quantum ratchet system as given above. The ef-
fect of quantization of the reservoir is apparent in Fig.3
in the variation of efficiency(η) as a function of tempera-
ture for different values of amplitude(A0) of the external
periodic system. The efficiency is a decreasing function
of temperature for any value of A0 and it decreases with
increase of A0 for a fixed value of temperature. The dis-
tinctive behavior of efficiency of a quantum system is
evident from the nature of quantum current that can at-
tain a maximum value for a finite temperature. On the
other hand the maximum efficiency is realized at the zero
strength of thermal fluctuation. It is thus apparent that
the equilibrium fluctuation due to thermal heat bath is
an hindrance for efficient extraction of useful work from
non-equilibrium fluctuations. To have a closer look at
the behavior of efficiency we present in Fig.4 the dissipa-
tion energy and total consumption energy as a function
of temperature. At very low temperature the energy loss
due to dissipation(Ed) during the movement of energy
transducer is small compared to the total energy con-
sumed from the external system, because for a finite net
displacement xi → xf it covers minimum path at low
thermal fluctuation. On the other hand at high temper-
ature the path of energy transducer is more chaotic. So
for a finite net displacement it covers maximum path and
loses a greater amount energy due to dissipation. With
increase of the temperature dissipation energy and total
energy consumption from external system both are in-
creased and the difference between two energies (Ed and
Ec) become insignificant at higher temperature.

The condition for maximum conventional efficiency can
be realized by rearranging Eq.(3.31) as a function of
J(−A0)
J(A0)

η =
l

A0



1 −
2|J(−A0)

J(A0) |

1 + |J(−A0)
J(A0)

|



 (3.32)

In the limit |J(−A0)
J(A0)

| → 0, the maximum efficiency of the

energy transform for a given load and force amplitude is
given by (the limit can be achieved by suitable adjust-
ment of parameters)

ηmax =
l

A0
(3.33)

Now we have two important conclusions regarding the
maximum efficiency of a ratchet system, (i) it is a simple
ratio of load to a parameter of external system (strength
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of external system) and it is independent of the charac-
teristics of the bath. (ii) ηmax being independent of the
nature of the bath and the system potential, is same both
in quantum and classical systems.

In Fig.5 we compare the conventional efficiency vs tem-
perature profile for the classical and the quantum cases
for different values of A0. We observe that the efficiency
of quantum ratchet is significantly lower than classical
one and the difference becomes insignificant at higher
temperature. Since the vacuum fluctuations tend to be
effective in the quantum system as one approaches the
zero temperature limit, the transducer loses a higher
amount of dissipation energy than the classical one.

2. Efficiency in absence of an external load and generalized

efficiency

We now consider the situation where the motor works
without any external load. The task is not only to
translocate the motor over a distance L but also to do
this with a given average velocity it must work against
the viscous force γ〈v〉. Now replacing the load by γ〈v〉
we can define an efficiency (Stokes efficiency)

ηS =
γ〈v〉2

Ec
(3.34)

By combining the contribution due to (3.31) and (3.34),
it is possible to define further a generalized efficiency for
the quantum system

ηG =
lJsqr + γ〈v〉2

Ec
(3.35)

The above expression is the quantum generalization of
the classical generalized efficiency as given earlier by
Suzuki and Munakata [25] and Derényi et al [24]. This
account for both the work that the motor performs
against the external load l as well as the work that is
necessary to move the particle over a given distance in a
viscous environment at the average velocity 〈v〉.

In Fig.6 we the present variation of Stokes efficiency
ηS as a function of temperature. It is important to ob-
serve that efficiency reaches a maximum at a particular
temperature both for classical as well as for the quantum
case. However, again at low temperature the efficiency
of the classical system drops to zero in sharp contrast to
quantum case. At high temperature the system however,
tends to classical regime as expected.

IV. CONCLUSION

In this paper we have calculated the efficiency of a
forced thermal ratchet in a quantum mechanical context.
We have shown that the quantum current is markedly
higher as compared to classical current at low tempera-
ture while the difference becomes insignificant at higher

temperature. In contrast to the behavior of quantum
current at low temperature, the conventional efficiency
of a classical ratchet in presence of a load is higher at
low temperature as compared to its quantum counter-
part and again the efficiency in the two cases tends to
merge at higher temperature. Furthermore the maxi-
mum efficiency is independent of the nature of the sys-
tem potential and the bath and is thus independent of
quantization. We have also examined a quantum version
of Stokes efficiency in absence of load where energy due
to frictional resistance is considered as a part of expen-
diture of useful energy. A significant quantum enhance-
ment of Stokes efficiency at low temperature has been
observed. The careful consideration of the total energy
consumption and dissipation reveals that the generation
of higher current and Stokes efficiency may not always
imply the higher efficiency of thermal ratchet in a con-
ventional sense although the generic features of the device
in its classical and quantum versions remain the same.
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APPENDIX A: THE PASSAGE FROM EQ.(2.13)
TO EQ. (2.14)

We start from basic definition[42]

2Dq =
1

2∆t

∫ t+∆t

t

dt1

∫ t+∆t

t

dt2 〈Γ(t1)Γ(t2)〉s (A1)

Using Eq.(2.13) in Eq.(1) yields

2Dq =
1

2∆t

∫ ∞

0

dω κ(ω) ρ(ω)~ω coth

(

~ω

2kT

)

×

∫ t+∆t

t

dt1

∫ t+∆t

t

dt2 cosω(t1 − t2) (A2)

Explicit integration over time gives

2Dq =
1

2∆t

∫ ∞

0

dω κ(ω) ρ(ω)~ω coth

(

~ω

2kT

)

I(ω,∆t)

(A3)
where

I(ω, ∆t) =
4

w2
sin2 ω∆t

2
(A4)

Putting κ(ω) ρ(ω) = 2
π γ, we obtain

2Dq =
γ

∆t π

∫ ∞

0

dω ~ω coth

(

~ω

2kT

)

sin2 ω∆t
2

(ω
2 )2

(A5)

Following Louisell[42] we have under Markovian con-
dition, the correlation time τc ≪ ∆t, the coarse-
grain time(over which the probability distribution func-
tion evolves). Thus as ∆t→ ∞(in scale of τc which goes
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to zero) the function
sin2 ω∆t

2

( ω
2
)2 oscillates violently so that

one takes the slowly varying quantity [~ω coth ~ω
2kT ] out

of the integration over frequency with an average value
~ω0 coth ~ω0

2kT , ω0 be an average static frequency. Since

the integral
∫ ∞

∞
sin2 x∆t

x2 dx = π∆t it follows immediately
from Eq.(5)

2Dq = γ ~ω0 coth

(

~ω0

2kT

)

(A6)

as given in Eq.[2.15]. Again starting from Eq.(2.13), we
use the same argument as before to have

〈Γ(t1)Γ(t2)〉s =
1

2

∫ ∞

0

dω κ(ω)ρ(ω)~ω

× coth

(

~ω

2kT

)

cosω(t1 − t2) (A7)

and we use
∫ ∞

0

dω cosωτ = π δ(τ)

to obtain

〈Γ(t1)Γ(t2)〉s =
1

2

∫ ∞

0

dω

[

2

π
γ

]

~ω

× coth

(

~ω

2kT

)

cosω(t1 − t2)

=
γ ~ω0

π
coth

(

~ω0

2kT

)

πδ(t1 − t2)

= γ ~ω0 coth

(

~ω0

2kT

)

δ(t1 − t2) (A8)

Therefore from Eq.(6) and Eq.(7) we have

〈Γ(t1)Γ(t2)〉s = 2Dqδ(t1 − t2)

Thus the derivation within Markovian approximation
clearly depends on the time scale separation. The re-
sults are valid even at absolute zero as emphasized by
Louisell.
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Figure Captions

Fig.1. A plot of quantum current vs T for different
strength of external periodic force (i) A0 = 1.0 (dotted
line), (ii) A0 = 1.2 (solid line), (iii) A0 = 1.5 (dash-dot
line) and l = 0.01.(All the quantities are dimensionless)

Fig.2. A currentJsqr vs temperature(T ) plot com-
paring classical(dashed line and solid line) and quan-
tum (dotted line and dashed dot line) limit for different
strength of external periodic force (i) A0 = 1.3 (dotted

line and dashed line), (ii) A0 = 1.0 (dashed dot line and
solid line) and l = 0.0.(All the quantities are dimension-
less)

Fig.3. A plot of quantum efficiency vs T for different
strength of external periodic force (i) A0 = 1.0 (dotted
line), (ii) A0 = 1.5 (solid line), (iii) A0 = 2.0 (dashed
line) and l = 0.01.(All the quantities are dimensionless)

Fig.4. A comparison between dissipation energy
Ed(dotted line) and total energy consumption Ec (solid
line) as a function of temperature for the parameter set
l = 0.05 and A0 = 1.0.(All the quantities are dimension-
less)

Fig.5. Conventional efficiency(η) vs temperature(T )
plot comparing classical(dotted line and solid line) and
quantum (dashed line and dashed dot line) limit for dif-
ferent strength of external periodic force (i) A0 = 1.3 (
dotted line and dashed line ), (ii) A0 = 1.0 (solid line
and dashed dot line) and l = 0.0.(All the quantities are
dimensionless).

Fig.6. A comparison between classical(dashed dot line
and dashed line) and quantum (solid and dotted line)
Stokes efficiency for different strength of external periodic
force (i) A0 = 1.3 (solid line and dashed dot line), (ii)
A0 = 1.0 (dotted line and dashed line) and l = 0.0.(All
the quantities are dimensionless)
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