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Abstract

We analyze the problem of directed quantum transport induced by external exponentially cor-

related telegraphic noise. In addition to quantum nature of the heat bath, nonlinearity of the

periodic system potential brings in quantum contribution. We observe that quantization, in gen-

eral, enhances classical current at low temperature, while the differences become insignificant at

higher temperature. Interplay of quantum diffusion and quantum correction to system potential

is analyzed for various ranges of temperature, correlation time and strength of external noise and

asymmetry parameters. A possible experimental realization of the observed quantum effects in a

superionic conductor placed in a random asymmetric dichotomous electric field has been suggested.
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I. INTRODUCTION

Extracting useful work from unbiased noise has been a topical theme under ’ratchet

effect’ [1, 2, 3]. Because of its extraordinary success in explaining experimental observations

on biochemical molecular motors active in muscle contractions [4, 5, 6, 7], observations

on directed transport in photoreflective and photovoltic materials [8, 9], useful application

in the separation of particles [10], theoretical issues on symmetry consideration, Brownian

motion and second law of thermodynamics [11, 12, 13, 14], the problem has attracted wide

attention in recent years. Although the ratchet effect can be achieved in a variety of ways the

basic element of a typical Brownian ratchet essentially concerns the breaking of the detailed

balance by an external periodic or fluctuating force applied to the Brownian particle moving

in a periodic potential. This has been the subject a number of reviews and articles over the

last decade. We refer to [1-3] for details.

While in the recent context of ratchet a major emphasis is laid on molecular pumps and

motors in the realm of biophysics and chemistry, it would seem that a Brownian particle be-

ing a microscopic object [11], quantum effect is likely to make its presence felt in appropriate

situation, particularly at low temperature. One thus expects the directed current or recti-

fication of noise to be important in transport of quantum particles in quantum dots, wires

related nanodevices [15, 16] and also in the context of superionic conductors[26, 27, 28].

Furthermore such studies are important also from the point of view of quantum-classical

correspondence. Based on the quantum Langevin equation our aim here is to formulate a

quantum ratchet problem where the external time dependent modulation that drives the

quantum system out of equilibrium is a random telegraphic noise [17, 18, 19, 20]. To in-

corporate the elements of quantum theory in a ratchet device it is necessary to satisfy two

basic requirements. First, quantization of classical motion must not break the symmetry

of the ratchet device, or in other words, more specifically, quantization should not bring

in any additional tilt to the potential or break its inversion symmetry or symmetry of the

detailed balance. Second, the forcing must be unbiased, so that after appropriate averaging

over ensemble or over the period of space or time no directional component should remain.

Any approximation pertaining to the problem must conform to these requirements in any

correct quantum formalism.

Keeping in view of the above considerations we first formulate the quantum stochastic
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dynamics of an overdamped particle and its approach to equilibrium. The quantum effects

appear due to the nonlinearity of the potential and quantum noise of the heat bath. The

introduction of the asymmetric telegraphic noise breaks the symmetry of the detailed balance

to produce directed quantum transport. It is important to point out that the quantum

effects observed by Linke et al [16] in their experimental work on quantum dot device are

due to tunneling and wave reflection of electrons and this resulted in a reversal of current

as predicted by Reimann[1, 15]. To explore the quantum effects discussed in this paper

we first note that the quantum corrections have a different origin, e.g., the nonlinearity of

the potential. A possible candidate for the experimental study of the present effect may

be a superionic conductor, e.g., AgI. This system has been traditionally used [26, 27, 28]

for measurement of current in presence of an external electric field directly or in terms of

frequency dependent mobility. Typically in a superionic conductor like AgI, I− ions form the

lattice allowing the Ag+ ions to move in a periodic potential of the form cos 2πx
L

, L being the

lattice spacing. The lattice vibrations contribute to both the Langevin force as well as the

frictional force on the Ag+ ions maintaining the detailed balance at the thermal equilibrium.

For slowly moving Ag+ ions compared to lattice vibrations, white noise approximation is

sufficient. An application of an external electric field at both ends of the conductor which

fluctuates randomly between two values in an asymmetric way obeying the prescribed noise

statistics, is expected to result in an observable current. In what follows from the present

analysis is that apart from the low temperature contribution due to deep tunneling, the

nonlinearity of the periodic pendulum potential cos 2πx
L

(contribution beyond harmonic)

contributes significantly to quantum corrections. The typical experimental parameters for

the measurement of current in a superionic conductor has been given elsewhere[26]. It is also

expected that quantum dots where the confining potential is truly periodic and nonlinear of

similar type can offer themselves as good candidates for these studies.

The outlay of the paper is as follows: we first derive in Sec.II the basic equation describing

quantum stochastic dynamics on a general footing followed by an overdamped description.

Thermodynamic consistency has been stressed to avoid the pitfall of fictitious current gen-

eration. In Sec.III we show how an external dichotomous asymmetric noise can break the

condition of detailed balance inducing a directed transport. Two limiting cases have been

worked out in detail with a typically nonlinear periodic(cosine) potential as an example.

The paper is concluded in Sce.IV.
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II. A QUANTUM SYSTEM IN A SPATIALLY PERIODIC POTENTIAL AT

EQUILIBRIUM

A. General aspects

We consider a particle of mass m moving in a periodic classical potential V (x). The

particle is coupled to a set of harmonic oscillators of unit mass acting as a bath. This is

represented by the following system-reservoir Hamiltonian [21, 22, 23]

Ĥ =
p̂2

2m
+ V (x̂) +

N
∑

j=1

{

p̂2
j

2
+

1

2
κj(q̂j − x̂)2

}

(2.1)

Here x̂ and p̂ are the coordinate and momentum operators of the particle and {q̂j, p̂j} are

the set of coordinate and momentum operators for the reservoir oscillators coupled linearly

through the coupling constants κj(j = 1, 2, ...). For the spatially periodic potential, we

have V (x) = V (x + L),where L is the length of the period.The coordinate and momentum

operators follow the usual commutation rules {x̂, p̂} = i~ and {q̂i, p̂j} = i~δij . Eliminating

the bath degrees of freedom in the usual way we obtain the operator Langevin equation for

the particle

m¨̂x+

∫ t

0

dt′γ(t− t′) ˙̂x(t′) + V ′(x̂) = Γ̂(t) (2.2)

(Overdots refers to differentiation with respect to time t) where noise operator Γ̂(t) and

the memory kernel are given by

Γ̂(t) =
∑

j

[

{q̂j(0) − x̂(0)}κj cosωjt+ κ
1/2
j p̂j(0) sinωjt

]

(2.3)

and

γ(t) =
∑

j

κj cosωjt (2.4)

respectively, with κj = ω2
j

Following Ref. [21-23] we then carry out a quantum mechanical average 〈...〉 over the

product separable bath modes with coherent states and the system mode with an arbitrary
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state at t = 0 in Eq.(2.2) to obtain a generalized quantum Langevin equation as

mẍ+

∫ t

0

dt′γ(t− t′)ẋ(t′) + V ′(x) = Γ(t) +Q(x, 〈δx̂n〉) (2.5)

where the quantum mechanical mean value of the position operator 〈x̂〉 = x and

Q(x, 〈δx̂n〉) = V ′(x) − 〈V ′(x̂)〉 (2.6)

which by expressing x̂(t) = x(t) + δx̂(t) in V (x̂) and using a Taylor series expansion

around x may be rewritten as

Q(x, 〈δx̂n〉) = −
∑

n≥2

1

n!
V

n+1
(x)〈δx̂n〉 (2.7)

The above expansion implies that the nonzero anharmonic terms beyond n ≥ 2 contain

quantum dispersions 〈δx̂n〉. Although we develop this section in general terms, we are

specifically concerned here typically with periodic nonlinear potentials of the type sin 2πx
L

or cos 2πx
L

or their linear combinations and the like which have been used earlier in several

contexts. The nonlinearity of the potential is an important source of quantum correction in

addition to the quantum noise of the heat bath. The calculation of Q rests on the quantum

correction terms 〈δx̂n〉 which one determines by solving a set of quantum correction equations

as given in the next section. Furthermore the c-number Langevin force is given by

Γ(t) =
∑

j

[

〈q̂j(0)〉 − 〈x̂(0)〉κj cosωjt+ κ
1/2
j p̂j(0) sinωjt

]

(2.8)

which must satisfy noise characteristics of the bath at equilibrium ,

〈Γ(t)〉S = 0 (2.9)

〈Γ(t)Γ(t′)〉S =
1

2

∑

j

κj ~ωj

(

coth
~ωj

2kT

)

cosωj(t− t′) (2.10)

Eq.(2.10) expresses the quantum fluctuation-dissipation relation. The above

conditions(2.9-2.10) can be fulfilled provided the initial shifted co-ordinates {〈q̂j(0)〉−〈x̂(0)〉}
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and momenta 〈p̂j(0)〉 of the bath oscillators are distributed according to the canonical ther-

mal Wigner distribution [24, 25] of the form

Pj([〈q̂j(0)〉 − 〈x̂(0)〉], 〈p̂j(0)〉) = N exp

{

−
1
2
〈p̂j(0)〉2 + 1

2
κj[〈q̂j(0)〉 − 〈x̂(0)〉]2

~ωj[n(ωj) + 1
2
]

}

(2.11)

so that the statistical averages 〈...〉s over the quantum mechanical mean value O of the

bath variables are defined as

〈Oj〉s =

∫

Oj Pj d〈p̂j(0)〉 d{〈q̂j(0)〉 − 〈x̂(0)〉} (2.12)

Here n(ω) is given by Bose-Einstein distributions (e
~ω
kT − 1)−1. Pj is the exact solution of

Wigner equation for harmonic oscillator [24, 25] and forms the basis for description of the

quantum noise characteristics of the bath kept in thermal equilibrium at temperature T . In

the continuum limit the fluctuation-dissipation relation (2.10) can be written as

〈Γ(t)Γ(t′)〉 =
1

2

∫ ∞

0

dω κ(ω) ρ(ω) ~ω coth(
~ω

2kT
) cosω(t− t′) (2.13)

where we have introduced the density of the modes ρ(ω). Since we are interested in the

Markovian limit in the present context, we assume κ(ω)ρ(ω) = 2
π
γ, Eq.(2.13) then yields

〈Γ(t)Γ(t′)〉 = 2Dqδ(t− t′) (2.14)

with

Dq =
1

2
γ~ω0 coth

~ω0

2kT
(2.15)

ω0 refers to static frequency limit. Furthermore from Eq.(2.4) in the continuum limit we

have

γ(t− t′) = γ δ(t− t′) (2.16)

γ is the dissipation constant in the Markovian limit. In this limit Eq.(2.5) therefore

reduces to

mẍ+ γẋ+ V ′(x) = Γ(t) +Q(x, 〈δx̂n〉) (2.17)
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It is useful to work with dimensionless variables for the present problem to keep track of

the relations between the scales of energy, length and time. The period L of the periodic

potential V (x) determines in a natural way the characteristic length scale of the system.

Therefore the position of the Brownian particle is scaled as

x = x/L

Next we consider the timescales of the system. In absence of the potential and the noise

term the velocity of the particle ẋ(t) ∼ exp(−t/τL) with τL = m/γ, which represents the

correlation time scale of the velocity the Brownian particle. To identify the next charac-

teristic time τ0 we consider the deterministic overdamped motion due to the potential as

γ dx
dt

= −dV (x)
dx

. Then τ0 is determined from γ L
τ0

= −∆V
L

as τ0 = γL2

∆V
where ∆V is the

barrier height of the original potential. Hence time is scaled as t = t
τ0

. Furthermore the

potential, the noise and the quantum correction terms are re-scaled as V (x) = V (x)/∆V ,

Γ(t) = Γ(t)/(∆V /L) and Q/(∆V /L), respectively.

Hence dimensionless quantum Langevin equation reads as

µ∗ẍ+ ẋ = f(x) + Γ(t) (2.18)

Here over-dot(.) refers to differentiation with respect to scaled time t. Dimensionless

mass µ∗ = m
γτ0

= τL

τ0
and

f(x) = −V ′(x) +Q(x, 〈δx̂n〉) (2.19)

The noise properties of the quantum bath are then rewritten as

〈Γ(t)〉s = 0

〈Γ(t)Γ(t′)〉s = 2Dqδ(t− t′)

where

Dq =
1
2
~ω0 coth ~ω0

2kT

∆V
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The Fokker-Planck equation corresponding to Eq.(2.18) is given by

∂P (x, ẋ, t)

∂t
=

[

−
∂

∂x
ẋ+

∂

∂ẋ

(

ẋ

µ∗
−
f(x)

µ∗

)

+
Dq

µ∗2

∂2

∂x2

]

P (x, ẋ, t) (2.20)

The above equation can be solved in the stationary state. The stationary probability

density is

Pst(x, ẋ) = N exp

[

−
µ∗ẋ2

2
+

∫ x

0

f(y)

Dq
dy

]

(2.21)

where N is the normalization constant which can obtained as

∫ +∞

−∞

dẋ

∫ L

0

dx Pst(x, ẋ) = 1 (2.22)

It is easy to check that in the stationary state the mean velocity is equal to zero;

〈ẋ〉s =

∫ +∞

−∞

ẋ dẋ

∫ L

0

dx Pst(x, ẋ) (2.23)

Several points are now in order: (i) Eq.(2.23) suggests that the stationary distribu-

tion (2.21) is an equilibrium distribution because of the zero current condition. (ii) The

equilibrium distribution Eq.(2.21) formally contains quantum corrections to all orders in

Q(x, 〈δx̂n〉). (iii) Since Q(x, 〈δx̂n〉) essentially arises due to nonlinear part of the poten-

tial the nonlinearity and the quantum effects are entangled in this quantity modifying the

classical part of the potential. Thus the classical force −V ′(x) is modified by the quantum

contribution. (iv) Since in the present scheme one may express the quantum mechanical

operator x̂ = x+ δx̂ or ˙̂x = ẋ+ δ ˙̂x where x and ẋ are quantum mechanical mean values and

〈δx̂〉 = 〈δ ˙̂x〉 = 0 by construction and [δx̂, δ ˙̂x] = i~ as noted earlier it follows that

〈 ˙̂x〉qs = 〈ẋ+ δ ˙̂x〉qs = 〈ẋ〉s + 〈〈δ ˙̂x〉〉s = 〈ẋ〉s (2.24)

The relation between three types of averages e.g., 〈...〉qs, quantum statistical; 〈...〉s sta-

tistical average over quantum mechanical mean and 〈...〉, quantum mechanical mean must

be clearly distinguished. The relation Eq.(2.24) expresses the usual quantum current as a

simple statistical average of the quantum mechanical mean value in the present c-number

scheme and the decisive advantage of using this formalism is quite apparent. (v) In absence

of quantum correction term Q(x, 〈δx̂n〉) and Dq →
γkT

∆V
as one approaches the classical limit
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(kT ≫ ~ω), the quantum Langevin equation (2.18) reduces to classical Langevin equation.

(vi) The zero current situation or equivalently the equilibrium distribution function (2.21)

ensures the condition of detailed balance in absence of any external driving. This condition

is a necessity in the present context and the formalism since it guarantees that the quantum

correction term does not give any tilt or bring any asymmetry on the classical periodic po-

tential generating any unphysical current. This conclusion is also true for an overdamped

situation which we deal in the next subsection.

B. Equilibrium under overdamped condition

Under overdamped condition the inertial term may be neglected and one obtains from

Eq. (2.18)

ẋ = f(x) + Γ(t) (2.25)

where over-dot (.) refers to differentiation with respect to dimensionless time t defined

as t = t
τ0

and x = x
L
. Therefore Eq.(2.25) gives the relation 〈dx

dt
〉s = L

τ0
〈ẋ〉s = v0〈f(x)〉s or

〈
dx

dt
〉s = v0

∫ 1

0

f(x)Pst(x)dx (2.26)

Here we have denoted the characteristic velocity v0 = L/τ0. The equation for probability

density function P (x, t) corresponding to Eq.(2.25) is given by

∂P (x, t)

∂t
= −

∂J(x, t)

∂x
(2.27)

where the probability current

J(x, t) = f(x)P (x, t) −Dq
∂P (x, t)

∂x
(2.28)

In the stationary state P (x) = Ltt→∞P (x, t) , J is constant as

J = f(x)P (x) −Dq
∂P (x)

∂x
(2.29)

The solution of above equation for P (x) reads as

P (x) = −
J

Dq
exp[−ψ(x)]

∫ x

0

exp[ψ(y)] dy +N exp[−ψ(x)] (2.30)
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where

ψ(x) = −

∫ x

0

f(y)

Dq
dy

or ψ(x) = V (x)−V (x)+〈V (x̂)〉
Dq

and N is constant. The last relation follows from (2.6) and

(2.19). Since V (x) is periodic, i.e. V (x) = V (x+ 1) we must have

ψ(x) = ψ(x+ 1) (2.31)

For periodic boundary condition on (2.30) and from (2.31) it follows that,

J

Dq

∫ x+1

x

exp[ψ(y)] dy = 0 (2.32)

Since the above integral is non-zero an overdamped Langevin equation with periodic

boundary condition shows J = 0. This corresponds to an equilibrium situation with proba-

bility density function from (2.30),

P (x) = N exp[−ψ(x)] (2.33)

Normalization constant N is [
∫ 1

0
exp[−ψ(x)]]−1. Therefore the quantum correction

Q(x, 〈δx̂n〉) in ψ(x), as expected, can not break the detailed balance in the quantum system,

nor the symmetry of the potential. This conclusion is an important check of the present

formalism for a correct description of the equilibrium.

III. EXTERNAL NOISE-INDUCED QUANTUM TRANSPORT

Since at equilibrium detailed balance in the quantum stochastic system under overdamped

condition forbids any transport we introduce an external noise on the system. The dynamics

of the particle is described by the equation

ẋ = f(x) + Γ(t) + ξ(t) (3.1)

where Γ(t) is the quantum internal noise of the bath with the properties as noted earlier,

ξ(t) is a random telegraph noise also known as dichotomous noise, which takes two possible

values ξ(t) = {−a, b}. If the probability of jumps per unit time from one state are given
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by P (−a → b) = µa and P (b → −a) = µb and if we assume aµb = bµa, then this external

stochastic process can be described by the first two moments as

〈ξ(t)〉 = 0 (3.2)

〈ξ(t)ξ(s)〉 =
QI

τ
exp

[

−
| t− s |

τ

]

(3.3)

where the correlation time of the noise τ = 1
µa+µb

and the noise intensity QI = τab,

τa and τb are mean waiting times in the states a and b (µa = 1
τa
, µb = 1

τb
) respectively.

Therefore the three parameters intensity QI , correlation time τ , and asymmetry θ = b − a

are the characteristics of the noise. For symmetrical noise a = b. The quantum nature of the

problem therefore manifests itself in two ways; first, through quantum corrections in f(x)

which we consider in principle to all orders and secondly in quantum diffusion coefficient Dq

for the noise of the bath. The quantum equation of motion for joint probability densities

can be mapped into a classical problem by defining

P+(x, t) = P (x, b, t) ; P−(x, t) = P (x,−a, t)

so that Fokker-Planck equation with jump processes are given by

∂P+(x, t)

∂t
= −

∂

∂x
[f(x) + b]P+(x, t) +Dq

∂2

∂x2P+(x, t) − µbP+(x, t) + µaP−(x, t) (3.4)

∂P−(x, t)

δt
= −

∂

∂x
[f(x) − a]P−(x, t) +Dq

∂2

∂x2P−(x, t) + µbP+(x, t) − µaP−(x, t) (3.5)

The total probability density P (x, t) at any time is given by

P (x, t) = P+(x, t) + P−(x, t) (3.6)

Eqs.(3.4) and (3.5) yield the equation of the motion for P (x, t) as

∂P (x, t)

∂t
= −

∂

∂x
[f(x)]P (x, t) −

∂

∂x
W (x, t) +Dq

∂2

∂x2P (x, t) (3.7)

where W (x, t) is an auxiliary distribution function

W (x, t) = bP+(x, t) − aP−(x, t) (3.8)
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which follows the equation

∂W (x, t)

∂t
= −

∂

∂x
[f(x) + θ]W (x, t) +Dq

∂2

∂x2W (x, t) −
1

τ
W (x, t) − ab

∂

∂x
P (x, t) (3.9)

The normalization conditions are

∫ c+1

c

P (x, t)dx = 1 ;

∫ c+1

c

W (x, t)dx = 0 (3.10)

In the stationary state we obtain an expression for the constant current J as

−DqP
′(x) + f(x)P (x) +W (x) = J (3.11)

and also we have

τDqW
′′(x) − τ [θ + f(x)]W ′(x) − [1 + τf ′(x)]W (x) = QIP

′(x) (3.12)

P (x) and W (x) are the stationary solutions of the coupled equations (3.7) and (3.9). It

is difficult to solve analytically the above two equations for arbitrary potential. In what

follows we consider the solutions under two specific cases (a) large correlation time and (b)

small correlation time.

A. Large correlation time

We return to Eqs.(3.11) and (3.12) and rewrite (3.12) as

Dq
d2W (x)

dx2
−

d

dx
{θ + f(x)}W (x) −

1

τ
W (x) = ab

dP (x)

dx
(3.13)

For τ ≫ 1 we neglect the term with 1
τ
. Integration over Eq. (3.13) then leads to

DqW
′(x) − [θ + f(x)]W (x) = abP (x) +D (3.14)

D is constant. We now put the equilibrium solution for P (x), Eq.(2.33) in (3.14) and

solve it for W (x) to obtain (we put D = 0 to make the system free from bias due to external

fluctuating force averaged over a period)

W (x) = exp[−ψ1(x)]

{

abN

Dq

∫ x

0

expψ2(y)dy + Cm

}

(3.15)
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Cm = −
abN

Dq

∫ c0+1

c0
exp[−ψ1(x)]

∫ x

0
exp[ψ2(y)] dy dx

∫ c0+1

c0
exp[−ψ1(x)] dx

(3.16)

ψ1(x) = −

∫ x

0

θ + f(y)

Dq

dy (3.17)

ψ2(x) = −

∫ x

0

θ

Dq
dy (3.18)

ψ(x) = −

∫ x

0

f(y)

Dq

dy (3.19)

Here N is given by normalization constant in (2.33). Putting the solutions for W (x) and

P (x) (3.15 and 2.33) in (3.11) as a first approximation we obtain the expression for current

as the lowest order iterative solution which is given by

J =

∫ x+1

x
exp[−ψ2(y)] {

abN
Dq

∫ y

0
exp[ψ2(z)] dz + Cm} dy

∫ x+1

x
exp[−ψ(y)] dy

(3.20)

The expression for current is valid for large correlation time of the dichotomous noise

but formally takes into consideration of quantum effects to all orders. In order to check the

consistency of the above expression we now examine the following limiting situations. First,

we consider the dichotomous noise to be symmetric, i.e., θ = 0. J then reduces to

J =

∫ x+1

x
{abN

Dq
y + Cm} dy

∫ x+1

x
exp[−ψ(y)] dy

(3.21)

and

Cm = −
abN

Dq

∫ c0+1

c0
x exp[−ψ(x)] dx

∫ c0+1

c0
exp[−ψ(x)] dx

(3.22)

If now V (x) is assumed to be of inversion symmetric, then 〈V (x̂)〉 is also symmetric and

Cm would be zero and J = 0 in such situation since

∫ +1/2

−1/2

x exp[−ψ(x)] dx = 0 (3.23)

∫ +1/2

−1/2

abN

Dq
x dx = 0 (3.24)

Therefore with symmetric potential and symmetric dichotomous noise, the current is zero

even in the presence of quantum corrections. To obtain a quantum current it is necessary that
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either the periodic potential should be asymmetric and/or noise ξ(t) should be asymmetric

and vice-versa.

We now proceed to analyze the current under non-equilibrium condition and the related

quantum effects. One of the prime quantities for this analysis is the potential V (x) or the

corresponding force term f(x) given by

f(x) = −[V ′(x) −Q(x, 〈δx̂n〉)] = −
∂

∂x
[V (x) +

∑

n≥2

1

n!
V n(x)〈δx̂n〉] (3.25)

The quantum correction terms can be determined as follows. We return to the operator

equation (2.2) and put x̂(t) = x(t) + δx̂(t) and p̂(t) = p(t) + δp̂(t) where x(t) = 〈x̂(t)〉 and

p(t) = 〈p̂(t)〉 are the quantum mechanical mean values of the operators x̂ and p̂ respectively.

By construction [δx̂, δp̂] = i~ and 〈δx̂〉 = 〈δp̂〉 = 0. We then obtain the quantum correction

equation

mδ ¨̂x+

∫ t

0

dt
′
γ(t− t

′
)δ ˙̂x(t′) + V

′′
(x)δx̂+

∑

n≥2

1

n!
V

n+1
(x)(δx̂n − 〈δx̂n〉) = Γ̂(t) − Γ(t) (3.26)

Again in the overdamped limit we discard the inertial term mδ ¨̂x. We then perform a

quantum mechanical average with initial product separable coherent states of the oscillators

of the bath only to get rid of the internal noise term and to obtain the reduced operator

equation for the system as

γδ ˙̂x+ V
′′
(x)δx̂+

∑

n≥2

1

n!
V

n+1
(x)(δx̂n − 〈δx̂n〉) = 0 (3.27)

With the help of (3.27) we then obtain the equations for 〈δx̂n(t)〉

d

dt
〈δx̂2〉 =

1

γ

[

−2V
′′
(x)〈δx̂2〉 − V

′′′
(x)〈δx̂3〉

]

(3.28)

d

dt
〈δx̂3〉 =

1

γ

[

−3V
′′
(x)〈δx̂3〉 −

3

2
V

′′′
(x)〈δx̂4〉 +

3

2
V

′′′
(x)〈δx̂2〉

2
]

(3.29)

and so on. Taking into account of the lowest order contribution 〈δx̂2〉 explicitly we may

write

d〈δx̂2〉 = −
2

γ
V

′′
(x)〈δx̂2〉dt (3.30)
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The overdamped deterministic motion gives γdx = −V
′
(x)dt which when used in (3.30)

yields after integration

〈δx̂2〉 = ∆q[V
′
(x)]2 (3.31)

where ∆q =
〈δx̂2〉xc

[V (xc)]2
and xc refers to a known reference point. Eq.(3.31) results in

f(x) = −[V
′
(x) + ∆qV

′′′
(x)[V

′
(x)]2] (3.32)

We now emphasize an important point. If the potential is symmetric, then the quan-

tum correction in Eq.(3.32) is an odd function just as V ′(x). This implies that quantum

correction to classical potential has not destroyed the inversion symmetry of V (x). Thus

the approximation in deriving the leading order quantum effect is consistent with symmetry

requirement of the problem.

To illustrate the nature of current we now consider a symmetric cosine potential with

period 2π

V (x) =
1

2
(cosx+ 1) (3.33)

The force terms and other related quantities ψ1(x), ψ2(x) and ψ(x) after scaling, take

the following forms:

f(x) = π[sin 2πx− ∆q sin3 2πx] (3.34)

ψ1(x) = −[∆1 cos3 2πx+ ∆2 cos 2πx+
θ

Dq
x+ ∆3] (3.35)

ψ2(x) = −
θ

Dq
x (3.36)

ψ(x) = −[∆1 cos3 2πx+ ∆2 cos 2πx+ ∆3] (3.37)

∆1 = −
∆q

6Dq
; ∆2 =

∆q − 1

2Dq
; ∆3 =

1 − 2
3
∆q

2Dq
(3.38)

In Fig.(1) we illustrate the variation of current for a fixed value of the system non-

linearity ∆q(= 0.04) and asymmetry parameter θ(= 1.0) as a function of quantum diffusion
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coefficient Dq . One observes that with increase of Dq the magnitude of current increases

to a maximum followed by a decrease. For a fixed Dq with increase of the strength of the

external dichotomous noise (proportional to the product ab) the current increases.The effect

of quantization of a classical ratchet is shown in Fig.(2), where we make a comparison of

the current vs temperature profile for the classical and the quantum (∆q = 0.3) cases for

a = 1.75, b = 2.75. One observes that in the low temperature region the classical current

is significantly lower in magnitude than the quantum current, and at high temperature the

effect of quantization become insignificant.

B. Short correlation time

In the regime of short correlation time τ ≪ 1 of dichotomous noise we follow Kula et al

[20] to expand P (x), W (x) and J in power series with τ as a smallness parameter;

P (x) =
∞

∑

n=0

τnPn(x) ; W (x) =
∞

∑

n=0

τnWn(x) and J =
∞

∑

n=0

τnJn (3.39)

Making use of the above expressions in (3.11) and (3.12) we obtain the following set of

equations,

− DqP
′(x) + f(x)Pn(x) +Wn(x) = Jn (3.40)

Wn(x) = DqW
′′
n−1(x) − [θ + f(x)]W ′

n−1(x) − f ′(x)Wn−1(x) −QIP
′
n(x) (3.41)

with n = 1, 2, 3...

W0(x) = −QIP
′
0(x)

The probability functions Pn(x) obey the periodicity conditions and they are normalized

over dimensionless period (L = 1). We thus obtain the zero order contributions as

J0 = 0 (3.42)

P0(x) = N exp

[
∫ x

0

f(y)

Dq +QI
dy

]

(3.43)
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with normalization constant

N−1 =

∫ 1

0

exp

[
∫ x

0

f(y)

Dq +QI
dy

]

dx (3.44)

The higher order contributions can be obtained following Kula et al. For the present

purpose the leading order current is given by

J1 =

[
∫ 1

0

N−1P0(x)dx

∫ 1

0

NP−1
0 (x)dx

]−1

×

[

θQI

(Dq +QI)2

∫ 1

0

f 2(x)dx+
Q2

I

(Dq +QI)3

∫ 1

0

f 3(x)dx

]

(3.45)

The key quantity for the above equation is the force term f(x) with leading or-

der nonlinear correction (3.32). For the symmetric smooth cosine potential of the form

V (x) = 1
2
[cos 2πx+ 1] as given by (3.33), f(x) is an odd function [Eq.3.34]. For asymmetric

dichotomous fluctuations (θ 6= 0) and symmetric potential the leading order current is pro-

portional to the integral f 2(x); the integral over f 3(x) being zero. On the other hand the

current is proportional to the integral over f 3(x) for symmetric(θ = 0) dichotomous noise.

Therefore we have shown that in the short correlation time limit it is not possible to obtain

any noise induced transport with symmetric noise and symmetric potential.

For f(x) given by (3.34) one obtains explicitly the quantum current

J1 =
π2

2I1 I2

θQI

(Dq +QI)2

[

5

8
∆2

q −
3

2
∆q + 1

]

(3.46)

where
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I1 =

∫ 1

0

exp

[

−

∫ x

0

f(y)

(Dq +QI)
dy

]

dx (3.47)

I2 =

∫ 1

0

exp

[
∫ x

0

f(y)

(Dq +QI)
dy

]

dx (3.48)

∫ x

0

f(y)

(Dq +QI)
= ∆4 cos3 2πx+ ∆5 cos 2πx+ ∆6

∆4 = −
∆q

6(Dq +QI)
; ∆5 =

(∆q − 1)

2(Dq +QI)
(3.49)

∆6 =
(1 − 2

3
∆q)

2(Dq +QI)
(3.50)

We now numerically illustrate the behaviour of quantum current given by Eq.(3.46).

The effect of quantization of the reservoir is apparent in Fig.(3) in the variation of current

with QI for several values of quantum diffusion coefficient Dq of the heat bath for fixed

∆q(= 0.04), θ(= 1.0) and τ(= 0.1). For small Dq, the current falls off monotonically after

reaching maxima. The maxima and the current drops for higher values of quantum diffusion

coefficient since thermalization prevails over the dynamics, in general. In Fig.(4) we compare

the current vs temperature profile for the classical and the quantum (∆q = 0.3) cases for

fixed a(= 1.0), b(2.0) and τ(= 0.1). We observe again that in the low temperature range

the current is significantly higher for the quantum case.

In order to examine the influence of the correlation time τ of the nonthermal noise on

current we plot in Fig.(5) the variation of current as a function of Dq for several values of τ

for fixed values of a(= 1.0), b(= 2.0), θ(= 1.0) and ∆q(= 0.04). All the bell-shaped curves

exhibit maxima at optimal Dq values. Increase in correlation time τ results in enhancement

of directed motion, and shift of the maxima, towards the origin. Physically this implies that

departure from equilibrium is increasingly favored for larger correlation time of the external

noise in this region.

The form for noise induced-current in the limit of short correlation time of the stochastic

dichotomous process expresses the functional dependence of the current on τ , f , Dq and QI ,

through Eq.(3.46) as J = τJ1. It is interesting to comment on the effect of noise statistics of

the stochastic processes on the current. This aspect has been explained carefully by Doering

et al [18] sometime back in a classical context by considering a family of stochastic processes
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known as ”Kangaroo processes” parameterized by an another probability distribution p(z).

Based on singular perturbation expansion in τ it has been shown that the expression for

the current is modified by a prefactor which depends on the moments of the distribution

p(z) (〈zn〉 =
∫

znp(z)dz). It is apparent that consideration of such processes in the present

quantum mechanical context is expected to give rise such a prefactor since the expression

for current in the short correlation time limit in classical and quantum mechanical cases has

a common structure.

IV. CONCLUSION

Based on the traditional system-reservoir model we have formulated the quantum stochas-

tic dynamics in the overdamped limit and analyzed the problem of a ratchet device with an

external, exponentially correlated asymmetric dichotomous noise. The governing equations

of motion are classical looking in form but quantum mechanical in their content. The quan-

tization of the dynamics is manifested in two different ways. First, the harmonic oscillator

reservoir is quantum mechanical in character and its internal noise characteristics and the

fluctuation-dissipation relation are described by the canonical thermal Wigner distribution.

The special advantage of using this c-number distribution (where width Dq corresponds to

the strength of fluctuation of the thermal bath) is that it remains a valid positive definite

pure state distribution even at absolute zero. This allows the theory to be extended to the

deep tunneling region which remains normally inaccessible in many theoretical treatments.

Secondly, the nonlinearity of the potential brings in additional quantum contribution since

the nonlinear terms of the potential beyond the harmonic one are entangled with quantum

corrections. Therefore the system experiences an effective force term f(x) comprising a clas-

sical −V ′(x) plus a quantum correction term Q(x, 〈δx̂n〉) as f(x) = −V ′(x) + Q(x, 〈δx̂n〉)

this consideration leads us to the form of generalized equilibrium distribution in terms of

a nonlocal potential ψ(x) as P ∼ exp[ψ(x)] where ψ(x) =
∫ x

0
f(x′)
Dq

dx′. The implication of

this factor in ratchet effect or in Landauer blow-torch effect has been thoroughly exam-

ined [3, 14, 18, 20] by Van Kampen, Büttiker and others. A close look into the expression

for current in Eq.(3.20) or Eq.(3.46) reveals that the origin of fluctuation induced current

essentially rests on this factor and therefore the contribution of the nonlinearity induced

quantum effect on this current becomes quite apparent. It is important to note that the es-
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sential requirements demanded by symmetry considerations and thermodynamic consistency

condition have been fulfilled in our treatment. We now summarize the main conclusions of

this study:

(i) We note that quantization can not break the symmetry of the ratchet device but, in

general, may change the superposition of amplitudes of the periodic nonlinear function so

that the current is significantly affected. This is apparent from the structure of the force term

f(x) pointed out earlier. For example, for a pendulum potential V (x) = 1
2
(cosx+ 1), which

has been used for superionic conductors, f(x) [= −V ′(x)−∆qV
′′′(x) (V ′(x))2 for the leading

order quantum correction where ∆q ∼ O(h2)] is a superposition of sin x and ∆q sin3 x, a

classical and a quantum part, respectively. It therefore follows from the previous discussions

that the quantum part of potential affects ψ(x) and consequently the current.

(ii) Our formulation offers simple analytical solutions in two limiting cases, large and

small correlation times of the telegraphic noise. We observe that while at low temperature

quantization significantly enhances the classical current, at higher temperature the differ-

ence is insignificant. This may be interpreted in terms of an interplay between the quantum

diffusion coefficient Dq and the force term f(x) appearing in the effective potential ψ(x) as
∫ x

0
f(x′)
Dq

dx′. As the temperature T → 0, Dq approaches to the value 1
2
~ω0, the vacuum limit

and also in the deep tunneling region the anharmonic terms in f(x) do not contribute sig-

nificantly, the integrand increases sharply. On the other hand, as the temperature increases,

Dq increases resulting in a decrease of ψ(x). Since for the classical current, the quantum

contribution to f(x) is absent, one observes a crossover of the of the classical and the quan-

tum current in an intermediate region of the temperature, where Dq and f(x) compete with

each other and beyond which the quantum current is marginally lower than the classical

current. For a further increase of temperature the classical and the quantum current merge

identically, as expected.

(iii) We have examined the role of the strength of the external noise and the correlation

time in the generation of noise-induced current. These factors, as usual are instrumen-

tal in moderating the statistical stationary state of the nonequilibrium system that lacks

detailed balance. A possible experimental realization of the distinctive behaviour of a quan-

tum ratchet in contrast to its classical counterpart in a superionic conductor driven by a

dichotomous noisy electric field at low temperature has been suggested.

Our study is confined to analytical solutions in the two limits of correlation time of the
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external noise. A direct numerical simulation of quantum ratchet using c-number quantum

Langevin equation with dichotomous noise over the entire range of correlation time is neces-

sary to compliment these observations. Furthermore since the problem of quantum Brownian

dynamics in a periodic (pendulum like) potential covers a wide area comprising Josephson

super-current through a tunneling junction, Bloch-wall motion, Frochlich superconductors

etc., we expect the formulation to be useful in a wider theoretical context. Application of

the theory in related issues are also worth-pursuing and will be addressed elsewhere.
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Figure Captions

Fig.1: Variation of current (J) with quantum diffusion coefficient Dq in the large corre-

lation time limit for ∆q = 0.04, θ = 1.0 and (i) a = 1.0 and b = 2.0 (solid line), (ii) a = 1.25

and b = 2.25 (dashed line), (iii) a = 1.5 and b = 2.5 (dot line) and (iv) a = 1.75 and b = 2.75

(dash-dot line).

Fig.2: Comparison of quantum and classical current (J) vs temperature (T ) profile for the

parameter set a = 1.75, b = 2.75, ∆q = 0.0 (classical, dotted line) and ∆q = 0.3 (quantum,

solid line) in the large correlation time limit.

Fig.3: Variation of current (J) with nonthermal noise strength (QI) for different values

of quantum diffusion coefficients Dq = 0.25 (solid line), Dq = 1.5 (dashed line), Dq = 3.0

(dotted line) and Dq = 7.0 (dash-dot line) for the parameter set ∆q = 0.04, θ = 1.0 and

τ = 0.01 in the short correlation time limit.

Fig.4: Comparison of quantum and classical current (J) vs temperature (T ) profile for

the parameter set a = 1.0, b = 2.0, τ = 0.1 and ∆q = 0.0 (classical, dotted line) and ∆q = 0.3

(quantum, solid line) in the short correlation time limit.

Fig.5: Variation of current (J) with quantum diffusion coefficient for different value of

correlation time τ of nonthermal noise τ = 0.05 (solid line), τ = 0.07 (dashed line) and

τ = 0.1 (dotted line) for the parameter set ∆q = 0.04, a=1.0, b=2.0 and θ = 1.0 in the short

correlation time limit.
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