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Abstract

We analyze the problem of directed quantum transport induced by external exponentially cor-
related telegraphic noise. In addition to quantum nature of the heat bath, nonlinearity of the
periodic system potential brings in quantum contribution. We observe that quantization, in gen-
eral, enhances classical current at low temperature, while the differences become insignificant at
higher temperature. Interplay of quantum diffusion and quantum correction to system potential
is analyzed for various ranges of temperature, correlation time and strength of external noise and
asymmetry parameters. A possible experimental realization of the observed quantum effects in a

superionic conductor placed in a random asymmetric dichotomous electric field has been suggested.
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I. INTRODUCTION

Extracting useful work from unbiased noise has been a topical theme under ’'ratchet
effect’ [1, 2, 3]. Because of its extraordinary success in explaining experimental observations
on biochemical molecular motors active in muscle contractions [4, 1, 6, (1], observations
on directed transport in photoreflective and photovoltic materials []; 9], useful application
in the separation of particles [10], theoretical issues on symmetry consideration, Brownian
motion and second law of thermodynamics [L1, [12, [13, [14], the problem has attracted wide
attention in recent years. Although the ratchet effect can be achieved in a variety of ways the
basic element of a typical Brownian ratchet essentially concerns the breaking of the detailed
balance by an external periodic or fluctuating force applied to the Brownian particle moving
in a periodic potential. This has been the subject a number of reviews and articles over the
last decade. We refer to [1-3] for details.

While in the recent context of ratchet a major emphasis is laid on molecular pumps and
motors in the realm of biophysics and chemistry, it would seem that a Brownian particle be-
ing a microscopic object [L1], quantum effect is likely to make its presence felt in appropriate
situation, particularly at low temperature. One thus expects the directed current or recti-
fication of noise to be important in transport of quantum particles in quantum dots, wires
related nanodevices [17, [16] and also in the context of superionic conductors|26, 21, [2§].
Furthermore such studies are important also from the point of view of quantum-classical
correspondence. Based on the quantum Langevin equation our aim here is to formulate a
quantum ratchet problem where the external time dependent modulation that drives the
quantum system out of equilibrium is a random telegraphic noise [11, [L8, [19, 20]. To in-
corporate the elements of quantum theory in a ratchet device it is necessary to satisfy two
basic requirements. First, quantization of classical motion must not break the symmetry
of the ratchet device, or in other words, more specifically, quantization should not bring
in any additional tilt to the potential or break its inversion symmetry or symmetry of the
detailed balance. Second, the forcing must be unbiased, so that after appropriate averaging
over ensemble or over the period of space or time no directional component should remain.
Any approximation pertaining to the problem must conform to these requirements in any
correct quantum formalism.

Keeping in view of the above considerations we first formulate the quantum stochastic



dynamics of an overdamped particle and its approach to equilibrium. The quantum effects
appear due to the nonlinearity of the potential and quantum noise of the heat bath. The
introduction of the asymmetric telegraphic noise breaks the symmetry of the detailed balance
to produce directed quantum transport. It is important to point out that the quantum
effects observed by Linke et al [16] in their experimental work on quantum dot device are
due to tunneling and wave reflection of electrons and this resulted in a reversal of current
as predicted by Reimann[l, [15]. To explore the quantum effects discussed in this paper
we first note that the quantum corrections have a different origin, e.g., the nonlinearity of
the potential. A possible candidate for the experimental study of the present effect may
be a superionic conductor, e.g., Agl. This system has been traditionally used [26, 27, 2§]
for measurement of current in presence of an external electric field directly or in terms of
frequency dependent mobility. Typically in a superionic conductor like Agl, I~ ions form the
lattice allowing the Ag™ ions to move in a periodic potential of the form cos 2”7””, L being the
lattice spacing. The lattice vibrations contribute to both the Langevin force as well as the
frictional force on the Ag™ ions maintaining the detailed balance at the thermal equilibrium.
For slowly moving Ag™ ions compared to lattice vibrations, white noise approximation is
sufficient. An application of an external electric field at both ends of the conductor which
fluctuates randomly between two values in an asymmetric way obeying the prescribed noise
statistics, is expected to result in an observable current. In what follows from the present
analysis is that apart from the low temperature contribution due to deep tunneling, the
nonlinearity of the periodic pendulum potential COS%TI (contribution beyond harmonic)
contributes significantly to quantum corrections. The typical experimental parameters for
the measurement of current in a superionic conductor has been given elsewhere[26]. It is also
expected that quantum dots where the confining potential is truly periodic and nonlinear of
similar type can offer themselves as good candidates for these studies.

The outlay of the paper is as follows: we first derive in Sec.II the basic equation describing
quantum stochastic dynamics on a general footing followed by an overdamped description.
Thermodynamic consistency has been stressed to avoid the pitfall of fictitious current gen-
eration. In Sec.IIl we show how an external dichotomous asymmetric noise can break the
condition of detailed balance inducing a directed transport. Two limiting cases have been

worked out in detail with a typically nonlinear periodic(cosine) potential as an example.

The paper is concluded in Sce.IV.



II. A QUANTUM SYSTEM IN A SPATIALLY PERIODIC POTENTIAL AT
EQUILIBRIUM

A. General aspects

We consider a particle of mass m moving in a periodic classical potential V(z). The
particle is coupled to a set of harmonic oscillators of unit mass acting as a bath. This is

represented by the following system-reservoir Hamiltonian [21, 22, 23]

H::+Vﬁ +Z{pj+ —k;(q )} (2.1)

Here 2 and p are the coordinate and momentum operators of the particle and {g;, p,;} are
the set of coordinate and momentum operators for the reservoir oscillators coupled linearly
through the coupling constants ;(j = 1,2,...). For the spatially periodic potential, we
have V(x) = V(z + L),where L is the length of the period.The coordinate and momentum
operators follow the usual commutation rules {z,p} = ¢k and {¢;, p;} = ihd;;. Eliminating
the bath degrees of freedom in the usual way we obtain the operator Langevin equation for
the particle

. t _ . A
mx + /0 dt'y(t —t)z(t') + V'(z) =T(7) (2.2)
(Overdots refers to differentiation with respect to time Z) where noise operator I'(f) and

the memory kernel are given by

PH =3 [{qj(()) — #(0) }; cos wiF + £1/%p;(0) sin wjf] (2.3)

and

() = Z K; cosw;t (2.4)

respectively, with x; = w?

Following Ref. [21-23] we then carry out a quantum mechanical average (...) over the

product separable bath modes with coherent states and the system mode with an arbitrary



state at £ = 0 in Eq.([22) to obtain a generalized quantum Langevin equation as

i+ /0 dFA(E - P)E(F) + VI(z) = TE) + Q(F, (57) (25)

where the quantum mechanical mean value of the position operator () = T and

Q@ (0im)) =V'(@) — (V'(2)) (2.6)

which by expressing #(f) = Z(t) + 0z(¢) in V(Z) and using a Taylor series expansion

around T may be rewritten as

Q@ T = - 3. -V @0 2.7

n>2

The above expansion implies that the nonzero anharmonic terms beyond n > 2 contain

quantum dispersions (dz™). Although we develop this section in general terms, we are

specifically concerned here typically with periodic nonlinear potentials of the type sin =&*

or COS 2”7”” or their linear combinations and the like which have been used earlier in several
contexts. The nonlinearity of the potential is an important source of quantum correction in
addition to the quantum noise of the heat bath. The calculation of @ rests on the quantum

correction terms (d2") which one determines by solving a set of quantum correction equations

as given in the next section. Furthermore the c-number Langevin force is given by

HOEDY [@-(o» — (#(0)); coswjE + £2/%p;(0) sin wj%] (2.8)

which must satisfy noise characteristics of the bath at equilibrium |,

t))s =0 (2.9)

TEHOTE))s = % Z Kj hwj (coth Zj—%) cosw;(t — 1) (2.10)

Eq.(ZI0) expresses the quantum fluctuation-dissipation relation. The above
conditions(2.9-2.10) can be fulfilled provided the initial shifted co-ordinates {(¢;(0))—(z(0))}



and momenta (p;(0)) of the bath oscillators are distributed according to the canonical ther-

mal Wigner distribution [24, 25] of the form

P00 - GO)] (o)) = Nexp { - 2L O oy

so that the statistical averages (...)s; over the quantum mechanical mean value O of the

bath variables are defined as

(0)s = /Oj Py d{p;(0)) d{(q;(0)) — (2(0))} (2.12)

Here 7i(w) is given by Bose-Einstein distributions (e## — 1)~1. P; is the exact solution of
Wigner equation for harmonic oscillator |24, 25] and forms the basis for description of the
quantum noise characteristics of the bath kept in thermal equilibrium at temperature 7". In
the continuum limit the fluctuation-dissipation relation (2ZI0) can be written as

— 1 > hw -
(rre)) == dw k(w) p(w) Aw coth(=—) cosw(t —t) (2.13)
2 Jo 2kT
where we have introduced the density of the modes p(w). Since we are interested in the

Markovian limit in the present context, we assume s(w)p(w) = 27, Eq.(ZI3) then yields

™

(TOT()) =2D,(t —¥) (2.14)
with
1 heoy
Dq = 5’}/7:1/(4()0 coth %—T (215)

wp refers to static frequency limit. Furthermore from Eq.(24) in the continuum limit we

have

Yt =)=~ 0ot —7) (2.16)

v is the dissipation constant in the Markovian limit. In this limit Eq.(Z3) therefore

reduces to

mz + T + V(T) = T(T) + Q(7, (627)) (2.17)

(=)



It is useful to work with dimensionless variables for the present problem to keep track of
the relations between the scales of energy, length and time. The period L of the periodic
potential V' (z) determines in a natural way the characteristic length scale of the system.

Therefore the position of the Brownian particle is scaled as

x=7/L

Next we consider the timescales of the system. In absence of the potential and the noise
term the velocity of the particle #(¢) ~ exp(—t/7;) with 7, = m/~, which represents the
correlation time scale of the velocity the Brownian particle. To identify the next charac-

teristic time 7y we consider the deterministic overdamped motion due to the potential as
dV (z)

dz _ AV
T&E = =

Then 7y is determined from 7% = —=—as 71 = 1L where AV is the

L A

<

barrier height of the original potential. Hence time is scaled as t = Ti Furthermore the

f=}

potential, the noise and the quantum correction terms are re-scaled as V(z) = V(Z)/AV,
I'(t) =T(t)/(AV/L) and Q/(AV /L), respectively.

Hence dimensionless quantum Langevin equation reads as

pwi+a = f(xr)+T(t) (2.18)

Here over-dot(.) refers to differentiation with respect to scaled time ¢t. Dimensionless

* __ m __ TL
mass [t —%—%and

flx) ==V'(z) + Q(a, (62")) (2.19)

The noise properties of the quantum bath are then rewritten as

where

_ %hwo coth gg—%
AV



The Fokker-Planck equation corresponding to Eq.(2.18) is given by

OP(z,&,t) [ 0. 9 (i f(z) D, 9?
o [ %“%<E ) T o

The above equation can be solved in the stationary state. The stationary probability

] P(z,i,t) (2.20)

density is

Py(x, ) = Nexp [—%ﬁ + /Ow %dy} (2.21)

where N is the normalization constant which can obtained as

400 L
/ d:'v/ dx Py(z,t) =1 (2.22)
—00 0

It is easy to check that in the stationary state the mean velocity is equal to zero;

(i), = /_ﬂo i di /OL dx Py(z, &) (2.23)

[e.9]

Several points are now in order: (i) Eq.[ZZ3) suggests that the stationary distribu-
tion (ZZ1) is an equilibrium distribution because of the zero current condition. (ii) The
equilibrium distribution Eq.([ZZ1]) formally contains quantum corrections to all orders in
Q(x, (6z™)). (iil) Since Q(x, (dz™)) essentially arises due to nonlinear part of the poten-
tial the nonlinearity and the quantum effects are entangled in this quantity modifying the
classical part of the potential. Thus the classical force —V’(x) is modified by the quantum
contribution. (iv) Since in the present scheme one may express the quantum mechanical
operator & = & + 0& or & = & + 8% where z and & are quantum mechanical mean values and

(62) = (6z) = 0 by construction and [0z, 6] = ik as noted earlier it follows that

<;C>qs = <x + 5£>QS = <x>s + <<5j>>s = <x>s (2'24)

The relation between three types of averages e.g., (...)4s, quantum statistical; (...)s sta-
tistical average over quantum mechanical mean and (...), quantum mechanical mean must
be clearly distinguished. The relation Eq.([224]) expresses the usual quantum current as a
simple statistical average of the quantum mechanical mean value in the present c-number
scheme and the decisive advantage of using this formalism is quite apparent. (v) In absence

of quantum correction term Q(z, (62")) and D, — X“:g as one approaches the classical limit



(kT > hw), the quantum Langevin equation (ZI8) reduces to classical Langevin equation.
(vi) The zero current situation or equivalently the equilibrium distribution function (2221)
ensures the condition of detailed balance in absence of any external driving. This condition
is a necessity in the present context and the formalism since it guarantees that the quantum
correction term does not give any tilt or bring any asymmetry on the classical periodic po-
tential generating any unphysical current. This conclusion is also true for an overdamped

situation which we deal in the next subsection.

B. Equilibrium under overdamped condition

Under overdamped condition the inertial term may be neglected and one obtains from

Eq. (EI3)

&= f(z) +D(t) (2.25)

where over-dot (.) refers to differentiation with respect to dimensionless time ¢ defined

(.
ast =L and x = 7. Therefore BEq.[ZZF) gives the relation (%), = £ (i), = vo(f(z))s or

70

dT !

(ZFhs =vo | f(@)Pu()dz (2.26)
t 0

Here we have denoted the characteristic velocity vg = L/7y. The equation for probability

density function P(z,t) corresponding to Eq.(22H) is given by

OP(z,t)  0J(z,t)

= 2.2
ot Ox (227)
where the probability current
OP(x,t)
x
In the stationary state P(z) = Lt; .. P(x,t) , J is constant as
P
J = f(n)P(z) — D, 2L (2.29)
Ox
The solution of above equation for P(x) reads as
J €T
P(z) = =5 exp[~¢(z)] / exp[y)(y)] dy + N exp[—t)(x)] (2.30)
a 0

9



where

v =- [ Wy

or Y(x) = V(w)_VgZHV@» and N is constant. The last relation follows from (ZH) and

&I9). Since V(z) is periodic, i.e. V(z) = V(x + 1) we must have

(z) =Yz +1) (2.31)

For periodic boundary condition on (Z30) and from (Z31) it follows that,

Diq | exolvt) ds=0 (2:32)

Since the above integral is non-zero an overdamped Langevin equation with periodic
boundary condition shows J = 0. This corresponds to an equilibrium situation with proba-

bility density function from (Z30),

P(x) = N exp[—i(z)] (2.33)

Normalization constant N is | fol exp[—1(z)]]7'. Therefore the quantum correction
Q(x,(6z™)) in ¢ (x), as expected, can not break the detailed balance in the quantum system,
nor the symmetry of the potential. This conclusion is an important check of the present

formalism for a correct description of the equilibrium.

III. EXTERNAL NOISE-INDUCED QUANTUM TRANSPORT

Since at equilibrium detailed balance in the quantum stochastic system under overdamped
condition forbids any transport we introduce an external noise on the system. The dynamics

of the particle is described by the equation

&= f(x) +T(t)+ &) (3.1)

where I'(¢) is the quantum internal noise of the bath with the properties as noted earlier,
&(t) is a random telegraph noise also known as dichotomous noise, which takes two possible

values £(t) = {—a,b}. If the probability of jumps per unit time from one state are given

10



by P(—a — b) = p, and P(b — —a) = p, and if we assume apy, = by, then this external

stochastic process can be described by the first two moments as

(€)= 3:2)
e = L [-L21] 3.3

1
Hatpy

where the correlation time of the noise 7 = and the noise intensity (); = 7ab,
7, and 7, are mean waiting times in the states a and b (p, = %7/% = Tib) respectively.
Therefore the three parameters intensity (), correlation time 7, and asymmetry § = b — a
are the characteristics of the noise. For symmetrical noise a = b. The quantum nature of the
problem therefore manifests itself in two ways; first, through quantum corrections in f(x)
which we consider in principle to all orders and secondly in quantum diffusion coefficient D,

for the noise of the bath. The quantum equation of motion for joint probability densities

can be mapped into a classical problem by defining
P.(z,t) = P(z,b,t) ; P_(z,t) = P(z,—a,t)

so that Fokker-Planck equation with jump processes are given by

Q%%ﬁ:‘%U@+@&m@+D%%ﬂ@ﬁ—m&mﬁ+mR@ﬁ (34)
Q%%Q:—%Um—@R@@+D%%R@ﬁ+mﬂuﬁ—MR@ﬁ (3:5)

The total probability density P(z,t) at any time is given by

P(z,t) = Py(z,t) + P_(z,1) (3.6)

Eqgs.(B4) and (BH) yield the equation of the motion for P(x,t) as

OP(z,t) 0 J o’
i = g N @IP @) = 5 W (e, t) + Dy 5 Pl 1) (3.7)

where W (x,t) is an auxiliary distribution function

W(z,t) = bP.(z,t) — aP_(z,t) (3.8)

11



which follows the equation

ow(xz,t) 0 0? 1 0
= _%[f(;(;) + 0)W (x,t) + Dq@W(:c,t) — ;W(m, t) — ab%P(:c,t) (3.9)

The normalization conditions are

c+1 c+1
/ Pz, t)de =1 ; / W(x,t)dx =0 (3.10)

In the stationary state we obtain an expression for the constant current J as

—D,P'(x)+ f(z)P(x) + W(z) = J (3.11)
and also we have
TDW"(z) = 70 + f(2)]W' () = [1 + 7f(2)]W(2) = Q1 P'(x) (3.12)

P(x) and W (x) are the stationary solutions of the coupled equations (B7) and B3). It
is difficult to solve analytically the above two equations for arbitrary potential. In what
follows we consider the solutions under two specific cases (a) large correlation time and (b)

small correlation time.

A. Large correlation time

We return to Egs.(8I1) and (BI12) and rewrite (B12) as

dEPW(z) d 1 dP(x)
qu — 5{9 + f(x)}W (z) — ;W(:c) = ab T (3.13)
For 7 >> 1 we neglect the term with . Integration over Eq. (BI3) then leads to
DW'(x) — [0+ f(z)]W(z) = abP(x) + D (3.14)

D is constant. We now put the equilibrium solution for P(x), Eq.(33) in (BId) and
solve it for W (z) to obtain (we put D = 0 to make the system free from bias due to external

fluctuating force averaged over a period)

a

W) = el (@] { G [ expunto)dy + o} (3,15

12



_abN JE expl—1i ()] [y expla(y)] dy dx

C,, = . 3.16
D, chOOJr eXP[—%(SL’)] ( )

i) =— [ (”Tf(y) dy (3.17)

/ — dy (3.18)

1) (3.19)

Here N is given by normalization constant in (2233). Putting the solutions for W (z) and
P(z) BT and Z33) in [BIT) as a first approximation we obtain the expression for current

as the lowest order iterative solution which is given by

ex N (Y oxn[1hy z '
J:fx p[—¢ { fo p[Ya(2)] dz + Cp} dy (3.20)

ff“ eXp[—@D( )] dy

The expression for current is valid for large correlation time of the dichotomous noise

but formally takes into consideration of quantum effects to all orders. In order to check the
consistency of the above expression we now examine the following limiting situations. First,
we consider the dichotomous noise to be symmetric, i.e., § = 0. J then reduces to
z+1 (g
Sy + C) dy

J=" (3.21)
J. " exp=v(y)] dy

and co+1
abN [ wexp[—y(z)] dz

Dy [ exp[—v(x)] dz

If now V(z) is assumed to be of inversion symmetric, then (V' (z)) is also symmetric and

Cpp = — (3.22)

C,, would be zero and J = 0 in such situation since

+1/2
/ zrexp[—y(z)] de =0 (3.23)
~1/2
+1/2 abN
/ rdr=0 (3.24)
—172 Dy

Therefore with symmetric potential and symmetric dichotomous noise, the current is zero

even in the presence of quantum corrections. To obtain a quantum current it is necessary that

13



either the periodic potential should be asymmetric and/or noise £(t) should be asymmetric
and vice-versa.

We now proceed to analyze the current under non-equilibrium condition and the related
quantum effects. One of the prime quantities for this analysis is the potential V(x) or the

corresponding force term f(x) given by

fz) = =[V'(z) = Q(x, (62"))] = —%[V(fﬂ) Y %V”(x)@i"ﬂ (3.25)

n>2

The quantum correction terms can be determined as follows. We return to the operator
equation ([Z2) and put z(t) = T(t) + d2(t) and p(t) = p(t) + 0p(t) where Z(t) = (&(¢)) and
p(t) = (p(t)) are the quantum mechanical mean values of the operators & and p respectively.
By construction [0z, dp] = ik and (02) = (0p) = 0. We then obtain the quantum correction

equation

méi + [ -5 + Ve + Y T @6 - T = 10 - T (320

n>2

Again in the overdamped limit we discard the inertial term méz. We then perform a
quantum mechanical average with initial product separable coherent states of the oscillators
of the bath only to get rid of the internal noise term and to obtain the reduced operator

equation for the system as

Vi + V' (z 5:)3+Z V" (@) (62" — (627)) = 0 (3.27)

n>2

With the help of (B27) we then obtain the equations for (dz"(t))

d—00 1 .
—(0:%) = 7[2v<)<5:c> 1%

/1

(7)) (3.28)

T = |-V @0 - 3V @ + V@ )

and so on. Taking into account of the lowest order contribution (§42) explicitly we may

write

d(632) = ==V (z)(622)dt (3.30)



The overdamped deterministic motion gives vdZ = —V (%)dt which when used in (B30)

yields after integration

Te oy —/

(022) = A [V @) (3.31)

37 . .
where A, = [g(;;}g and . refers to a known reference point. Eq.(B31) results in

/!

@ =-V@+aV @V @) (3.32)

We now emphasize an important point. If the potential is symmetric, then the quan-
tum correction in Eq.[B32) is an odd function just as V’(x). This implies that quantum
correction to classical potential has not destroyed the inversion symmetry of V(z). Thus
the approximation in deriving the leading order quantum effect is consistent with symmetry
requirement of the problem.

To illustrate the nature of current we now consider a symmetric cosine potential with
period 27

V(7 = %(cosm 1) (3.33)

The force terms and other related quantities 1 (x), ¥2(x) and ¢(x) after scaling, take

the following forms:

f(z) = m[sin 27z — A, sin® 27 (3.34)
3 6

Yy (x) = —[Aq cos® 2ma + Ag cos 2mx + ort As] (3.35)
q

Uala) = - (3.36)

2\T) = DqI .
Y(x) = —[A cos® 2mx + Ay cos 2mx + As] (3.37)
A AVERS C1-2A,
M= M=Sp Ay= i (3.38)

In Fig.(1) we illustrate the variation of current for a fixed value of the system non-

linearity A,(= 0.04) and asymmetry parameter #(= 1.0) as a function of quantum diffusion

15



coefficient D, . One observes that with increase of D, the magnitude of current increases
to a maximum followed by a decrease. For a fixed D, with increase of the strength of the
external dichotomous noise (proportional to the product ab) the current increases.The effect
of quantization of a classical ratchet is shown in Fig.(2), where we make a comparison of
the current vs temperature profile for the classical and the quantum (A, = 0.3) cases for
a = 1.75, b = 2.75. One observes that in the low temperature region the classical current
is significantly lower in magnitude than the quantum current, and at high temperature the

effect of quantization become insignificant.

B. Short correlation time

In the regime of short correlation time 7 < 1 of dichotomous noise we follow Kula et al

[20] to expand P(z), W(x) and J in power series with 7 as a smallness parameter;

P(z) =Y 7"Pu(x) 5 W(z) =Y m"Wa(z) and J=> 7"J, (3.39)

n=0

Making use of the above expressions in (B11]) and (BI2) we obtain the following set of

equations,
~ D,P'(z) + f(2)Py(z) + Wy(z) = J, (3.40)
Wi(z) = DWW, (x) = [0 + f(2)]Wy 1 () = f(@)Whor(z) — Qi Py () (3.41)
withn=1,2,3...

Wo(z) = —Q1Fy(x)

The probability functions P,(x) obey the periodicity conditions and they are normalized

over dimensionless period (L = 1). We thus obtain the zero order contributions as

Jo = 0 (3.42)

Py(x) = Nexp [/Ox % dy] (3.43)

16



with normalization constant

N7l= /Olexp UO % dy} dx (3.44)

The higher order contributions can be obtained following Kula et al. For the present

purpose the leading order current is given by

Jy = U N~ Py(z dx/ NP )dxr

HQI 2
{D+Q1 /f Ydo + ————— Do+ Q[ /f3 dx} (3.45)

The key quantity for the above equation is the force term f(z) with leading or-
der nonlinear correction ([B32). For the symmetric smooth cosine potential of the form
V(z) = 3[cos 2mx 4 1] as given by B33), f(z) is an odd function [EqB3]. For asymmetric
dichotomous fluctuations (6 # 0) and symmetric potential the leading order current is pro-
portional to the integral f?(z); the integral over f3(z) being zero. On the other hand the
current is proportional to the integral over f3(x) for symmetric(6 = 0) dichotomous noise.
Therefore we have shown that in the short correlation time limit it is not possible to obtain
any noise induced transport with symmetric noise and symmetric potential.

For f(z) given by ([B34)) one obtains explicitly the quantum current

2
le ™ HQ[ ) |:5A 3

oL T (Do + O A +1} (3.46)

where

17



I = /0 exp :— /0 m(D;’c(Tylm dy} do (3.47)

I S I A {€")

I, = /0 exp _/0 m dy} dz (3.48)

o fly) 3
/0 m = Ay cos’ 2mx + As cos 2mx + Ng

A _ (A1)

B = 6(Dy+Qr) B = 2(Dg + Q1) (3:49)
_ (134

Ag = m (3.50)

We now numerically illustrate the behaviour of quantum current given by Eq.(B240).
The effect of quantization of the reservoir is apparent in Fig.(3) in the variation of current
with @7 for several values of quantum diffusion coefficient D, of the heat bath for fixed
A, (= 0.04), (= 1.0) and 7(= 0.1). For small D,, the current falls off monotonically after
reaching maxima. The maxima and the current drops for higher values of quantum diffusion
coefficient since thermalization prevails over the dynamics, in general. In Fig.(4) we compare
the current vs temperature profile for the classical and the quantum (A, = 0.3) cases for
fixed a(= 1.0), (2.0) and 7(= 0.1). We observe again that in the low temperature range
the current is significantly higher for the quantum case.

In order to examine the influence of the correlation time 7 of the nonthermal noise on
current we plot in Fig.(5) the variation of current as a function of D, for several values of 7
for fixed values of a(= 1.0), b(= 2.0), (= 1.0) and A, (= 0.04). All the bell-shaped curves
exhibit maxima at optimal D, values. Increase in correlation time 7 results in enhancement
of directed motion, and shift of the maxima, towards the origin. Physically this implies that
departure from equilibrium is increasingly favored for larger correlation time of the external
noise in this region.

The form for noise induced-current in the limit of short correlation time of the stochastic
dichotomous process expresses the functional dependence of the current on 7, f, D, and @y,
through Eq.(B840) as J = 7J;. It is interesting to comment on the effect of noise statistics of
the stochastic processes on the current. This aspect has been explained carefully by Doering

et al[1&] sometime back in a classical context by considering a family of stochastic processes
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known as ”Kangaroo processes” parameterized by an another probability distribution p(z).
Based on singular perturbation expansion in 7 it has been shown that the expression for
the current is modified by a prefactor which depends on the moments of the distribution
p(z) ((z") = [ 2"p(z)dz). It is apparent that consideration of such processes in the present
quantum mechanical context is expected to give rise such a prefactor since the expression
for current in the short correlation time limit in classical and quantum mechanical cases has

a common structure.

IV. CONCLUSION

Based on the traditional system-reservoir model we have formulated the quantum stochas-
tic dynamics in the overdamped limit and analyzed the problem of a ratchet device with an
external, exponentially correlated asymmetric dichotomous noise. The governing equations
of motion are classical looking in form but quantum mechanical in their content. The quan-
tization of the dynamics is manifested in two different ways. First, the harmonic oscillator
reservoir is quantum mechanical in character and its internal noise characteristics and the
fluctuation-dissipation relation are described by the canonical thermal Wigner distribution.
The special advantage of using this c-number distribution (where width D, corresponds to
the strength of fluctuation of the thermal bath) is that it remains a valid positive definite
pure state distribution even at absolute zero. This allows the theory to be extended to the
deep tunneling region which remains normally inaccessible in many theoretical treatments.
Secondly, the nonlinearity of the potential brings in additional quantum contribution since
the nonlinear terms of the potential beyond the harmonic one are entangled with quantum
corrections. Therefore the system experiences an effective force term f(z) comprising a clas-
sical —V'(x) plus a quantum correction term Q(x, (62")) as f(z) = —V'(z) + Q(x, (62™))
this consideration leads us to the form of generalized equilibrium distribution in terms of
a nonlocal potential ¢(z) as P ~ exp[i(x)] where ¥(z) = [ %qu)dx’. The implication of
this factor in ratchet effect or in Landauer blow-torch effect has been thoroughly exam-
ined [3, [14, 118, 20] by Van Kampen, Biittiker and others. A close look into the expression
for current in Eq.([B20) or Eq.([84d) reveals that the origin of fluctuation induced current
essentially rests on this factor and therefore the contribution of the nonlinearity induced

quantum effect on this current becomes quite apparent. It is important to note that the es-
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sential requirements demanded by symmetry considerations and thermodynamic consistency
condition have been fulfilled in our treatment. We now summarize the main conclusions of
this study:

(i) We note that quantization can not break the symmetry of the ratchet device but, in
general, may change the superposition of amplitudes of the periodic nonlinear function so
that the current is significantly affected. This is apparent from the structure of the force term
f(x) pointed out earlier. For example, for a pendulum potential V(z) = 3(cosz + 1), which
has been used for superionic conductors, f(z) [= —V'(z) — AV () (V'(x))* for the leading
order quantum correction where A, ~ O(h?)] is a superposition of sinz and A, sin®z, a
classical and a quantum part, respectively. It therefore follows from the previous discussions
that the quantum part of potential affects ¢)(z) and consequently the current.

(ii) Our formulation offers simple analytical solutions in two limiting cases, large and
small correlation times of the telegraphic noise. We observe that while at low temperature
quantization significantly enhances the classical current, at higher temperature the differ-
ence is insignificant. This may be interpreted in terms of an interplay between the quantum
diffusion coefficient D, and the force term f(x) appearing in the effective potential ¢(x) as
fox %qu)dm’ . As the temperature 7' — 0, D, approaches to the value %hwo, the vacuum limit
and also in the deep tunneling region the anharmonic terms in f(x) do not contribute sig-
nificantly, the integrand increases sharply. On the other hand, as the temperature increases,
D, increases resulting in a decrease of ¢)(x). Since for the classical current, the quantum
contribution to f(z) is absent, one observes a crossover of the of the classical and the quan-
tum current in an intermediate region of the temperature, where D, and f(x) compete with
each other and beyond which the quantum current is marginally lower than the classical
current. For a further increase of temperature the classical and the quantum current merge
identically, as expected.

(iii) We have examined the role of the strength of the external noise and the correlation
time in the generation of noise-induced current. These factors, as usual are instrumen-
tal in moderating the statistical stationary state of the nonequilibrium system that lacks
detailed balance. A possible experimental realization of the distinctive behaviour of a quan-
tum ratchet in contrast to its classical counterpart in a superionic conductor driven by a

dichotomous noisy electric field at low temperature has been suggested.

Our study is confined to analytical solutions in the two limits of correlation time of the
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external noise. A direct numerical simulation of quantum ratchet using c-number quantum
Langevin equation with dichotomous noise over the entire range of correlation time is neces-
sary to compliment these observations. Furthermore since the problem of quantum Brownian
dynamics in a periodic (pendulum like) potential covers a wide area comprising Josephson
super-current through a tunneling junction, Bloch-wall motion, Frochlich superconductors
etc., we expect the formulation to be useful in a wider theoretical context. Application of

the theory in related issues are also worth-pursuing and will be addressed elsewhere.
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Figure Captions

Fig.1: Variation of current (J) with quantum diffusion coefficient D, in the large corre-
lation time limit for A, = 0.04, # = 1.0 and (i) a = 1.0 and b = 2.0 (solid line), (ii) a = 1.25
and b = 2.25 (dashed line), (iii) @ = 1.5 and b = 2.5 (dot line) and (iv) a = 1.75 and b = 2.75
(dash-dot line).

Fig.2: Comparison of quantum and classical current (J) vs temperature (") profile for the
parameter set a = 1.75, b = 2.75, A, = 0.0 (classical, dotted line) and A, = 0.3 (quantum,
solid line) in the large correlation time limit.

Fig.3: Variation of current (J) with nonthermal noise strength (Q;) for different values
of quantum diffusion coeflicients D, = 0.25 (solid line), D, = 1.5 (dashed line), D, = 3.0
(dotted line) and D, = 7.0 (dash-dot line) for the parameter set A, = 0.04, § = 1.0 and
7 = 0.01 in the short correlation time limit.

Fig.4: Comparison of quantum and classical current (J) vs temperature (7') profile for
the parameter set a = 1.0,0 = 2.0, 7 = 0.1 and A, = 0.0 (classical, dotted line) and A, = 0.3
(quantum, solid line) in the short correlation time limit.

Fig.5: Variation of current (J) with quantum diffusion coefficient for different value of
correlation time 7 of nonthermal noise 7 = 0.05 (solid line), 7 = 0.07 (dashed line) and
7 = 0.1 (dotted line) for the parameter set A, = 0.04, a=1.0, b=2.0 and ¢ = 1.0 in the short

correlation time limit.
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