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Abstract

We consider a general N-degree-of-freedom nonlinear system which is chaotic
and dissipative and show that the nature of chaotic diffusion is reflected in the
correlation of fluctuation of linear stability matrix for the equation of motion
of the dynamical system whose phase space variables behave as stochastic
variables in the chaotic regime. Based on a Fokker-Planck description of the
system in the associated tangent space and an information entropy balance
equation a relationship between chaotic diffusion and the thermodynamically-
inspired quantities like entropy production and entropy flux is established.

The theoretical propositions have been verified by numerical experiments.
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I. INTRODUCTION

Several authors have enquired recently about the relationship between phase space dy-
namics of a dynamical system and thermodynamics []{J]. The question acquires a special
relevance for the dissipative system when the phase space volume contracts by virtue of
possessing the attractors and also when the system is nonlinear and comprises a few-degrees-
of-freedom. Thus even when these systems are not truly statistical in the thermodynamic
sense, it is possible that chaotic diffusion due to intrinsic deterministic chaos or stochastic-
ity plays a significant role in the dynamics. It is therefore worthwhile to enquire about the
relationship between chaotic diffusion in a dynamical system and the thermodynamically-
inspired quantities like entropy production and entropy fluz. Our purpose in this paper is to
address this specific issue.

In what follows we shall be concerned with the nonlinear dynamical systems which are
chaotic and dissipative. We do not consider any stochasticity due to thermal environment
or external nonthermal noise. The “deterministic stochasticity” (i.e, chaos) has a purely
dynamical basis and its emergence in nonlinear dynamical system is essentially due to loss
of correlation of initially nearby trajectories. This is reflected in the linear stability matrix
or Jacobian of the system [[J]. When chaos has fully set in, the time dependence of this
matrix can be described as a stochastic process, since the phase space variables behave as
stochastic variables [[[1]. It has been shown that this fluctuation is amenable to a theoretical
description in terms of the theory of multiplicative noise [1J]. Based on this consideration
a number of important results of nonequilibrium statistical mechanics, like Kubo relations,
fluctuation-decoherence relation, fluctuation-dissipation relation and exponential divergence
of quantum fluctuations have been realized in chaotic dynamics of a few-degree-of-freedom
system [[J-§. In the present paper we make use of this stochastic description of chaotic
dynamics to formulate a Fokker-Planck equation of probability density function for the
relevant dynamical variables, the “stochasticity” (i.e, chaoticity) being incorporated through

the fluctuations of the time-dependent linear stability matrix. Once the drift and chaotic



diffusion terms are appropriately identified the thermodynamic-like quantities can be derived
with the help of the suitable information entropy balance equation.

The outlay of the paper is as follows: In Sec. II we introduce a Fokker-Planck description
of the dynamical system and identify the chaotic drift and diffusion terms. This is followed
by setting up of an information entropy balance equation in Sec. III. We then look for the
entropy flux and entropy production-like terms in the steady state. The shift of stationary
state due to additional external forcing and the associated change in entropy production is
considered in Sec. IV. We illustrate the theory in detail with the help of an example in Sec.

V. The paper is concluded in Sec. VI.

II. A FOKKER-PLANCK EQUATION FOR DISSIPATIVE CHAOTIC

DYNAMICS

We are concerned here with a general N-degree-of-freedom system whose Hamiltonian is
given by
N2
H=> "~ +V({@}.t), i=1---N (1)
i—1 le

where {¢;, p;} are the co-ordinate and momentum of the i-th degree-of-freedom, respectively,

which satisfy the generic form of equations

. 2
0 (2)
We now make the Hamiltonian system dissipative by introducing —~vp; on the right hand
side of the second of Eqgs.(2). For simplicity we assume 7 to be the same for all the N degrees

of freedom. By invoking the symplectic structure of the Hamiltonian dynamics as

Qi forte=1---N |,
Zi =

pi_y fori=N-+1-.--2N |

and defining I as
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where E is an N x N unit matrix, and 0 is an N x N null matrix, the equation of motion

for the dissipative system can be written as

X, oH
j; J 8zj

We now consider two nearby trajectories, z;, 2; and z; + X;, 2, + X; at the same time ¢ in
2N dimensional phase space. The time evolution of separation of these trajectories is then

determined by
X = Jy(h)X; (4)

in the tangent space or separation co-ordinate space X;, where

0?’H
Jij = Z L’km . (5)

k

Therefore the 2N x 2N linear stability matrix J assumes the following form

J = (6)
M(t) —E
where M is an N x N matrix. Note that the time dependence of stability matrix J(t) is

?H
8zk8zj

due to the second derivative which is determined by the equation of motion (3). The
procedure for calculation of X; and the related quantities like Lyapunov exponents is to solve
the trajectory equation (3) simultaneously with Eq.(4). Thus when the dissipative system
described by (3) is chaotic, J(t) becomes (“deterministically”) stochastic phase space due to
the fact that z;-s behave as stochastic phase space variables and the equation of motion ()
in the tangent space can be interpreted as a stochastic equation [[J-LJ].

In the next step we shall be concerned with a stochastic description of J(t) or M(t). For

convenience we split up M into two parts as

M = My + M, (t) (7)
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where M is independent of variables {z;} and therefore behaves a constant part and M; is
determined by the variables {z;} fori = 1---2N. M refers to the fluctuating part. We now

rewrite the equation of motion (4) in the tangent space as

X =JX

= L({Xi},{2}) (8)

where X and L are the vectors with 2N components. Corresponding to ([]) L in () can be

split up again to yield

X = LX)+ LY(X, {z®)})

or  X;=L°{X:)+L:({X . {=}), i=1---2N . (9)

Eq.()) indicates that Eq.(B) is linear in {X;}. Egs.(#l), () and () express the fact the
first N components of L! are zero and the last N components of L' are the functions of
{X,} for i = 1--- N only. The fluctuation in L} is caused by the chaotic variables {z;}-s.
By defining Vx as differentiation with respect to components of X, i. e. ; {X;} (explicitly
X;=Ag fori=1---Nand X; = Ap; fori = N+1---2N) and since L} =0fori=1---N
and L} = Lj(Xy--- Xy) fori = N+1---2N we have Vx - L' = 2, (3% - 0) + X 11 5% -
L}(X;---Xy) = 0. This allows us to write the following relation (which will be used later

on),
Vi - L1¢({Xi}) =L VX¢({Xi}) (10)

where ¢({X;}) is any function of {X;}.

Note that Eq.(fl) by virtue of () is a linear differential equation with multiplicative
“noise” due to {z;} determined by equation of motion (JJ). This is the starting point of our
further analysis.

Eq.({) determines a stochastic process with some given initial conditions {X;(0)}. We

now consider the motion of a representative point X in 2N dimensional tangent space



(X1 ---Xon) as governed by Eq.(f]). The equation of continuity, which expresses the con-

servation of points determines the variation of density function ¢(X,t) in time as given

by
% = —Vx - L(t)p(X,t) . (11)
Expressing Ay and A as
Ay=—-Vx-L°
and A =-Vx-L' (12)

we may rewrite the equation of continuity as

WD _ [y + ar(0)6(X1) (13)

It is easy to recognize that while Ay denotes the constant part A; contains the multiplicative
fluctuations through the phase space variables of the dynamical system {z;(t)}. « is a pa-
rameter introduced from outside to keep track of the order of fluctuations in the calculations.
At the end we put o = 1.

One of the main results for the linear equations of the form ([[3) with multiplicative noise

may now be in order [[J]. The average equation of (¢) obeys [ P(X,t) = (¢)],
p= {AO +alA) + /OOO dr ({1 (£) exp(rAo) As (t — 7)) eXp(—TAO)} P(X,1) . (14)

The above result is based on second order cumulant expansion and is valid when fluctu-

ations are small but rapid and the correlation time 7. is short but finite or more precisely
(A1) AL () =0 for [t—t] > 7. (15)
We have, in general, (A;) # 0. Here ((---)) implies (((;(;)) = (G:¢;) — (G)((5)-

The Eq.([4) is exact in that limit 7. — 0. Making use of relation ([J) in ([[1]) we obtain

oP

E = {—VX . LO — Oé<VX . L1> +042 ‘/OOO d7'<<VX : Ll(t) eXp(—TVX : LO)

Vx -L'(t — 7)) exp(tVx -LO)}P . (16)
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The above equation can be transformed into the following Fokker-Planck equation (o = 1)

for probability density function P(X,t), (the details are given in the Appendix A);

w = _VX'FP+%Dij%§)(j (17)
where,
F=L"+(L")+Q (18)
and @ is a 2N-dimensional vector whose components are defined by
Q= - /0 TR drdety (7)dety(r) (19)
Here the determinants det,, dety and R} are given by
detq (1) = ‘df;): and dety(T) = ‘di():
and R = Z Li(X,t) aii zk: Li(X 7, t—7) ai(); : (20)

It is easy to recognize F' as an evolution operator. Because of the dissipative perturbation
we note that div F < 0.

The diffusion coefficient D;; in Eq.([7) is defined as

Dy = [ UL LT - ST (1)

We have followed closely van Kampen’s approach [LJ] to generalized Fokker-Planck equation
(7). Before concluding this section several critical remarks regarding this derivation need
attention:

First, the process M (t) determined by {z;} is obtained ezactly by solving equations of
motion (B) for the chaotic motion of the system. It is therefore necessary to emphasize that
we have not assumed any special property of noise, such as, M (t) is Gaussian or d-correlated.
We reiterate Van Kampen’s emphasis in this approach.

Second, the only assumption made about the noise is that its correlation time 7, is short

but finite compared to the coarse-grained timescale over which the average quantities evolve.
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Or in other words the velocity changes should be small, smooth and uncorreleted after short
times. This assumption, however, puts a restriction on the applicability of the present theory
to certain class of systems, e. g. , systems subjected to ‘hard’ collisions such as billiards
and molecular systems also in certain non-dissipative Hamiltonian systems like standard
map for which the usual assumptions about the rapid decay of correlations and fluctuations
are not valid and entropy production does not occur. The special reference may be made
in this connection to the work of Zaslavsky and collaborators [[J] to demonstrate that
in many real systems the decay of correlation exhibits power law dependence, distributions
admit of infinite moments and the fluctuations become long-lasting. Since the mathematical
difficulties of dealing with finite arbitrary correlation time of noise in a chaotic system is
quite formidable we confine ourselves in the present discussion to chaotic systems with short
but finite noise correlation time.

Third, we take care of fluctuations upto second order which implies that the deterministic
noise is not too strong.

Eq.([7) is the required Fokker-Planck equation in the tangent space {X;}. However the
important point is to note that the drift and diffusion terms are determined by the phase
space {z;} properties of the chaotic system and directly depend on the correlation function

of the fluctuations of the second derivatives of the Hamiltonian (f).

III. INFORMATION ENTROPY BALANCE: ENTROPY PRODUCTION

We shall now consider the well-known relation between probability density function

P(X,t) and information entropy S as given by
S=— / dXP(X,t)In P(X,1) . (22)

Note that in the above definition of entropy we use P(X, ), the probability distribution
function in the tangent space since one is concerned here with the expansion of the phase

space in terms of a tangent space and dialation coefficients of the dynamical system for which



the expanding and contracting manifolds can be defined. On the other hand it is worthwhile
to recall the dynamic entropy of a dynamical system (Kolmogorov entropy) defined in terms
of the properties of evolution in the tangent space. A remark on the connection between
entropy and expansion by Sinai [P{] is noteworthy in this context ; “ It already seems clear
that positiveness of the entropy and presence of mixing is related to extreme instability of
the motion of the system : trajectories emanating from the nearby points must, generally
speaking, diverge with exponential velocity. Thus entropy is characterized here by the speed
of approach of the asymptotic trajectories” which is formalized by defining the expansion
coefficient as logarithm of the relative increase under the flow of a volume element in the
expanding manifold. Our definition of information entropy (22) makes use of the tangent
space description of the systems in terms of logarithm of the probability of expansion in the
tangent space, keeping in mind that —In P is “a measure of unexpectedness of an event (the
amount of information) and the information entropy is a mean value of this unexpectedness
for the entire system” [BJ]. The definition (22) is therefore different from Kolmogorov
entropy. We emphasize that even in absence of any direct formal connection between P (X, t)
and the phase space distribution function it is possible to use the distribution function
P(X,t) defined in the tangent space to have an explicit expression for entropy production-
like quantity as a function of the properties of phase space variables {z;} of the dynamical
system (i. e. , in terms of drift and diffusion coefficients of the Fokker-Planck equation).
The above definition of an information entropy like quantity allows us to have an evolu-

tion equation for entropy. To this end we observe from Egs.([[1) and (B3) that 2323]

/dX

Note that the probability density function P(Xt) is defined in tangent space {X;}. D

0*P
YoX,0X; 0X;

P . (23)

8X

and I as expressed in Eqgs.(]]) and ([§), respectively, are determined by the correlation
functions of fluctuations of second derivative of the Hamiltonian of the system. Eq.(B3)
therefore suggests that the entropy production-like term originating from Eq.(P3) is likely to

bear the signature of the chaotic dynamics. The relation is direct and general as it is evident



from the following equation [obtained after partial integration of Eq.(PJ) with the natural
boundary condition on P(X,t) that it vanishes as | X| — oo and assuming the X-dependence

of D;; to be weak (as a first approximation)|;

ds 1 oP OP

— = [ dXP - F Dij | ==—=dX . 24

dt / Vaor b Z z]: 7] PoX,dx, (24)
The first term in (R4) has no definite sign while the second term is positive definite

because of positive definiteness of D;;. Therefore the second one can be identified 9] as

the entropy production

1 0P, OP;
S =2 3Ps [ b ox, X )
i s i

in the steady state. The subscript s of Py refers to steady state. It is evident from Eq.(B4)

that

S rue = /dX PAX)Vx-F =Vx F

Sprod = _Sflum . (26>

Note that since the chaotic system is dissipative Vx.F is negative [See Eq.([§)].

It is thus evident that the relations (P3), (B) illustrate the dynamical origin of entropy
production like quantity in a chaotic dissipative system. The dynamical signature is mani-
fested through the drift term F' and the chaotic diffusion terms in D;;. It must be emphasized
that the notion of diffusion has nothing to do with any external reservoir. Rather it pertains

to intrinsic diffusion in phase space of the chaotic system itself.

IV. THE CHAOTIC SYSTEM DRIVEN BY AN EXTERNAL FORCE

We shall now examine the entropy production when the dissipative chaotic system is
thrown away from the steady state due to an additional weak applied force. To this end we

consider the drift F due to external force so that the total drift F' has now two contributions

F(X) = Fy(X) + hFy(X) . (27)
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When h =0, P = P,. The deviation of P from P, in presence of nonzero small h can be

explicitly taken into account once we make use of the identity for the diffusion term [PJ]

2
0*P 9] lPalnPs]jL 9] lps 9] P] (25)

0X;0X;,  0X,| 0X; | ox,| "0X;P,
When P = P; the second term in (P§) vanishes. In presence of additional forcing the

Eq.([A) becomes,

oP 0 o P
where 1) is defined as
Oln P,
y = F - Y p, 2k (30)
’ Z]: 70X

Here we have assumed for simplicity that D;; is not affected by the additional forcing. The
leading order influence is taken into account by the additional drift term in Eq.(R9).
Under steady state condition (P = Ps) and h = 0, the second and the third terms in

(B9) vanish yielding

It is immediately apparent that ¢ P, refers to a current J where J = ¥ P;. The steady state

condition therefore reduces to an equilibrium condition (J = 0) if

b=0 . (32)

(In Sec. V we shall consider an explicit example to show that ) = 0). This suggests a formal

relation between Fp; and D;; as

Oln P,
Foi = Z DijT)(j (33)
j

where P, may now be referred to as the equilibrium density function in separation co-
ordinate space. [ contains dissipation constant v and the diffusion matrix D;; is a function

of correlation function of fluctuations of the second derivative of the Hamiltonian.
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To consider the information entropy balance equation in presence of external forcing we

first differentiate Eq.(B2) with respect to time and use Eq.(R9) to obtain

as

d
=- —E/dXPmPS

—/alen£

It is apparent that as P deviates from P, g differs from unity and the entire second

(34)

d o P
~Vx - ¢P —hVx - F1P+ZZDU6X <Psﬁﬁ>
g +s

integral within the parenthesis [P9] is of the second order. Note that In P in the first
integral in Eq.(B4) is a constant of motion and the integral denotes its average. The first
term vanishes because it is of higher order as it involves P? and others. (Moreover since in
the discussion that follows we consider the steady state, this term does not contribute to
the subsequent calculations). To compute the contribution AS to entropy balance due to
the external forcing only we perform integration of the second, third and fourth terms by

parts. We thus obtain,

dAS , dIn P,
=2 = [ dXPYx - R+ 0P [ X (ZFM Te >6P
P9 P
+2XDy [ax &X 7Gx 5 (35)

where we have put hdP = P — P;. In the new steady state (in presence of h # 0), the

entropy production and the flux like terms balance each other as follows:

AS;zn"od = _ASflux (36>
with
o P\[(od P
ASpoa =Dy [ dXP S P
Sprod = ZJ) ”/d <8X PS> <aX HPS> (37)
and
Oln PS
ASpua = [ dX0PV.F +0? [ dX <Z Fgg >5P . (38)

In the following section we shall work out a specific example to provide explicit expres-

sions for the entropy production and some related quantities due to external forcing.
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V. APPLICATIONS

A. Entropy production in the steady state

To illustrate the theory developed above, we now choose a driven double-well oscillator
system with Hamiltonian
p_%
2

H =21+ aqt — b} + eqy cos Ot (39)

where p; and ¢; are the momentum and position variables of the system. a and b are
the constants characterizing the potential. € includes the effect of coupling constant and the
driving strength of the external field with frequency €2. This model (BY) has been extensively
used in recent years for the study of chaotic dynamics [[3HI24].

The dissipative equations of motion for the tangent space variables X; and X, corre-

sponding to ¢; and p; (Eq.8) read as follows:

X X Ag =X
e e P S (10)
X X Apl =Xy

where J as expressed in our earlier notation

21 =(q1 22 =D

is given by

9%H 0%’H
0 E 021021 021022

I
I

—E _7E 9*H 9*H

822821 8z2 8z2

Therefore J reduces to

0 1
Ct)+2b —v
where ((t) = —12a2?. Thus we have
My=2b M, =C(t) .

13



Eq.(f0Q) is thus rewritten as

X
di L (41)
with
X 0
10— ? and L' — ,
26X, — vXy C(t)Xl

where L° and L! are the constant and the fluctuating parts, respectively. The fluctuations in
L', i.e., in ((t) is due to stochasticity of the following chaotic dissipative dynamical equations

of motion;
21 = 29
by = —azd + 2bz; — ecos QU — vz, . (42)
Now for the constant part and the fluctuating part we write
LM =X, L™ =2X, —~vX,
LN=0 L%=((t)X,

We may then apply the result of Eq.([AF).

The mapping X — X' is found by solving the ‘unperturbed’ equations
Xl == X2
X2 =Gy — Xy

Comparison with Eq.([A7) shows that Ga(= 2bX;) is free from Xo.

As a short time approximation we consider the variation of X; and X5 during 7 ;

Xl_T = —TXQ —I—Xl = Gl(Xl,XQ)

X2_T = —TGQ —|— 6VTX2 = GQ(Xl, X2) . (43)

So the g-matrix of Eq.(ATH) becomes

14



1 Te 7T

K
I

20re™ T e

The vector R from Eq.([AT7) can then be identified as

C(t —7)(X1 — 7X2)g12
C(t =) (X1 — 7X2) g2

R:

C(t—T1)XqTe ™

= . [ neglecting the terms of 0(7%) ] .

Ct—7)( X1 —7X0)e™ "

Similarly the vector R’ is given by

From Eqs.(43) and (44) we have
dety(T)dety(T) ~ 1 .

Then the vector () can be written as

0
Xy oo (S¢St — 7)) e "dr

Q=

Now the diffusion matrix D can be constructed as

B 0 0
D21 D22
where
Do = X3(0) [ (¢t = T)yredr
and

Dz = XH0) [ (GG = m))e 7 dr = Xa(0)Xa(0) [ (C(E ~ P))redr

15
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It is important to mention that the assumption of weak X-dependence of the diffusion
coefficient (by freezing its time dependence) is permitted as a first approximation within the
perview of the present second order theory for which the strength of noise is not too large.
We also emphasize that for actual theoretical estimate of the entropy production in terms of
the formulae (26) or (58) explicit evaluation of the diffusion coefficients is not required (see
the next section). A straightforward calculation of drift is sufficient for the purpose. This
point will be clarified in greater detail in the next Sec.VB.

Then the Fokker-Planck equation (17) for the dissipative driven double-well oscillator

assumes the following form:

oP oP oP ) O*P P
= Xy — WX — ——(XoP)+ Dy ———— + Doy——
ot o, Y Ngx T gy, (el T Pug e + *20X3 (50)
where
w2 =2b+4c+ ey
with

2= [TUCOC(t = r)redr
= () . (51

The similarity of the equation (50) to generalized Kramers’ equation can not be overlooked.
This suggests a clear interplay of chaotic diffusive motion and dissipation in the dynamics.

We now let
U= CLSXl + X2 (52)

where a, is a constant to be determined.

Then under steady state condition Eq.(50) reduces to the following form :

%) 0P,

where
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Dy = Dy + asDy;
and
AU = —a, X5 — 02 X7 +9X, .

Here )\, is again a constant to be determined. Putting (52) in A\,U as given above and

comparing the coefficients of X; and X5 we obtain

2

Asas = —w*  and Ay = —as+ 7y .

The physically allowed solutions for a, and A\, are as follows ;

Y~ VAT AR T VT AR

as = 5 and A\g = 5 (54)
The stationary solution of (53) Py is given by
AsU?
P, = Ne %57 (55)

Here N is the normalization constant. By virtue of (55) v corresponding to Eq.(30) is

therefore

OlnP,

=\U-D
¥ =AU -D

0. (56)

Since ¥ P, defines a current, P defines a zero current situation or an equilibrium condition.
The equilibrium solution P, from (55) can now be used to calculate the steady state

entropy production as given by Eq.(25). We thus have

2
Sprod = Ds/_ % <8Ps> du . (57)

ou

Explicit evaluation shows
Sprod = )\s s (58)

where A is given by Eq.(54).
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The above result demonstrates a rather straightforward connection between entropy
production-like quantity of a chaotic system and the dynamics through dissipation constant
v, parameters of the Hamiltonian and correlation of fluctuations of the second derivatives
of the Hamiltonian in the steady state. It is important to note that since one is concerned
here with a few degree-of-freedom system with no explicit reservoir temperature does not
appear in the expression for entropy production like term (58). The entropy production in

a truly thermodynamic system and in the present case are therefore distinct.

B. Numerical Verifications

To verify the above theoretical analysis in terms of numerical experiments we now con-
centrate on the following two points. First it is necessary to establish numerically that the
dynamical system reaches a steady state, i . e ., the probability density function P({X;},t)
attains a steady state distribution Ps({X;}) in the long time limit. Second, the entropy pro-
duction in the steady state calculated by the formula (58) needs to be verified numerically.
To address the first issue we now proceed as follows ;

The dissipative chaotic dynamics corresponding to the model Hamiltonian (39) is gov-
erned by Eqgs.(40) and (42). We choose the following values of the parameters P4 a = 0.5,
b =10, w = 6.07 and v = 0.001. The coupling-cum-field strength ¢ is varied from set to
set. We fix the initial condition z;(0) = —3.5, 22(0) = 0 which ensures strong global chaos
B4]. To determine the steady state distribution function, say, Ps(X;), where X; = Aq (Eq.
40) from the dynamical point of view we first define dy as the separation of the two initially
nearby trajectories and d(t) as the corresponding separation at time t. To express d(t) we
write d(t) = [2N(Xi)2 + X2, (X0)2)2. d(t) is determined by solving numerically Eqs.(40)
and (42), simultaneously for the initial conditions of z; and z, corresponding to Eq.(42). To
follow the evolution of X; numerically in time, i . e . , in going from j-th to (j+1)-th step
of iteration, say, X; has to be initialized as X7° = i—jdo. (The time evolution of the other

components of X can be followed similarly). This initialization implies that at each step,
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iteration starts with the same magnitude of dy but the direction of dy for step j+1 is that

of d(t) for j-th step (considered in terms of the ratio ﬁ—j) For a more pictorial illustration
we refer to Fig. 1 of Ref. [BJ]. j-th term of iteration means ¢ = jT' (j = 1,2,---00), where
T is the characteristic time which corresponds to the shortest ensemble averaged period of
nonlinear dynamical system.

Having obtained the time series in X; (it may be noted that the series in X;-s are also
required for calculation of the largest Lyapunov exponent as defined by

oy l 5, %
A= ) li)mOO ~a ; In &
dog — 0
for the chaotic system) the stationary probability density function P(X;) is computed as
follows : The X; axis ranging from -2 to +2 is divided into small intervals AX; of size
0.025. The time series in X; is computed over the time intervals of 1000-10000 times of
the time period T'. For each time interval AX; a counter is maintained and is initially set
to zero before the simulation is started. The respective counter is incremented whenever
X, falls within the given interval. Finally the steady state probability distribution function
P,(X;) is obtained by normalizing the counts. The result is shown in Fig.1 for e = 10.
Our numerical analysis shows that the distribution function attains stationarity at around
t = 10007, beyond which no perceptible change in the distribution is obtained.

We now turn to the second issue. In what follows we shall be concerned with the
steady state entropy production (58) and its numerical verification. This quantity can be
calculated in two different ways. First, it may be noted that the determination of Sy,.q
(Eq.(57)) rests on two quantities defined in the tangent space; the steady state probability
distribution function Ps(U) and the diffusion coefficient D, in U-space. Once the procedure
for calculation of the distribution function as illustrated above is known from the time
series in X; or X, the evaluation of P,(U) is quite straightforward since U is expressed
as U = a,X; + X5 according to (52). Here a, is given by (54) with w? = 2b+ ¢ + ¢,

and the average ¢ and the integral over the correlation function, ¢y are as defined in (51).
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To calculate the correlation function ((¢(¢)((t — 7))) and the average (((t)) it is necessary
to determine long time series in ((¢) (¢(t) = —12a2?) by numerically solving the classical
equation of motion (42) in phase space followed by averaging over the time series. For further
details of numerical analysis of correlation functions we refer to the earlier work [[3-[7]. The
diffusion coefficient D, can be numerically determined from the time series in U. Having
known P,(U) and Dy one can make use of the formula (57) to obtain the entropy production
in the steady state. S,,oq is thus numerically calculated. The second procedure of calculation
of Sp,0q is the direct theoretical evaluation of Ay from the expression (54). Since the value
of \s rests again on w? and 7 and the dependence of w? on the averages and the correlation
functions are already known from the numerical analysis of phase space, A can be calculated
in the usual way. In Fig.2 we compare the values of steady state entropy production thus
obtained by the two different ways for several values of coupling-cum-field strength e¢. Here
it should be noted that the curve connecting the squares (theoretically calculated entropy
production in the steady state) corresponds to the negetive of entropy flux (Sy,,) since for
the given example S, in U space is —A; (— [ A;Ps(U)dU, from Eq. (26)) for normalised
probability distribution function Pg(U). Thus Fig.2 is a numerical proof of Sy0a = —S fius-
The agreement is found to be quite satisfactory. We therefore conclude that at least for
the model studied here and for the similar class of models the correspondence between the

formulae of steady state entropy production and the numerical computation is fairly general.

C. Entropy production in presence of weak forcing

We now introduce an additional weak forcing in the dynamics. This is achieved by
subjecting the dissipative chaotic system to a weak magnetic field (é) through a velocity
(¥)) dependent force term SU X B where e and ¢ are the electric charge and the velocity of
light. For simplicity we apply the constant field B, which is perpendicular to ¢;-direction

[see Eq.39]. In presence of this force field the motion of the particle will not be restricted to

B, and ¢, only. We shall have to consider the other direction ¢ which is perpendicular to
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both ¢; and B,.
To make the notation consistent with Eq.(8) we would now like to correspond X7, X5, X3
and X4 to Aqi, Age, Ap; and Ap,, respectively.

The relevant equations of motion are therefore as follows;

Xl = X3 )

XZ = X4 )

. 6X4
l

x;::—hyx4—h55332.
G
Here e/c; is the ratio of electric charge to the velocity of light used to put the equation in
appropriate dimension.
Then the non-equilibrium situation (due to additional forcing, h # 0) corresponding to

Eq.(59) is governed by

oP 0 0 , 0
, 0 0 o P
+hBZa—X4(X4P) + Ds% <P3@E> (60)
where
B, =<B.
Cl

Dy = Dyy + Dayas

or more explicitly,

oP 0P ,_ P ) ) OP
o = Vo, T Ny, T ax, el gy, (aP) - hXage
) 9 8P 5P

Proceeding as before we make use of the transformation of variables using
U/ = a/Xl + b/XQ + C/Xg + X4 (62)
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so that Eq.(61) becomes

oP 0 0’P
Z "U'P) - D—"—_
o ~ o N UP) + Pops (63)
where
D = D330/2 + Dgla/c/ . (64)

D33 and D3y in four dimension correspond to Doy and Ds; in two dimension, respectively

and
NU' = —d' Xy — WXy + X3¢ + Xy — hB.Xyd + hB.X3 — hb X, . (65)
Using (62) in (65) and comparing the coefficients of X;-s we obtain

V=0 d=dy+hB, - N

d = (hy—=X\)/hB, (66)
where )\ is a solution of the cubic algebraic equation
NP4 N(hy? + h2B? — w?) = N2y(1+ h) + w?yh =0 . (67)

We now seek for a perturbative solution of the algebraic equation (67) which is given by

(h as a small parameter) ;

h (Noy — w?y = Xy? = NohB"?)

N =X 68
o 3N — ANyy + b2 4+ h2B72 — w2 (68)
where )| is the solution of (67) for h = 0;
T 42
YA 0 e (69)

2

This is identical to \s; (Eq.54). Therefore by virtue of Eqs.(66-69) all the constants in (62),
i.e., a, b, are now known. The stationary solution of (63) is now given by,

A/U’Q

P.=Ne 20 | (70)
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where N’ is the normalization constant.

We are now in a position to calculate the steady state entropy flux ASy,, due to external

forcing (h # 0) from Eq.(38)

AS i = B2 / dXSPV.F, + h? / dX <Z FM%> P . (71)

where the components of F; can be identified as

F11:0 F13:B;X4
F12 = X4 F14 = —B;Xg - ’}/X4 (72)

and Vx.F}=—v,

and hdP = P! — P, denotes the deviation from the initial equilibrium state due to external
forcing. For normalized probability functions P! and P; the first integral in (71) vanishes.

Since P; is given by (55) with U as defined in (52), the expression for (71) reduces to

ASprod = _ASflux

As
— hBLZ / Xy (a5 Xy + X3) dX P . (73)
We now use the following transformations of variables

uW=dX;+X3+ X, (since V' =0)

U/ = X3

w' = X4
and dX,dX3dX, = d'du'dv'dw’ . (74)

to calculate the integrals,
D
X3X,dX P =
/ ST T o]

and [ XiXadX P = (75)

which yield
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ASprod = _ASflux

As D[ 1 ag
Ny el N ol
Dy 2N l|c’\ - a 1 (76)

For numerical verification of the above theoretical result (76) one can calculate entropy
production (AS,.,q¢) numerically in the steady state in presence of weak forcing from Eq.
(37) as in the previous subsection. The Eq. (37) for the present example reduces to the

following form in the steady state,

ASyroq = D / / / P 871 Z5V20X,dX5d X,
3 s

) o P
+D31///P a—X31 s (a—Xlln—S)XmngdX4 . (77)

To calculate numerically AS,,,q  Ds3, D3 and Ps can be determined by directly using
the procedure mentioned in the subsection VB and by simultaneously solving Eqs. (41) and
(42). Similarly one can calculate P! from Eqgs. (42) and (59). Finally making use of all
these quantities in Eq. (77) AS,..q can be obtained. Thus the numerically evaluated AS,,q
should correspond to the results of Eq. (76) since our numerical verification in Fig.2 shows
good agreement between numerical and theoretical results, D33, D31 being very close to Dao
and Dy, respectively, since h is very small.

In the limit A and 7 small the above expression (76) can be simplified further. To this

end we first note that

las] ~w  As~w N~y ~w
/
h
¢=2 and o =B (78)
Y

w z

This reduces D further as follows;

D = D336/2 + Dg,la'c'

a’?
~ E(D?,s - Dslw) . (79)

Thus we have

D
- 80
D, w (80)



Making use of (78-80), expression (76) can be approximated as

2
1)
= ﬁ B . (81)
an

This expression is due to average of the work per unit time of the external force B, acting
on the chaotic system. Note that the quadratic dependence on the magnetic field B, in Eq.
(81) is characteristic of an expression for entropy production in the steady state. Since the
system is not thermostated this is independent of temperature. Although the leading order

expression (81) is apparently free from diffusion coefficients, a close look into the more exact

expression (76) reveals that their influence is quite significant in the higher order.

VI. CONCLUSIONS

Ever since the development of the theory of chaos, the dynamical variables in the strong
chaotic regime have been interpreted as stochastic variables. One of the earliest well-known
examples in this connection was set by demonstrating [[I]] the linear divergence of mean-
square momentum in time in standard map, mimicking the Brownian motion. In the present
paper we have tried to relate this chaotic diffusion to thermodynamic-like quantities by
establishing a generalized Fokker-Planck equation pertaining to the tangent space. The
explicit dependence of drift and diffusion terms on the dynamical characteristics of the
phase space of the system is demonstrated.

The main conclusions of our study are;

(i) We analyze the nature of chaotic diffusion in terms of the properties of the phase space of
chaotic systems. The drift and diffusion terms are dependent on the correlation of fluctua-
tions of the linear stability matrix of the equation of motion. Since the later is the key point
for understanding the stability of motion in a dynamical system, we emphasize that the
thermodynamic-like quantities as discussed here have a deeper root in the intrinsic nature

of motion of a few-degree-of-freedom system.
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(ii) We identify the information entropy flux and production-like terms in the steady state
which explicitly reveal their connection to dynamics through drift and diffusion term, in
presence and absence of the external force field.

(iii) The connection between the thermodynamically-inspired quantities and chaos are fairly
general for the N-degree-of-freedom systems.

The theory developed in this paper is based on the derivation of the Fokker-Planck
equation for chaotic systems pertaining to the processes with correlation time which is short
but finite (i. e. , for the systems with hard chaos). The suitable generalization of the
approach to more general cases, where one encounters long correlation time is worthwhile

for further investigation in this direction.
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APPENDIX A: THE DERIVATION OF THE FOKKER-PLANCK EQUATION

We first note that the operator exp(—7Vy - L) provides the solution of the equation

[Eq.([3), o = 0]
af (X, 1)

TR ~Vx - Lf(X,1) (A1)

f signifies the “unperturbed” part of P which can be found explicitly in terms of character-

istic curves. The equation
X =L%X) (A2)

determines for a fixed ¢ a mapping from X (7 = 0) to X(7), i. e., X — X7 with inverse

(X7)™" = X . The solution of (AT) is

0 = 0|5

=exp [-tVx - Fo] f(X,0). (A3)

’dgl)&)t)’ being a Jacobian determinant. The effect of exp(—tVx - L%) on f(X) is as
0 N
exp(—1Vx - L) f(X,0) = (x~,0)| (A)
This simplification in Eq.([[6) yields
or 0 1 2/00 dxX—r
8t_{ VX L Oé(VX L>—|—Oé 0 dr X
1 1 —T dX
(VLX) LT =) | P (A5)

Now to express the Jacobian, X7 and Vx-- in terms of Vx and X we solve Eq.([A2)
for short time (this is consistent with the assumption that the fluctuations are rapid [[J]).

Using Egs.(@H) we may rewrite “unperturbed” Eq.(AQ) as

Xy XNi1
d
- — A
o (A6)
XN Xon
XN+1 XN+1 GN+1(X>
d
d = : - _ : : AT
an 7 : Y : + : (A7)
Xon Xon Gan(X)
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Here Gny1(X) -+ - Gon(X) are the functions of {X;} with ¢ = 1--- N only. This allows us
to rewrite the solution of ((Af) and (A7) as,

X7 XnNs1 X G1(X)
=—7 + = (A8)
XN Xon XN Gn(X)
and
XN Xnt1 Gn1(X) G (X)
=7 - T = (A9)
Xon Xon Gan(X) GQN(X)

Here the terms of O(7?) are neglected. Since the vector X 7 is expressible as a function of

X we write
X7 =G(X) , (A10)

and the following simplification holds good;

_ 0 )
:ZZL}C(G(X)J—T)QMW g, k=1---2N (All)
ik J

where

(A12)
In view of Egs.(A8) and (A9) we note:

if j==k then gjb=1, k=1---N

¢, k=N+1---2N

if j#k then gj, oc —1e™ "
or(
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Thus g, is a function of 7 only.

Let

= ; Li(G(X),t = T)gji (A13)
From Egs. (), (§) and (I we write
LI(X " t—7)=L;(GX),t—7)=0 fori=1---N (A14)
So the conditions (A13), (A14) and (A) imply that
Ry(X,t —7)=Ry(X, - Xy,t—7) forj=1---N

Ri(X,t—7)=R;(X;---Xon,t—7) forj=N+1---2N (A15)

We next carry out the following simplifications of a-term in Eq.([AF). We make use of the

relation ([[Q) to obtain

0 B ) 0 0
LY(X, 1) VZR]&X P(X,t)_zi:Li( , )8Xi;Rja—XjP(X,t)
2
=N LYX, )R, ———P(X,t
Z-zj: f(X )Ranian (X, %)
ZRJWP (X, 1) (A16)
where
=> Li(X t)iR‘ (A17)
- 7 ) 8XZ J
The conditions (AT4) and (AT]) imply that
Ri=0 forj=1---N
RO=R(X; - X, t—7) A0, forj=N+1---2N (A18)
By ([A1]) one has
R .VyP(X,t) = Vx.R'P(X,1) (A19)

Making use of Egs.([), (ATT), (A1) and (ATY) in Eq.(AF) we obtain the Fokker-Planck
equation ([[7).
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Figure Captions

Fig.1. A plot of numerically calculated stationary distribution function Ps(X7) as a function
of X for the set of parameter values described in Sec.V.

Fig.2. The steady entropy production calculated numerically (circle) and theoretically using
Eq.(58) (square) for different values of driven field strength e for the model described in
Sec.V.
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