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Abstract

We examine the weak noise limit of an overdamped dissipative system within
a semiclassical description and show how quantization influences the growth
and decay of fluctuations of the thermally equilibrated systems. We trace
its origin in a semiclassical counterpart of the generalized potential for the
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I. INTRODUCTION

One of the important issues in nonequilibrium phenomena in the macroscopic nonlinear
systems is to understand the interplay of nonlinearity of the system and the fluctuations
of its environment. The problem is fairly general in the context of chemical reactions [,
breakdown of electronic devices [B], phase transitions [J] etc. The essential description of
the physical situation rests on the Fokker-Planck equations for the probability distribution
functions of the relevant variables of the dynamics. In the weak noise limit the fluctuations
have been described [B-f] by appropriate auxiliary Hamiltonian or path integral methods.
The theoretical results have been corroborated by remarkable experiments on fluctuations
using analogue electronic circuits [J] , which allow the phase space trajectories of fluctuations
to be observed directly in a precise manner. These studies have enriched our understanding
in several theoretical issues, e. g. , the symmetry between the growth and the decay of
classical fluctuations in equilibrium and its breakdown under nonequilibrium conditions [J]
, the existence of a nonequilibrium potential of a dissipative system [Aff] etc.

It is the purpose of this paper to extend the theory to the semiclassical context. The
quantization of the system itself adds a new dimension to the interplay of nonlinearity and
stochasticity in a dissipative system. To make a fair comparison with classical theory we
adopt the Wigner’s phase space distribution function of c-number variables. The weak noise
limit can then be appropriately employed to develop an auxiliary Hamiltonian formulation
at the semiclassical level in terms of these phase space variables. This allows us to realize
the existence of an optimal force of purely quantum origin derivable from the fluctuating
field and relate it to the momentum of the auxiliary Hamiltonian. The quantum correction
also makes its presence felt in the growth and decay of fluctuations of thermally equilibrated
semiclassical systems keeping the symmetry preserved.

The outline of the paper is as follows: In Sec. II we introduce the general aspects of

dynamics of dissipative quantum system in terms of the Wigner phase space function. In

Sec. III we consider the weak noise and semiclassical limit under overdamped condition and



take resort to the well-known auxiliary Hamiltonian description. The quantum part of the
optimal force is then explicitly derived. The symmetry between the growth and decay of
fluctuations in a thermalized quantum system is discussed in Sec. IV. The existence of a
semiclassical contribution to the potential in a dissipative system is then shown in Sec. V.

The paper is concluded in Sec. VI.

II. QUANTUM DYNAMICS OF A DISSIPATIVE SYSTEM

We consider a dynamical system characterized by a potential V' (x) coupled to an envi-
ronment. Evolution of such an open quantum system has been studied over the last several
decades under a variety of reasonable assumptions [[j-fJ]. Specifically interesting is the semi-
classical limit of an Ohmic environment. The dissipative time evolution of the Wigner

distribution function W (z,p,t) for the system with unit mass (m = 1) under the potential

V(z) can be described by [[OHLZ]
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where v and D are the dissipation constant and the diffusion coefficient, respectively. = and p
are c-number co-ordinate and momentum variables. The drift term is a direct consequence [§
of the existence of y-dependent term in the imaginary part of the exponent in the expression
for the propagator for the density operator in the Feynman-Veron theory and has been shown
to be responsible for appearance of a damping force in the classical equation of motion for

the Brownian particle to ensure quantum-classical correspondence. v and D are related by

hw

the fluctuation-dissipation relation, D = 3/iw coth ST

(in the semiclassical limit D = kT
). w is the renormalised linear frequency of the nonlinear system. The quantum correction to
classical Liouville motion is contained in the Ai-containing terms in the sum. € is a parameter
(whose value is 1) which is kept in the equation for bookkeeping the Wigner correction term
in our further analysis. We put ¢ = 1 at the end of calculation.

Eq.(1) had been used earlier in several occasions. For example, Zurek and Paz [[J] and

others [[J] have studied some interesting aspects of quantum-classical correspondence in
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relation to decoherence and chaos. Based on this equation and its variant chaotic dissipative
systems has been studied. [[T[I3{5. The equation also yields the simplest leading order
quantum correction term to classical Kramers’ rate [[[f]. The primary reason for choosing
Eq.(3) as our starting point is that it reaches the correct classical limit when 7 — 0 so
that D becomes a thermal diffusion coefficient (A7) in the high temperature limit and the
Wigner function reduces to the corresponding classical phase space distribution function and
we recover the Kramers’ equation which describes classical Brownian motion of a particle in

phase space.

III. WEAK NOISE AND SEMICLASSICAL LIMIT OF QUANTUM DISSIPATIVE

DYNAMICS:

The weak noise limit of a dissipative system within a semiclassical description can be
conveniently described by a “WKB-like” ansatz (we refer to “WKB-like” since we are con-
sidering more than one dimension. Traditionally WKB refer to one dimension only) of the

Eq.(1) for the Wigner function of the form

S
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W (a,p,) = Z(a, ) exp( =) exp(—5-

where Dy = £, The weak noise limit is defined [f] as D; — 0 and semiclassical limit

refers to (h — 0). Z(z,t) is a prefactor and s(z, p,t) is a classical action which is a function

of c-number variables x and p , satisfying the following Hamilton-Jacobi equation,
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The derivation of Eq.(3) is based on the following consideration. Since in the weak noise

limit D; is the relevant small parameter one obtains with ansatz (2) in leading order a term

1 @)2n+1

78 which is not balanced by any other term of the same order
1 Op

proportional to A" (

D, =D This is because the highest derivative in Eq.(1) does not have a factor scaling



with the corresponding power of D;. The successive terms next to the leading order are also
h-containing terms. All of these terms vanishes in the semiclassical limit (A — 0). Therefore
the leading order term that remains gives rise to Eq.(3). It is thus obvious that an ansatz
(2) with A finite is not feasible. The semiclassical limit 7 — 0 is a necessary requirement for
the validity of ansatz (2). The above equation can be solved by integrating the Hamiltonian

equations of motion,
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Here we have put % = P and g—; = X. The introduction of additional degree-of-freedom
by incorporating the auxiliary momentum (P) and co-ordinate (X) makes the system an
effectively two-degree-of-freedom system. The origin of these two variables is the thermal
fluctuations of the environment [J]. The auxiliary Hamiltonian H.f¢ is not to be confused
with the microscopic Hamiltonian comprising the system, the bath and their coupling. Thus
the phase space trajectories concern fluctuations of the c-number variables.

Under overdamped condition (& < v#; X < 7X) Egs. (4) can be easily reduced to the

following form ;

2w2X

T=K(x)+
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X (6)
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It is easy to recognize the quantity 222 as a momentum and redefine it as p,. Therefore

Eqs(6) may be rewritten as

= K(x)+p,

So the overdamped motion is described by the following effective Hamiltonian,
Hoq = = + K(z)p: - (9)

The above auxiliary Hamiltonian description (8, 9) is isomorphic in form to that of
Luchinsky and McClintock [B], who had considered an overdamped classical Brownian mo-

tion in a force field K(z), driven by a weak white noise ((t) whose intensity D; < 1 as

&= K(x) + (), () =0, (C()C(0)) = Did(t) . (10)

Equivalently the corresponding Fokker-Planck equation for the probability density P(z,t)
is
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The large fluctuations of scale > /D, can therefore be treated in the weak noise limit
D, — 0 B.BH by “WKB like” approximation of the Fokker-Planck equation (11) in the

form

—¢($,t)]
D1 )

P(z,t) = y(x,t) exp| (12)

Here y(x, t) is the prefactor and ¢(z,t) is a “classical” action describing a Hamiltonian-

Jacobi equation which can be solved by solving Hamilton’ s equation (8) with p, = —i as

the momentum for auxiliary system.



The important distinguishing feature of the above description in which the system is
treated semiclassically is the structure of K () which is given by equation(7) and comprises

of two terms ;

K(z) = Ky + Kgemi() (13)
where
V(@)
Ky = . (14)

is derivable from purely classical potential V (x) and Kepni(z) does not explicitly involve
h,

€ l.2n(_1)3n+1 a2n+1v
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(15)

originates from the nonlinearity of the potential V' (x) and quantum nature of the system.
The quantum contribution to K (z) is therefore likely to influence both the fluctuational and
the relaxational paths of the dynamics and is also responsible for the existence of a potential.

Our objective is now to explore these aspects in the following two sections.

IV. LARGE FLUCTUATIONS IN EQUILIBRATED SEMICLASSICAL SYSTEMS

In the thermally equilibrated systems a typical large fluctuation of the variable x implies
a temporary departure from its stable state, x5 to some remote state x;. This is followed
by a return to x4 as a result of relaxation in the absence of fluctuations p,.. A nonzero
value of p, which results from fluctuations due to surrounding drives the system away from
s along a set of trajectories which form the unstable invariant manifold and define the
so called fluctuational paths. On the other hand the system relaxes along the relaxational
return path to zy under the condition p, = 0, which form stable invariant manifold. The
latter condition implies & = K (z). In each case the trajectory represents the optimal paths
along which the system is expected to move with overwhelming probability. Luchinsky and

McClintock [B] have studied these paths in analog electronic circuits and demonstrated the
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growth and the decay of classical fluctuations in equilibrium. We extend this analysis to

semiclassical domain using the same model potential,
Viz) = ix‘l _ %:ﬁ | (16)
The quantum contribution to the growth and the decay of fluctuations can be under-
stood by recognizing the Kepi(x) term in the dynamics (8). In Fig.1 we compare both
the deterministic fluctuational and relaxational (optimal) paths for quantum and classical
thermally equilibrated systems. It is important to note that the maximum possible ampli-
tude of large fluctuations is almost double for the quantum system compared to that for the
corresponding the classical system. This is due to the addition of the nonlinear force term
of quantum origin, Kem;(z) in the c-number equation (8), which is shown to be derivable
from the fluctuating field, and is related to the momentum of the auxiliary Hamiltonian.
Before leaving this section we make a brief remark on the thermally nonequilibrated
systems. Since the detailed balance is not operative here, the optimal path to a given state
not just the time-reversed dynamical path along which the system moves from this state
to the stable state in absence of fluctuations p,. Thus for the driven system, for example,
the pattern of optimal path is generically different from that for the thermally equilibrated
systems. It may display singularities whose topological manifestations as caustics, switching
line, cusps etc have been thoroughly studied for classical systems. We believe that Kep,(x,t)
where t signifies the driving by a periodic force in V' (z,t) is likely to play an important role

in their quantum counterparts.

V. EXISTENCE OF A POTENTIAL FOR DISSIPATIVE SEMICLASSICAL

SYSTEM

In a significant analysis Graham and coworkers [[,fi] had examined the condition for
existence of potential for classical dissipative systems. We now extend this analysis to the

present semiclassical context.



The general criterion for a dissipative dynamical system described by autonomous equa-

tions of the form
i = K"(z) (17)

to have a potential ¢(x) with respect to Q"* (positive, semidefinite symmetric matrix,
which are considered to be the matrix of transport coefficients) if there exists a single-valued
continuously differentiable and globally defined function ¢(x), bounded from below which is

stationary in the limit sets of Eq.(17) and which satisfies

k(@) = 2@ e (18)
with
r e =0 . (19)

Here for simplicity Q"* is assumed to be independent of x. The first and the second
terms of Eq.(18) correspond to irreversible and reversible part, respectively.

The stochastic process x(Dy,t) which involve Eq.(17) and a symmetric non-negative
matrix Q"* is governed by the Fokker-Planck equation for probability distribution function

P(x,t)

oP(et) 0 D, &
N Al A P

Q"p . (20)

For D; = 0 the above description reduces to (17). For D; # 0 the steady state distribu-

tion defines the function ¢(z,t) by

P(x>D1>t_>OO):N(D1)eXp[_ D
1

] (21)

N is the normalization constant. If ¢(z) = limp, .o ¢(x, Dq) is a single-valued, continu-

ously differentiable function bounded from below it satisfies

00(z) 1, 00(2) 09(x) _
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Eq. (22) is equivalent to Egs. (18, 19). Interpreting Eq.(22) as usual as a Hamilton-

Jacobi equation by defining ¢(z) as action and gc ¢ — P, as the momentum conjugate to z,,
one can construct the auxiliary Hamiltonian
1 v v
H(z,p) = 5Q"pupu + K" (@)py - (23)

Graham and co-workers [§f] have argued that a potential can exist with equation (17) if
the above Hamiltonian is integrable for H = 0, because the condition implies that there exist
a smooth separatrix which connect smoothly the stable and unstable manifolds emanating
from the hyperbolic fixed points of the dynamical system.

We now turn back to our dissipative semiclassical system described by Eqs(8) and (9)
where K (x) is defined by Eq.(7). Recognizing Eq.(9) as Eq.(23) for a one-degree-of-freedom

system we identify

Q=1

K($) = KCl + Ksemi . (24)

The potential function ¢(x) can therefore be calculated from Eq.(9) with H = 0 as (since

pr =25
o(a) = —2 / K(z)dz . (25)
The above expression can be made more explicit if we make use of Eq.(7) in (25). We
obtain
O(2) = Ga(x) + Gremi(2) (26)
where
b= [ V(@) 2V () (27)
cd — — = — i
l v Y
and
9 x2n(_1)3n+1 a2n+lv
semi - - d 28
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The existence of a potential for a dissipative, semiclassical dynamical system is thus
ascertained. The method essentially relies on a dynamical definition p, as a derivative of
the potential ¢(x) in a system described by an overdamped quantum Markov process in the
weak noise and semiclassical limit. As elaborated earlier in Sec.III p, has a statistical origin
which drives the system away from its stable state z; to a preassigned remote state z; from
which the system relaxes in absence of p,. It is thus important to realize that both the

dynamical and statistical notions are kept intact in the quantum treatment.

VI. CONCLUSIONS

Keeping in view of the quantum nature of the system in terms of the Wigner’s phase
space function we examine the semiclassical dynamics of a dissipative system in an Ohmic
environment. The weak noise limit of the stochastic process then allows us to capture
the essential features of the dynamics within the framework of an auxiliary Hamiltonian

description at the semiclassical level. Our results are summarized as follows :

(i) The Wigner’s quantum correction to classical Liouville equation gives rise to an optimal
force in addition to usual the classical force term. This quantum optimal force is essentially
a result of an interplay of nonlinearity of the system and the thermal fluctuations of its

environment and is derivable in terms of an auxiliary Hamiltonian description.

(ii) This term is also responsible for modification of growth and decay of large fluctuations
from equilibrium for the appropriately thermalized quantum system (compared to its clas-
sical counterpart). The symmetry of the fluctuational and the relaxational paths, signifying

the detailed balance, however, as expected is kept preserved.

(iii) The quantum correction term implies the existence of a potential for the dissipative

semiclassical system.
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Since the fluctuational and the relaxational paths have been experimentally demonstrated
as a part of physical reality by analogue experiments [[J] in the realm of large fluctuations,
we believe that the essential modification of the integrable, nonintegrable and the singular
topological features of the dynamics due to semiclassical correction might be relevant in

several contexts. We hope to address some of these issues in a future communication.

ACKNOWLEDGMENTS

B. C. Bag is indebted to the Council of Scientific and Industrial Research for a fellowship.

12



REFERENCES

[1] M. I. Dykman, E. Mori, J. Ross and M. P. Hunt, J. Chem. Phys. 100, 5737 (1994).
[2] R. L. Kautz, Rep. Prog. Phys. 59, 935 (1996).

[3] D. G. Luchinsky and P. V. E. McClintock, Nature 389, 403 (1997).

[4] A. J. Bray and A. J. McKane, Phys. Rev. Lett. 62, 493 (1989).

[5] R. Graham, in Noise in Nonlinear Dynamical Systems Vol. 1 (eds F. Moss and P. V. E.
McClintock) 225-278 (Cambridge Univ. Press, 1989).

[6] R. Graham and T. Tél, Phys. Rev. Lett 52, 9 (1984).

[7] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973);
G. W. Ford, J. T. Lewis and R. J. O’Connell, Ann. Phys.(N.Y.) 185, 270 (1988).

8] A. J. Leggett and A. O. Caldeira, Physica A121, 587 (1983).

[9] See, for example, the review by G. Gangopadhay and D. S. Ray, in Advances in Mul-
tiphoton Processes and Spectroscopy Vol 8, edited by S. H. Lin, A. A. Villayes and F.

Fujimura, (World Scientific, Singapore, 1993).

[10] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994) ; S. Habib, K. Shizume
and W. H. Zurek, Phys. Rev. Lett. 80, 4361 (1998).

[11] B. C. Bag, S. Chaudhuri, J. Ray Chaudhuri and D. S. Ray, Physica D 125, 47 (1999).
[12] A. K. Pattanayak, Phys. Rev. Lett. 83, 4526 (1999).

[13] M. E. Goggin, B. Sundaram and P. W. Milonni, Phys. Rev. A 41, 5705 (1990).

[14] T. Dittrich and R. Graham, Ann. Phys. 200, 363 (1990)

[15] B. C. Bag and D. S. Ray, J. Stat. Phys. 96, 271 (1999).

[16] J. Ray Chaudhuri, B. C. Bag and D. S. Ray, J. Chem. Phys. 111, 10852 (1999).

13



FIGURES

FIG. 1. A plot of system co-ordinate x vs time t signifying the fluctuational and relaxational
paths according to Eq.(8) for the model system with V(z) = Tz* — 322 for (a) semiclassical case

(e =1) and (b) classical case (e = 0), (units arbitrary).
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