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Abstract. A simultaneous ROSAT/ASCA observation of the
RS CVn binary AR Lac has been re-analysed using updated
calculations for the plasma emission. Several analysis methods
are applied that serve to reconstruct the emission measure dis-
tribution of AR Lac. In particular we describe the regularisation
method, a Chebyshev polynomial method, a clean algorithm,
a genetic algorithm and a method based upon broadened dis-
crete temperature components. We confirm earlier results that
the abundances are non-solar; for most elements (O, Mg, Si, S,
Ar, Ca and Fe), we find abundances that are consistent with 1/3
of the solar photospheric abundances. The abundances of Ne
(0.7) and Ni (1.1) are somewhat larger. The emission measure
analysis shows that there are at least two and probably three
temperature components: a cool, intermediate and hot compo-
nent at temperatures of 0.6, 1 and 2.4 keV, respectively. The
cool component is rather narrow (less than 50 % relative width)
and there is no significant emission below 0.3 keV down to
our detection limit at about 0.03 keV. The intermediate and hot
component may be separate structures, but could also be the
dominant features of a more continuous emission measure dis-
tribution between 1-4 keV. High-temperature emission above
5 keV is limited to at most 5 % of the total.

Key words: methods: data analysis — stars: abundances — stars:
coronae — stars: individual: AR Lac — X-rays: stars

1. Introduction

X-ray spectra of stellar coronae contain important information
on the temperature structure and abundances of these coronae.
With the increased sensitivity and energy resolution of ASCA
(Advanced Satellite for Cosmology and Astrophysics) it is now
possible to study both the abundances and the temperature struc-
ture in more detail than has been possible before.
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A surprising result of observing several stars with the ASCA
in the 0.4-10 keV band is that the elemental abundances are of-
ten very low when compared with those of the solar photosphere
(White et al. 1994; Drake et al. 1994, 1996; White 1996). Sim-
ilar results have also been found from observations with the
Extreme Ultraviolet Explorer (EUVE) which samples the low
energy (0.02-0.2 keV) end of the spectra (e.g., Stern et al. 1995;
Rucinski et al. 1995).

The reality of these low abundances has often been disputed.
In observations with the EUVE, the low abundances can be
deduced from the relatively strong continuum in the 0.1 keV
band, as compared to the spectral lines of iron. However, various
alternative explanations for the low line-to-continuum ratio in
the EUVE band have been given.

The first explanation is that a very high temperature (>1keV)
component, which, due to the high degree of ionisation of the
plasma, produces a featureless continuum below 0.1 keV, with
a nearly temperature-independent shape, can enhance the con-
tinuum relative to the line strengths. The energy bandwidth of
EUVE is too limited to discard this possibility. A broader en-
ergy band can help to check the reality of a very hot component.
As an example, simultaneous ASCA/EUVE observations of AB
Dor (Mewe et al. 1996), yielded no evidence for a very hot com-
ponent, but instead indicated that lower than solar abundances,
in particular that of iron, cause the low line-to-continuum ratio.

Another explanation for the low line-to-continuum ratio is
resonance scattering of some of the strongest EUV lines (Schri-
jver et al. 1994). This causes an effective intensity reduction
of the strongest resonance lines. Resonance scattering possibly
plays arole in Procyon and oo Cen (Mewe et al. 1995a; Schrijver
et al. 1995).

Alternatively, the EUV continuum at 0.1 keV may be due
to a combination of many relatively weak but unresolved lines
not included in the current plasma codes (Schmitt et al. 1996).
In particular the line complexes due to L-shell ionisation of Ne,
Mg, Si and S are possible candidates, since all of them occur at
these energies.
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X-ray observations in the 1-10 keV band with high spectral
resolution contribute to the solution of this problem. For exam-
ple, with ASCA the important K-shell lines of Si, S and Fe are
all well separated, and the underlying bremsstrahlung and re-
combination continuum can be determined without doubt. Fur-
thermore, resonance scattering appears to play no role in the
ASCA X-ray band (see e.g., SWD), while the presence or ab-
sence of any component with a temperature above 1 keV can be
easily established. Finally, the atomic parameters of the impor-
tant Fe-L complex have been updated recently (Liedahl et al.
1995, Mewe et al. 1995b). This offers the opportunity to check
the iron abundance as derived from both the K- and L- shell
complexes.

Finally, alongstanding issue is whether the coronal tempera-
ture structure of stars is continuous, or whether it consists of dis-
crete structures. Harrison & Thompson (1992) have compared
previously existing methods for determining solar temperature
distributions. Most methods described there are variants of the
regularisation or polynomial methods described also in our pa-
per. A major difference between their approach and ours is that
they use a set of selected spectral lines, most of which are in the
soft X-ray range, obtained from simulations of high-resolution
spectroscopy of the sun, while we use real data with lower reso-
lution, but utilising the complete spectrum (including continua)
between 0.2-10 keV.

Here, we investigate these questions using simultaneous
ASCA/ROSAT observations of AR Lac, which have been anal-
ysed before (White et al. 1994; Singh et al. 1996 (SWD here-
after)).

2. Observations

AR Lac is an RS CVn type eclipsing binary with an orbital
period of 1.98 day at a distance of 50 pc and is one of the
brightest coronal X-ray sources. It contains a G2 IV primary
and a KO IV secondary.

The present observations of AR Lac have been described in
detail by Singh et al. (1996). We refer to that paper for more de-
tails. The simultaneous ROSAT and ASCA observations were
taken from 1993 June 1-3. We used data from the ROSAT PSPC
detector, and the SISO and GIS2 detectors of ASCA. The effec-
tive area of the SISO and GIS2 detectors were multiplied by
0.95 and 0.77 respectively, in order to match the ROSAT data
(cf. SWD, Table 1a).

Our analysis differs from that of SWD in the following
ways: Firstly, the rebinning scheme is slightly different. We
rebinned the PSPC and GISO data to about 1/3 of the resolution
(FWHM). However, we retained the requirement of having at
least 20 counts per data channel, as was done by SWD. Regions
with extremely low count rates at the low or high energy ends
of the spectrum were omitted. We are left with 18 data channels
for the PSPC (energy range 0.22-2.49 keV), 56 data channels
for the GIS2 (energy range 0.80-8.30 keV), 154 data channels
for the SISO (energy range 0.46-7.32 keV), thus in total 228
data channels. This has to be compared to the 594 data channels
of SWD.
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Secondly, we included a systematic error of 2 % of the source
flux in all three data sets, in order to account for systematic
errors in both the data and the spectral model. For the SISO
data, there is additional uncertainty at lower energies; we have
taken a systematic error of 5 % below 0.8 keV.

Thirdly, the energy grid on which the model spectrum is cal-
culated is important. In our spectral model, the calculated flux
is placed at the centers of the energy bins. The total spectrum
is then convolved with the instrument response matrix. If the
model energy bin width is AF, we make thus on average an
rms error of AE/ /12 in the line center (the variance of a uni-
form probability distribution between 0-1 is 1/12). On the other
hand, the line centroid can be estimated from the data with an
accuracy of o /y/n (apart from calibration errors), where o is
the gaussian width (¢ =FWHM/2.35) of the instrument redis-
tribution function, and n the total number of counts in the line.
Clearly, the error introduced by the finite model bin width must
be smaller than the statistical error on the line centroid. Thus,
we have

AE < 1.4TFWHM/+v/n . (1)

In our data set, the SISO data have the highest spectral resolu-
tion. The energy grid of the original SISO response matrix has
a constant model bin size of 0.01 keV. The strongest lines in
our spectrum have about 4000 counts. It appears that for the 20
strongest spectral lines in the data (derived from a first model
fit), this binning of 0.01 keV is insufficient. Accordingly, we re-
fined the energy grid near those lines to AE =0.001-0.005 keV.

3. Spectral model

For our spectral analysis, we have used the SPEX software pack-
age (Kaastra et al. 1995). This package contains models for the
calculation of spectra from optically thin plasmas in collisional
ionisation equilibrium (CIE) (Mewe et al. 1985, 1986; Kaastra
& Mewe 1993). Recently the calculations for the Fe-L com-
plexes have been updated using results from the HULLAC code
(Liedahl et al. 1995; Mewe et al. 1995b). The differences be-
tween the newer calculations and the older versions of the code
can be of the order of several tens of a percent with the resolu-
tion of the SIS of ASCA. Since the Fe-L complex dominates the
spectrum near 1 keV, it is expected that the improved calcula-
tions could change the spectral fitting parameters drastically. We
will in general express the derived coronal abundances relative
to the solar photospheric values taken from Anders & Grevesse
(1989) so as to facilitate comparisons with previous papers that
have used these as the reference, except in Sect. 5.3, where we
have adjusted them to the newer Grevesse et al. (1992) solar pho-
tospheric abundance values. For the ionisation balance we use
Arnaud & Rothenflug (1985) for all elements except iron, for
which we use the update of Arnaud & Raymond (1992). Emis-
sion measures Y are defined here as the integral over nenydV
where n. is the electron density, ny is the hydrogen density
and V the emitting volume. Galactic absorption is taken into
account using the model of Morrison & McCammon (1983).
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4. Analysis

4.1. Two-temperature fits

As a first step we confirmed the results of SWD that fits with
either a single temperature component or with two components
with solar abundances did not give an acceptable fit: x* = 1897
for 215 degrees of freedom and x? = 1536 for 223 degrees of
freedom, respectively.

Following SWD, we tried a fit with two CIE components
with variable abundances for N, O, Ne, Mg, Si, S, Ar, Ca, Fe
and Ni. The abundances of the other elements (He, C, Na and
Al) were fixed at the solar values as our measurements are not
sensitive enough to put useful constraints on the abundances of
these elements. Initially we adopted the same abundances for
both temperature components. The results are given in Table
1. Errors are based upon x? + 2 and correspond to 1o errors
(90 % confidence bounds are about 15 % larger). For comparison
we also give the fit parameters as derived by SWD from the
same observations but with an older version of the plasma code,
without the improvement of the Fe-L complex, and for iron with
the ionisation balance of Arnaud & Rothenflug (1985).

In general, our results agree well with those derived by
SWD; the only significant differences appear to be the tempera-
ture of the cool component, for which we find a higher value, and
some abundances: we find somewhat lower abundances for O,
Fe, Ne and Mg. These differences can be easily understood. Fig.
10 of Arnaud & Raymond shows that for the same charge state
of iron, the corresponding temperature increases by 20 % and
10 % for the cool and hot component respectively, if the ionisa-
tion balance of Arnaud & Rothenflug (1985) is replaced by that
of Arnaud & Raymond (1992). This is indeed what we did as
compared to SWD. The true temperature increase is, however,
slightly smaller: 11 % and 1 % respectively. This is smaller than
what is expected from iron alone, because the ionisation balance
for the other elements that play a role in the temperature deter-
mination has not been changed. Our smaller iron abundance
can be explained by the small increase in Fe-L emissivity in our
newer plasma code as compared to the code used by SWD; we
need less iron in order to explain the same line flux. Since the
important neon and magnesium lines are surrounded by strong
Fe-L lines, a decrease in the Ne abundance is not surprising.

4.2. Three-temperature fits

We also investigated the possibility that there is a third signif-
icant temperature component in AR Lac. Our instruments are
sensitive for temperatures in the range of about 0.03-10 keV.
We have searched this temperature range and checked for each
temperature to see how the fit improves by adding an extra tem-
perature component.

We derive an upper limit of 0.60 10°° m~ for the emission
measure of any temperature component in the 0.05-0.4 keV
temperature range, i.e. less than 5 % of the total emission mea-
sure of the cool and hot component. If the third component is
very hot (T" > 4 keV), we find an upper limit for the emission
measure of 0.5 10%° m—3, i.e. also no more than 5 % of the total.
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Fig. 1. AR Lac spectrum with best fit three-temperature model. Trian-
gles: ROSAT PSPC data; diamonds: ASCA SISO data; circles: ASCA
GIS2 data. Upper panel: observed spectrum with best fit model (solid
histogram). For clarity of representation, the PSPC data have been
multiplied by 0.05 and the SISO data by 10. Middle panel: relative fit
residuals Arel: (observed - model) / model. Lower panel: fit residuals
Ax: (observed - model) / error.

We did, however, find a significant improvement by adding
a third, intermediate temperature component near 1 keV. Fig. 1
shows our best fit spectrum. The fit is acceptable at the 10 %
confidence level. The count rates of all spectral bins are within
30 from the model. The only significant ~15 % fit residuals
appear to be in the PSPC data below 0.4 keV and the SISO
data below 0.53 keV. The calibration of both the instruments is
known to be somewhat inaccurate at these low energy ends of
the bandwidth.

There also appears to be a slight deficit of the model near the
Fe-K complex above 6 keV, especially in the GIS2 data. This
motivated us to try a fit with the iron abundances of all three
components decoupled. The fit did not improve significantly:
Ax2 = 3.4 for 2 additional free parameters, although the fit
residuals above 6 keV are indeed smaller. The improvement
is made by shifting the intermediate temperature component
from 1.1 to 1.4 keV and the hot component from 2.4 to 4.3
keV; the best-fit abundances for the cool, intermediate and hot
component are 0.25, 0.15 and 0.42 respectively, although within
their respective error bars they are consistent with the average
abundance of 0.22. In any case, our conclusion of a non-solar
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Table 1. Three temperature fit parameters

Parameter 3 comp 2 comp 2 comp
present present SWD
work work

X 238.8 254.1 770.9

dof 211 213 577

Nu (102 m™?%) <22 <19 <4.4

kT, (keV) 0.61+0.47 0.652+0.016 0.586+0.015

kT (keV) 1.09%%, - -

kT: (keV) 2.40%%,  2.01£0.07  1.98+0.06

Y: (10¥ m™3) 3.73+£0.78 5.06+0.38  4.1440.27

Vs (10¥ m™3) 3.33+0.99 - -

Ys (10° m™3) 4254127 6.13+£0.29 6.25+0.24

Abundances:

N <0.13 <0.15 <0.15

o) 0.264+0.06 0.28+0.06 0.41+0.05

Ne 0.704£0.17 1.04+0.12  1.42+0.13

Mg 0.354+0.06 0.36+0.06 0.50+0.07

Si 0.3140.04 0.30+0.05 0.40+0.06

S 0.1740.07 0.15+£0.07  0.19+0.09

Ar 0.354+0.26 0.30+£0.23  0.3140.27

Ca <0.34 <031 <0.25

Fe 0.2240.02 0.1940.02  0.29+0.03

Ni 1.06+0.32 1.434+0.32  1.1440.36

iron abundance remains firm, even if the three components have
different abundances.

Alternatively, we fixed the ratio of the metal abundances
with respect to iron to the ratios implied by Table 1, but al-
lowed the iron abundance and hence the global metallicity of
the three components to be different. The x? of the fit then im-
proves marginally with 5.3, for 2 additional free parameters;
the derived temperatures and emission measures are consistent
with the values of Table 1. We find best fit metallicities cor-
responding to an iron abundance of 0.23(-0.07,+0.15), 0.17(-
0.05,+0.18) and 0.36£0.10 for the cool, intermediate and hot
component respectively. Since we cannot constrain iron abun-
dance differences among the components with sufficient confi-
dence, we adopted the same abundances for all the temperature
components in the subsequent analysis.

We have also investigated the possible role of the electron
density. In particular the He-like triplets are density sensitive.
A fit with a free electron density, however, gave no significant
improvement in the x? with Ax? less than 2. We could not
derive any interesting limit on the density. This is mainly due to
the fact that ASCA is not able to resolve the He-like triplets of
the important elements.

4.3. Continuous emission measure distributions

An unanswered question for many years has been the nature
of stellar coronal temperature distributions: are they discrete or
continuous? In order to investigate this, we have developed sev-
eral methods to analyse the emission measure distribution with
continuous models. All methods are based on a pre-calculated
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set of model spectra F;(E) for a temperature grid T;. These
model spectra take into account the appropriate abundances, in-
terstellar absorption and are folded through the instrument pro-
file. The emission measures Y; for the temperature grid must be
determined by matching the observed spectrum S(E) as good
as possible to the model spectrum

F(B)=) YF(E). @

A given emission line is formed in a temperature range span-
ning typically ~0.3 in log 7. Thus a logarithmic temperature
grid with a binning of 0.1 in log T is sufficient to derive the
temperature distribution. Our instruments are sensitive for tem-
peratures in the range of about 0.03-10 keV. Thus we limit the
temperature grid to this range, yielding 26 bins for log T'(keV)
ranging from -1.5-1.

Below we discuss various analysis methods: the regular-
isation method, the polynomial method, a clean algorithm, a
genetic algorithm and finally a model based upon broad dis-
crete components. The first two methods are oriented towards
smooth temperature distributions. All of these methods are now
incorporated in our spectral analysis code SPEX. We apply them
here to the present AR Lac spectrum. None of these methods
gives acceptable fits for a spectrum with solar abundances. We,
therefore, restrict our discussion to solutions with abundances
as found from our three-temperature fit. Note that SWD treated
the abundances as free parameters in the continous distribution
models. The number of free parameters in each of these methods
is in general the number of temperature bins used for the regular-
isation, clean and genetic methods; the order of the polynomial
used in the polynomial method and three times the number of
components for the broad multi-temperature method.

4.3.1. Regularisation method

The first method we discuss is treated in more detail by Mewe
et al. (1995a) and Schrijver et al. (1995). In brief, this method
uses direct matrix inversion of Eq. (2) with the additional con-
straint that the second order derivative of the solution Y; with
respect to the temperature is as smooth as possible. This is done
in order to damp unphysical oscillations otherwise present in
the solution. The degree of smoothing is controlled by the reg-
ularisation parameter R, which is essentially a measure of the
relative weight of the smoothness constraint with respect to the
x>-minimisation constraint. The parameter R must be adjusted
by hand or using statistical arguments. R = 0 corresponds to no
smoothing at all. In general, it can be argued that the optimal R
must be chosen such that

Y(R) = AR = 0) (1 i/ —2—> ,
TMchannel — NT

where Ncpannel 1S the number of data bins, nt the number of
temperature bins, and f a factor of order unity. nchannel — 71
is the number of degrees of freedom of the fit; the argument
is based on the fact that the mean and variance of a stochastic

3
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Table 2. Regularisation method

R X P f

0.00 2120 11.1 0.00
0.02 2257 102 0.65
020 229.1 213 0.81
200 2393 112 129

variable which has a x? distribution with n degrees of freedom
are n and 2n respectively.

The regularisation method works optimally for smooth, con-
tinuous temperature distributions. However, simulations show
that it can also find discrete temperature structures, although it
cannot resolve them to better than a factor of ~2.

A drawback of the regularisation method is that it cannot
prevent the solution from taking negative values at some tem-
peratures. However, it is possible to estimate the uncertainty
AY; on Y}, and a solution is acceptable if not too many Y;’s
are significantly below zero. In fact, it can be shown that in
the worst case of no signal in the data, the expected number of
negative Y; values is half the number of temperature bins. We
develop a criterion to weigh how much positiveness is violated,
by defining the "penalty” p as

p= Y (i/AY).
Y, <0

©)

For a zero signal, the expected value for p is nt/2 and its stan-
dard deviation is of the order of ,/nt. For positive spectra p
should be typically smaller than this. Very large values of p
(possibly in combination with a large x? value) could indicate
problems with the model used (e.g., wrong abundances) or sys-
tematic errors in the data.

Atthe low and high temperature end of the grid, the spectrum
is often not sensitive to the precise temperature value; it is then
only possible to state that there is some very soft or hard spec-
tral component, without being able to specify the precise shape
of the corresponding temperature distribution. This should be
remembered when investigating for example hard “tails”.

In Fig. 2 we show our solution for three values of the reg-
ularisation parameter R (see also Table 2). These solutions are
all acceptable (cf. Eq. (3)). The penalty p is somewhat too large
for R = 0.2, mainly due to a negative “tail” below 0.06 keV.
However the ROSAT PSPC is not very sensitive to spectral vari-
ations at temperatures near or below 0.1 keV, and this structure
should not be regarded as realistic. Its negative flux contribution
is partly compensated for by the small peak near 0.1 keV, which
therefore should be interpreted cautiously, because it is also in-
fluenced by the minor negative excursion between 0.2-0.3 keV.
Fig. 2 shows a bigger negative tail for R = 0.02 as compared to
R = 0.2, but pis smaller due to larger error bars on the emission
measure. x? is somewhat better than our three-temperature fit
(which has x? = 238.8), but one can argue that in fact a bet-
ter measure of the goodness-of-fit of the regularised spectrum
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Fig.2. Emission measure distribution of AR Lac obtained with the
regularisation method. Dashed line: R = 0.02. Crosses: R = 0.20.
Dotted line: R =2.0

would be the sum of x? and p. If we take that measure, our fit
is not significantly better than the three-component fit.

The most important feature of our fit is the broad component
between 0.4-3 keV, which shows an indication for two subcom-
ponents at 0.6 and 2 keV, corresponding nicely with the cool and
hot component of our three-temperature fit. There is no indica-
tion for the presence of very hot plasma (7' >5 keV). The total
emission measure between 0.4-6 keV of 11.8 10°° m~> agrees
well with the total emission measure of the three temperature
components (11.3 10 m™).

4.3.2. Polynomial method

A second method that is useful for smooth emission measure
distributions is the polynomial method. This method has been
applied before to EXOSAT data (Lemen et al. 1989) and EUVE
data (Stern et al. 1995). We implemented this method here by
writing the logarithm of the emission measure as the sum of n
Chebyshev polynomials, that are a function of the logarithm of
the temperature. This ensures that the emission measure distri-
bution is positive for all temperatures, and that low and high
temperatures have the same relative resolution.

By increasing the number of coefficients, the fit improves
in general significantly, up to n about 8-10. For larger values
of n, the x? of the fit does not improve significantly. We found
x? values of 238.6-238.9 for n between 8-10, i.e. nearly the
same as for our three-temperature fit. In Fig. 3 we show the cor-
responding emission measure distributions. All solutions have
a double-peaked structure, corresponding to the cool and hot
component at 0.6 and 2 keV respectively. There is an indication
for emission between those components.

There could be a very weak high-temperature tail above
3 keV, but all 3 solutions presented here differ considerably in
this region: e.g. n = 8 has no tail, n = 9 has an extended tail up
to 8 keV while n = 10 has only a small peak near 6 keV. Thus

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996A%26A...314..547K

7K.

54

FT9OBACA - ~314C ™

552

4
T
1

Emission measure (10%° m™>)
2
T
1

T (keV)

Fig. 3. Emission measure distribution of AR Lac obtained with the
polynomial method. Dashed line: n = 8. Solid line: n = 9. Dotted line:
n = 10.
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Fig. 4. Emission measure distribution of AR Lac obtained with the
polynomial method using a narrower temperature grid (0.3-10 keV).
Solid line: n = 9. Dashed line: n = 13.

a high temperature tail, if present at all, is weak but the details
are uncertain.

Below 0.6 keV, the emission measure drops rapidly to zero
near 0.4 keV. There is no indication for a significant emission
component below 0.3 keV. Since the typical resolution in log T'
is the temperature range divided by n (about 0.2-0.3 in our
case), we also tried some fits in the constrained temperature
range 0.3-10 keV. We get essentially the same x? values as for
the broader temperature grid. Fig. 4 shows 2 typical solutions.
For n = 9 (resolution ~0.17 in log T') the solution is similar
to our previous result, except that the two main temperature
peaks are sharper. For n = 13, we recover a three-temperature
structure with dominant temperatures in agreement to our three-

J.S. Kaastra et al.: The corona of AR Lac revisited

temperature fit. Since the x? values of both these fits differ by
no more than 0.2, it is not possible to discriminate between
both models. The fit with n = 9 appears to have averaged the
intermediate and hot component, and probably needs a weak
high temperature tail in order to model the highest energy part
of the spectrum correctly.

Note: SWD report that the fitting routine for the Chebyshev
polynomial used in their paper was found to contain a bug that
forced the emission measure distribution to be of continuously
rising type. Using the new VMEKAL code (essentially the same
plasma code as used here) and the corrected Chebyshev polyno-
mial routine (order 6) which does not depend on the exponential
of the polynomials, they found that the best-fit solution has a a
double peaked distribution with maxima near 1 keV and 5 keV
and a x? that is not significantly different from that obtained
from their 2T model. However the solution becomes negative at
high temperatures. In the present analysis this is prohibited be-
cause we fit the logarithm of the emission measure distribution.
The best-fit values for the abundances are similar to that in the
3T model presented here (Table 1).

4.3.3. Clean algorithm

The clean algorithm (Hogbom 1974) is a powerful tool devel-
oped originally for the analysis of radio interferometer data. We
have implemented it as follows. The observed spectrum S(E)
is correlated with our model spectra F;(E). The temperature T
which shows the highest correlation coefficient is most likely
the dominant contributor. We determine the best fitting emis-
sion measure Y for this temperature. In principle, if the source
spectrum would be really a single temperature spectrum, this
would be our final solution. We could subtract the correspond-
ing model spectrum Y} F;(E) from the observed spectrum S(E)
and would be left with noise only. However due to the presence
of other temperature components, the best fit emission measure
Y, does not correspond to the true emission measure at that
temperature, but is merely an order-of-magnitude estimate. Ac-
cordingly, we subtract only a small fraction (1 %) of this model
component from the observed spectrum (we replace S(E) by
S(E)—0.01Y; F;(E)). We also put the corresponding emission
measure 0.01Y in our target solution vector. Using the corrected
spectrum, we repeat the steps taken before by again determin-
ing the temperature with the best correlation. This might be the
same as before, but could now also be another temperature. The
process is repeated as long as the corresponding x? is decreas-
ing. If the solution has converged, we are left with only the
noise in the observed spectrum, and the total emission measure
distribution in our target solution vector.

Our simulations show that this method is very fast and pow-
erful for discrete temperature structures. It is very well suited for
reconstructing single, double or multi-temperature structures.
For continuous temperature distributions it tends to make the
solution somewhat “’spiky”, due to the subtraction of discrete
components; however the average value of the solution over a
somewhat broader temperature range (typically a factor 0.3 in
log T') is in good agreement with the average value of the input
model.
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Fig. 5. Emission measure distribution of AR Lac obtained with the
clean method.

Application of the clean method to the present AR Lac data
did not result in an acceptable fit: x> = 419. The correspond-
ing emission measure distribution is shown in Fig. 5. The bad
fit is somewhat surprising, given the fact that for other sources
we obtained good results with this method. The reason for the
failure in this case is the following. At the beginning of the pro-
cess, the highest correlation is found for a temperature of about
1 keV. Thus, the algorithm starts subtracting model flux at this
temperature. This can be seen also in Fig. 5, where a dominant
1 keV component is present. Only later the other temperature
components become evident, in particular the cool component
at 0.6 keV is visible. Unfortunately the algorithm cannot correct
the over-estimated 1 keV component sufficiently, leading to a
fit that is not acceptable.

Why is the correlation coefficient of the observed spectrum
with a 1 keV temperature plasma so high, in fact higher than
for either a 0.6 keV or 2 keV plasma, despite the fact that these
two appear to be the dominant components in AR Lac? The
reason is that a plasma of 1 keV looks rather similar to a linear
combination of a 0.6 keV and a 2 keV plasma, at least with
the resolution and sensitivity of our instruments. In the part
of the spectrum with the highest signal-to-noise ratio, a linear
combination of the cool and hot component deviates no more
than 10-20 % from a 1 keV plasma. Of course, the temperatures
of 0.6 and 2 keV differ no more than a factor of 0.3 in log 7T’
from 1 keV, close to the resolution limit for the clean method
mentioned above.

Despite this, our solutution does show that there is no emis-
sion below 0.3 keV, and again there is a hint of a weak high-
temperature tail.

4.3.4. Genetic algorithm

We have also estimated the temperature distribution by using a
genetic algorithm (Charbonneau 1995). Genetic algorithms are
based on the biological notion of evolution by means of natural
selection. They use an initial population of randomly chosen
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solutions. Each solution is assigned a fitness. By breeding this
population, using crossover and mutation of the genes of the
individuals, the population gradually evolves towards a solution
with higher fitness. For more details we refer to the paper of
Charbonneau, from which we have used the fortran code.

In our implementation, an individual of the population cor-
responds to a DEM distribution. The ”genes” of each individual
consist of the values of the emission measure at the given tem-
perature grid. For the fitness of an individual we take minus
the x2-statistic of the corresponding model spectrum as com-
pared to the observed spectrum; thus increasing fitness means
decreasing 2. We take an initial population of 1024 individuals.
This is larger than recommended by Charbonneau, but we have
chosen this because the number of parameters to be fit is large.
The temperature grid is the same as for the other DEM methods
(26 bins logarithmically spaced between 0.03 — 10 keV).

The following settings in the implementation of Charbon-

" neau are used. We use steady-state-replace-worst reproduction

(i.e. each time a new individual is bred, it replaces the individ-
ual in the population with the worst fitness, but only if the new
individual has a better fitness). We use elitism (i.e. the fittest in-
dividual is never deleted from the population). Fitter individuals
have a higher breeding probability than others according to their
ranking on a fitness scale. The crossover probability is 0.85, the
initial mutation rate 0.005, the maximum mutation rate 0.25.
The mutation rate increases in 10 generations to its maximum
value. For the AR Lac spectrum, the initial median x? value of
the first generation is typically 5000; within about 10 genera-
tions the median fitness of the population evolves to about 500.
After that, convergence is only slow, and improvements result
in general mostly from mutations rather than crossover at these
later generations.

In order to speed-up convergence, it is important to constrain
the possible parameter space as much as possible. We have done
this by demanding that the solution at each temperature must
be smaller than some maximum Y,,x. This maximum is deter-
mined for each temperature from the following condition: the
sum of the squares of the fit residuals for those data channels
only where Y Fi(E) > S(E), should not exceed nchannel /2.
Here nchanner 18 the number of data bins. For Charbonneau’s
algorithm, the parameters (genes) must be scaled to the (0-1)
interval. In principle, a scaling Y = Y}« with z in the [0-1]
interval would appear logical. However, we had more success
with the following semi-empirical scaling:

20
Y = Y 104 — 1 (5)

This transformation favors the occurrence of genes with small
emission measures; it does make the initial population resem-
ble more to a single-temperature population. Further, the con-
vergence improved by renormalising each solution by a single
scale factor in order to minimise .

Finally, during our initial tests, it appeared that near conver-
gence the solution sometimes “flipped” a temperature compo-
nent by distributing part of its flux over the two neighbouring
bins. This reflects the fact that for sufficiently fine temperature
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Fig. 6. Distribution of x? for 25 runs with the genetic algorithm.

binning, the spectrum at a certain temperature is approximately
a linear combination of the spectrum at the neighbouring bins.
In the later generations of our runs, mutations are important. Un-
fortunately, it is rather difficult to do these "flippings” with mu-
tations, since it requires that at the same time that the emission
measure of the relevant temperature bin mutates, the emission
measures of the two neighbouring bins mutate in a consistent
way. We resolved this by adding redundancy in the genes. For
each temperature, we define three genes: the first gene is the to-
tal emission measure for the bin and its two neighbouring bins,
scaled according to Eq. (5), the second is the fraction of the total
emission measure of these three bins in the central component,
and the third is the fraction of the remaining flux that is in the
lower temperature bin of the three. Thus, "flippings” of emis-
sion measure can occur by only a single mutation in the second
gene. The total emission measure at a certain temperature is
then determined from the relevant contributions in three bins.

Further, the convergence improved by initially making a run
of only 10 generations. For this population, we determined for
each temperature the best value Y}, as well as the maximum
deviation Ay from this best value. We then used the maximum
of 1.2Y;, and Y, + 1.5Ay as a new constraint for the allowed
emission measure range. Using this tighter, empirical constraint,
we then did a final run with 200 generations. The advantage of
this procedure is that our final run starts with a population that
has on average a much lower x? than the initial population of
the first run, thus allowing a better convergence.

We have made 25 different runs. The spread in final 2 values
is shown in Fig. 6. The plot shows a sharp peak of solutions with
X2 close to 240, with an extended tail up to ~ 260. Clearly, the
solutions in this tail are not completely converged. The solutions
in the peak all have x? values that are comparable to our best fit
three-temperature model, as well as to the polynomial method.
Therefore, we argue that the solutions in this peak are converged
towards the absolute minimum (within an insignificant spread
of about 2 in x2).
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Fig.7. Emission measure distribution of AR Lac obtained with the
genetic algorithm, based on the 10 best solutions out of 25 runs. The
average emission measure of these 10 soulutions (solid line) and its 1o
error bounds (dotted lines) is shown, as well as the emission measure of
the best solution (dashed line). The region excluded by all 10 solutions
is hatched.

In Fig. 7 we plot the emission measure distribution for the
best 10 solutions, all of which have x? values between 239.0—
241.8, as well as the maximum and minimum value they attain
at any temperature. Also the best solution (x2=239.0) is shown.
All solutions show the absence of significant emission com-
ponents below 0.3 keV down to our limit at ~0.03 keV. The
cool component at 0.6 keV is narrow and present in all solu-
tions. Its strength differs by no more than 30 %. The interme-
diate and hot components are less well constrained. In four out
of ten solutions the hot component is split into two parts, the
lower of which may interfere with the intermediate temperature
component (e.g., the best-fit solution of Fig. 7 does this). Also,
in 4 out of the 10 solutions there is a weak, hard component
above 5 keV. The effect of this hard component is compen-
sated by lowering the emission measure of the hot component.
Therefore, the present data do not allow a detailed breakdown
of the hot and intermediate components. Of course, the total
emission measure and average temperature of both components
combined is well determined. The average total emission mea-
sure of the intermediate and hot component (above 0.9 keV) is
7.3240.08 10°° m—3, and all 10 solutions deviate no more than
5 % from this. The emission-measure-averaged temperature of
both components is 1.9340.02 keV, with deviations no larger
than 7 %.

4.3.5. Multi-temperature plasma with finite temperature
width

In order to investigate whether the three dominant temperature
components as found from our three-temperature fit are narrow
or broad in temperature width, we have made a model for a
multi-temperature plasma where each component i has a Gaus-
sian distribution in (logarithmic) temperature space, i.e.
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Fig. 8. Emission measure distribution (solid line) of AR Lac using 3
Gaussian temperature distributions. dashed lines: contributions of the
3 individual components

Y o—(log(T) — log(Ty))* /207

Y,(T) = >rg
i

©)
where Y is the total emission measure of the component, 7; its
temperature centroid and ¢; the standard deviation.

For three components, we find best-fit temperatures and
emission measures that are entirely consistent with our three-
temperature fit of Sect. 4.2. All components show a small but not
very significant broadening: o =0.02 (-0.02,+0.08), o =0.03 (-
0.03,+0.30) and o =0.08 (-0.08, +0.16) respectively for the cool,
intermediate and hot component. In Fig. 8 we plot the corre-
sponding emission measure distribution, at the same resolution
as for the other methods. It is evident that the cool component is
rather narrow; its relative FWHM is not larger than 50 %. Again,
the width and structure in the intermediate and hot components
are less well constrained. They might span typically a width of
a factor of two in temperature.

5. Discussion
5.1. Temperature structure

From our analysis it appears that AR Lac has a bimodal tempera-
ture structure: a cool component at 0.6 keV, and an intermediate
/ hot component with possible substructure near 1 and 2.4 keV.
There is no significant emission at temperatures below 0.3 keV.
This is confirmed by all our analysis methods.

The cool component is a relatively narrow feature, as our
analyses with, in particular, the genetic algorithm and the broad-
ened multi-temperature plasma model shows. It has a relative
width not larger than 50 %; smaller widths cannot be resolved
with the present observations.

The structures of the hot and intermediate component are
less well defined; they constitute certainly not a single, narrow
and discrete temperature structure. But as the result of our ge-
netic algorithm shows, there are many different solutions with
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Fig.9. Reconstructed emission measure distribution for two delta-
functions in temperature. Thick solid line: the input model (the sum
of two delta-functions, plotted here for clarity as histograms with a
width equal to the temperature bin size used); thin solid line: regu-
larisation method; dot-dashed line: polynomial method; dashed line:
genetic algorithm; dotted line: two broadened Gaussian components

acceptable x? values. The intermediate and hot component may
be two discrete structures, but it is also possible that they origi-
nate from the same region, and that they are part of an extended
temperature structure spanning the temperature range from be-
low 1 keV up to about 3—4 keV. There might be a weak hard
tail above 5 keV extending towards high temperatures, but its
presence is not certain; in any case its strength is not larger than
5 % of the total emission measure.

Recently, Walter (1996) published the emission measure dis-
tribution obtained from EUVE observations of AR Lac, util-
ising the polynomial method. His solution also shows a bi-
modal temperature distribution, which is very similar to our
solution with the polynomial method. The peak temperatures in
the EUVE spectrum are around 0.5 and 2 keV, similar to our
two-temperature fit.

Some readers might ask whether the bimodel structure could
be an artifact of the detectors and their sensitivities to various
line emissivities. To demonstrate that this is not the case, we
have done two simulations.

First, we simulated a two-component spectrum with tem-
peratures of 0.6 and 2.4 keV (the dominant temperatures in
our three temperature model), and equal emission measures of
5.65 10°° m~3. Their sum is equal to the total emission mea-
sure for the three components of table 1. The emission mea-
sure distribution is thus the sum of two delta-functions in the
temperature. We have used exactly the same abundances, in-
tegration time, response matrices and data selection as used
in our present analysis of the AR Lac spectrum. We applied
the polynomial, regularisation, genetic and broadened Gaussian
component methods to the simulated spectrum. The results are
shown in Fig. 9. The regularisation methods smooths the two
components somewhat, but is still capable of reconstructing the
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Fig. 10. Reconstructed emission measure distribution for a block pro-
file. Thick solid line: the input model; thin solid line: regularisation
method; dot-dashed line: polynomial method; dashed line: genetic al-
gorithm; dotted line: two broadened Gaussian components

bimodal distribution. All other methods essentially reproduce
the two sharp discrete structures.

Alternatively, we have used a block function with constant
emission measure per bin between 0.6 and 2.4 keV. The total
emission measure is also equal to 11.3 10°° m~3, with all other
conditions similar to the previous simulation. The results are
shown in Fig. 10. Again, the regularisation method smoothes
the temperature distribution somewhat, but it clearly finds a
single, broadened component. The other methods reconstruct
the block function reasonably well. The polynomial method
does not give a perfect fit, mainly because it is not possible to
represent a block function as the sum of less than ~8 Chebyshev
polynomes with more accuracy than shown here. The genetic
algorithm shows some substructure with amplitudes of the order
of 20-30 %; however, doing more simulation runs with different
random seeds shows that these substructures always appear at
different temperatures, but within the boundaries of the block
profile and preserving the global shape of the block profile. In
summary, all four methods reproduce essentially the broadened
temperature distribution of the block profile. Note that in this
and the previous simulations, the best-fit x> values differ by
no more than 2. This shows that it is impossible to discriminate
between the solutions obtained by the different methods without
using any other information.

We conclude that our methods are able to distinguish be-
tween a bimodal temperature distribution and a single broad-
ened temperature profile and that the latter type of distribution
is inconsistent with the observed soft X-ray spectrum of AR
Lac.

5.2. Emission measure analysis methods

We have compared in this paper different emission measure
analysis methods. The discrete multi-temperature model with
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e.g., two or three temperature components is efficient in deriving
the abundances in the dominant temperature components. The
temperatures derived must, however, be interpreted with care.
We can illustrate this also as follows. We made a simulation of
the hot component of AR Lac only, but split it into two compo-
nents with emission measure 3 10°° m~3 each, and temperatures
of 1.6 and 2.4 keV. A fit with a two-temperature model gives a
x? that is only 5.7 better than a single temperature fit. The best-
fit temperature of the single-temperature model, 1.90+0.02 is,
although close to the average temperature, still 5o away from
it. On the other hand, the statistical errors on the temperatures
in the two-temperature fit are much larger: e.g., 1.51+0.40 for
the 1.6 keV component.

The corresponding emission measures give a good indica-
tion of the total emission measure in the region of temperature
space in which the temperature component is located. The emis-
sion measures derived from our three-temperature fit are in good
agreement with the emission measures derived from continuous
emission models.

Of the continuous emission measure analysis methods used
here, both the regularisation method and the Chebyshev poly-
nomial method are able to resolve at least the cool and hot
components (Figs. 2 and 3). With sufficient resolution (i.e., suf-
ficiently large number of terms and small temperature range),
the polynomial method can also resolve the intermediate and
hot components (Fig. 4). In the present case, the clean method
fails to converge because the spectrum of the intermediate com-
ponent cannot be distinguished from a linear combination of the
cool and hot components.

The genetic algorithm has the disadvantage that it is very
cpu-time consuming. However, it leads to consistent results with
the other methods, and it is the only method capable of showing
the wealth of solutions that are all acceptable in a statistical
sense.

Finally, we note that both the regularisation method and the
genetic algorithm produce some measure of the uncertainty in
the derived temperature distribution for a given temperature. As
the referee pointed out, for the other methods, a bootstrap-like
method could be used in order to derive the uncertainties in the
temperature distribution.

5.3. Abundances

Our present analysis essentially confirms the results of White et
al. (1994) and Singh et al. (1996) that the abundances in AR Lac
are non-solar, although the precise values are slightly different,
due to differences in the analysis method and plasma code used.
The abundances of most elements are consistent with 1/3 solar,
except for Ne and Ni. This becomes more apparent if we express
the abundances in the units of Grevesse et al. (1992). This makes
the abundances of N, O, Ne, Ar and Fe 20, 15, 3, 10 and 44 %
higher, respectively as compared to Anders & Grevesse (1989).
The corresponding abundances of our three-temperature fit are
shown in Table 3. The low abundances are yet to be explained.
For Ni, one could argue that both the ionisation balance and the
line calculations of the Ni-L. complex have not been improved
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Fig. 11. Elemental abundances of AR Lac in units of the solar pho-

tospheric abundances of Grevesse et al. (1992) versus first ionisation
potential (FIP)

Table 3. Abundances scaled to Grevesse et al. (1992)

N O Ne Mg Si S Ar Ca Fe Ni
<.16 0.30 0.72 0.35 0.31 0.17 0.38 <.34 0.32 1.06

in our plasma code as compared to what has been done for Fe,
but we expect that this could reduce the Ni abundance at most
by about 30 %. However the Ni-L complex occurs between 0.8—
1.5 keV, and its strength (using the current set of abundances) is
about 10-20 % of the strength of the Fe-L complex. Therefore,
remaining uncertainties in the Fe-L complex of the order of
5-10 % could reduce (or increase) the deduced Ni-abundance
by 50 %. The strongest Ne lines near 1 keV are of comparable
strength to the surrounding Fe-L complex. Thus we think that
the Ne abundance is higher than for the other elements.

The data show no evidence for a dependence of abundance
on first ionisation potential (FIP), as Fig. 11 demonstrates. In the
solar corona, elements with low FIP are enhanced with respect
to the photospheric abundance (e.g., Meyer 1985, 1990).

An important difference with the analysis of SWD is the use
of an updated plasma code. Comparison of the two-temperature
fits (Table 1) shows that as a consequence of both the different
ionisation balance and the use of the newer Fe-L calculations,
the abundance of Fe decreased by 35 %. This is much larger than
the statistical accuracy of 10 % in the Fe abundance. Therefore,
for a good determination of the Fe abundance (and also for the
correlated Ne and Ni abundances) it is essential to use the most
recent plasma code.

The ASCA SIS and GIS and the ROSAT PSPC are not sensi-
tive enough to detect significant abundance differences among
the various spectral components. For the hot component, we
cannot exclude an abundance that is twice as high as the cool and
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intermediate components. Such abundances for the hot compo-
nent are, however, still significantly below the solar abundances.
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