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Let X be a projective variety of dimension n defined over an alge-
braically closed field k. For X irreducible and non-singular, Mats-
usaka [Ma] constructed an abelian variety Alb(X) and a morphism
o:X — Alb(X) (called the Albanese variety and mapping respec-
tively), depending on the choice of a base-point on X, which is uni-
versal among the morphisms to abelian varieties (see Lang [La], Serre
[Se] for other constructions). Over the field of complex numbers the
existence of Alb(X) and o was known before, and has a purely
Hodge-theoretic description (see Igusa [I] for the Hodge theoretic
construction). Incidentally, the terminology ‘‘Albanese variety” was
introduced by A. Weil, for reasons explained in his commentary on
the article [1950a] of Volume I of his collected works (see [W]), one of
which is that the paper [Alb] of Albanese defines it (for a surface) as a
quotient of the group of 0-cycles of degree 0 modulo an equivalence
relation.

Let CH"(X) deg0 denote the Chow group of 0-cycles of degree 0 on
X modulo rational equivalence. When X is irreducible and non-sin-
gular, a remarkable feature of the Albanese morphism o is that it
factors through a regular homomorphism ¢ : CH" (X ) geqg — Alb(X),
that is a homomorphism, which when composed with the cycle map
71X — CH"(X)geq0- gives an algebraic morphism. This follows im-
mediately from the fact that an abelian variety does not contain any
rational curve. Thus one can reformulate Matsusaka’s theorem as the
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statement that there is a universal regular quotient of CH"(X)
an abelian variety.

For n=1, ¢ is an isomorphism, and moreover CHI(X)degO =
Pic’(X), the Picard variety of X. Since Pic is a well understood fun-
ctor, one defines the Chow group CH'(X )degO and the generalized
Albanese variety 4'(X) by

deg0 as

12

CH'(X) oo = 4" (X) 2= Pic’(X)

even in the singular case. This has several consequences for the ex-
pected structure of the generalized Albanese variety 4”(X) of a pro-
jective reduced variety X of dimension n. First, it forces the correct
definition of the Chow group CH"(X) deg0> @8 proposed by Levine and
Weibel in [LW]. Second, it shows that A"(X) should be a smooth
commutative algebraic group, that is an extension of an abelian va-
riety by a linear group, where the latter is a product of additive and
multiplicative factors. Third, the cycle map to CH"(X )y 1s only
defined on the regular locus X, of X. Consequently the expected
generalized Albanese mapping should be only defined on X,. But
already for curves, a morphism from X, to a smooth commutative
algebraic group G need not factor through CH'(X) deg0» @8 G contains
rational subvarieties. Therefore, the expected 4”(X) should be con-
structed as a regular quotient of CH"(X)y., in the category of
smooth commutative algebraic groups. Note here that the difficulty
comes from the non-normality of X. In fact for normal surfaces and
for irreducible normal varieties in characteristic zero (see [S]), it is
known that 4”(X) = Alb(X), where X is a resolution of singularities,
and that the cycle map does factor through CH"(X) -

Roitman [R] proved that, when k is a universal domain, ¢ is an
isomorphism precisely when the Chow group of 0-cycles is finite di-
mensional in the sense of Mumford [M]. This result was generalized
for irreducible normal varieties in characteristic zero for 4"(X) =
Alb(X) (see [S]).

In this article we prove the existence of a universal regular quo-
tient of the Chow group of 0-cycles for singular projective varieties.
We note that the term ‘““variety” is used to mean a reduced quasi-
projective scheme of finite type over a field; in particular it need not
be irreducible, or equidimensional. A regular homomorphism is de-
fined in 1.14 and the finite dimensionality of the Chow group in 7.1.

Theorem 1. Let X be a projective variety of dimension n, defined over an
algebraically closed field k.
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(1) There exists a smooth connected commutative algebraic group
A"(X), together with a regular homomorphism ¢ : CH"(X);e,0 —
A"(X), such that ¢ is universal among regular homomorphisms from
CH"(X)gego 0 smooth commutative algebraic groups.

(i1) Over a universal domain k the Chow group is finite dimensional
precisely when ¢ is an isomorphism.

(1) A"(X xx K) = A"(X) xx K, for all algebraically closed fields K
containing k.

We also give a second construction of 4”(X) and ¢ using tran-
scendental arguments when k£ = C. Over k = C, there is a natural
semi-abelian variety

H (X, C(n))

J'(X) = FOH2>-1(X € (n)) + image H>~1(X,Z(n)) ’

that is a commutative algebraic group without additive factors,
whose construction is implicit in Deligne’s article [D]. (For £k < C, one
can in fact define J"(X) over k; see [BS] and also [FW]; a related
algebraic construction of 1-motives is given in [Ra]). From the dis-
cussion above, one sees that 4”(X) cannot be isomorphic to J"(X).
However, there is an Abel-Jacobi mapping

A" CH"(X) gogo — J"(X)

with very good properties. For example, if X is irreducible and non-
singular, then Roitman [R2] proved that the Albanese mapping ¢ is
an isomorphism on torsion subgroups. For any reduced, projective X
of dimension 7, the Abel-Jacobi map 4J" induces an isomorphism on
torsion subgroups as well (see [BiS] for the general result, and [L], [C],
[BPW] for earlier partial results). This indicates that J"(X) should
differ from 4"(X) only by additive factors. This, together with the
classical theory for curves, was the main motivation for our con-
struction. Note that M. Levine also studied Kéhler differentials in the
singular case, see [L].

Theorem 2. Let X be a projective variety over C. For any m > 0, define
the Deligne complex

D (m)y=(0— Zy(m) — Oy — Q¢ — ++ — Q)¢ — 0) ,

and associated cohomology group D"(X) =H>"(X,%(m),). For
n=dimJX, let
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A"(X) = ker(D"(X) — H*(X,Z(n)))

be the kernel of the map induced by the natural surjection
9 (n)y — Z(n)y of complexes. Then

(1) the analytic group A"(X) has an underlying algebraic structure
and for some s > 0 a presentation via an exact sequence of commutative
algebraic groups

0— (G,) — A"(X) — J"(X) — 0

(i) there is a cycle class homomorphism CH"(X) — D"(X), such
that the composite CH"(X) — H*'(X,Z(n)) is the degree homomorp-
hism, induced by the topological cycle class map, and giving rise to a
commutative diagram

CH'(X)ggy —' A(X)

| |

CH"(X) — D'(X)

(iii) the homomorphism ¢ is the universal regular homomorphism
from the Chow group CH"(X )degO to commutative algebraic groups
over C

(iv) ¢ is an isomorphism precisely when the Chow group is finite
dimensional.

We give examples in 3.10 illustrating two pathological properties
of 4"(X). First we give examples of irreducible projective varieties
X and Y of dimensions n and m, respectively, for which
dim(4"™(X x Y)) > dim(4"(X) x A™(Y)). Next, we exhibit a flat
family & — S, with geometrically integral fibres, for which the
dimension of 4" (X;) is not locally constant on S.

We do not study higher dimensional cycles in this article. For
this reason we do not analyze D"(X), A™(X) = ker(D"(X) —
H?"(X,Z(m)) and their relation to the Chow ring CH®*(X,Xqing)
considered by Levine in [L2].

After recalling the definition ([LW]) of the Chow group
CH"(X)geqo and its relation to the Picard group of curves, and a
moving lemma from [BiS], we construct the analytic cycle class map
in section 2 and prove theorem 2, (ii). In section 3 we prove theorem
2, (i) and give a cohomological description for the Lie algebra of
A"(X). The regularity of ¢ : CH"(X) 4,0 — A"(X) and the universal
property (iii) for ¢ are shown by analytic methods in Section 4.

The next two sections, independent of the transcendental argu-
ments used before, contain the algebraic part of the article. We recall
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in Section 5 some of the properties of Picard groups of curves and
apply them to general curves in X. The main technical tool in Section
6 is the boundedness of the dimension of a regular quotient. This
being guaranteed A4”(X) is constructed essentially using Lang’s
arguments [La].

In Section 7 we give two slightly different proofs for part (iv) of
theorem 2 and (ii) of theorem 1, the first one building up on the
transcendental methods, the second one using the algebraic argu-
ments developed in Sections 1, 5 and 6.

1. Chow groups and regular homomorphisms

We begin by recalling the definition of the Chow group of 0-cycles
CH"(X), as given in [LW] (see also [BiS]). As in [BiS], we adopt the
convention that a point lying on a lower dimensional component of X
is deemed to be singular. Let X, denote the (closed) subset of sin-
gular points, and Xee = X — Xjine the complementary open set. The
closure of X 1s the union of the n-dimensional components of X.
The group Z"(X) of 0-cycles is defined to be the free abelian group
on the closed points of X;;. The subgroup R"(X) of cycles rationally
equivalent to 0 is defined using the notion of a Cartier curve.

Definition 1.1. A Cartier curve is a subscheme C C X, defined over k,
such that

(1) C is pure of dimension 1

(i) no component of C is contained in Xing

(i) if' x € C N Xiing, then the ideal of C in Oy x is generated by a
regular sequence (consisting of n — 1 elements).

If C is a Cartier curve on X, with generic points 7y, ..., 1, and Us ¢
is the semilocal ring on C of the points of §= (C N Xqng)U
{n,...,n}, there is a natural map on unit groups

N
Oc.x : @z,c B @@;i,c .
i=0

Define R(C,X) = image Oc x. For f € R(C,X), define the divisor of
(f)c as follows: let C; denote the maximal Cohen-Macaulay sub-
scheme of C supported on the component with generic point #;. Then
for any x € C; the map

(Qx,C,- (Qﬂiaci = (9’7i~,c
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is the injection of a Cohen-Macaulay local ring of dimension 1 into its
total quotient ring. If f; is the component of f in O, ¢, then f; = a, /b,
for some non zero-divisors ay, by € Oy ¢,. Define

Z(flc *ZZ Orc;/axOxc;) — UOxc,/b:0x ) - [x] -

i=1 xeC;

Standard arguments imply that this is well-defined (i.e., the coefficient
of [x] is independent of the choice of the representation f; = ay/by,
and vanishes for all but a finite number of x).

Suppose C is reduced. Then in the above considerations, O, ¢, is
an integral domain with quotient field O, ¢. If vy,...,v, are the
discrete valuations of (), ¢ centered at x, then the multiplicity of x in

(f)g, is

i

(1.1) U(Oxc,/axOxc,) — U Oxc,/b:0xc,) = Zvj(fi)

Jj=1

(compare [Ful], Example A.3.1.). In fact, let R be the integral closure
of O = O, in O, c. The Chinese remainder theorem implies that

m
¢(R/aR) Z (ay)

and similarly for b,. Multiplying a, and b, by the same element of O
we may assume that both a,R and bR are contained in O, and

(0/a,0) + L(R/O) = £(R/ayR) + £(ayR/a,0) .
Since a, # 0 the second terms on both sides are equal.

Definition 1.2. Let U C Xyeg be an open dense subscheme. R"(X,U) is
defined to be the subgroup of Z"(U) generated by elements (f). as C
ranges over all Cartier curves with C N\ U dense in C, and f € R(C,X)
with (). € Z"(U). For U = Xyeg we write R"(X) instead of R" (X, Xreg)
and define

CH"(X) = Z"(X)/R"(X) .

Mapping a point x € Xy, to its rational equivalence class defines a map

7t Xpeg — CH"(X) .
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If Uy, ..., U, denote the irreducible components of Xreg, then Z"(X)geqo
and CH"(X)geqq denote the subgroups of Z"(X) and CH"(X), respec-
tively, of cycles o with deg(d|,;) =0 fori=1,...,r

As noted in [BiS], lemma 1.3 of [LW] allows one to restrict to
considering only curves C such that C N X, has no embedded points,
and any irreducible component C’ of C which lies entirely in Xpee
occurs in C with multiplicity 1. The moving lemmas 2.2.2 and 2.2.3 of
[BiS] allow stronger restrictions on C:

Lemma 1.3. Let A C Xging be a closed subset of dimension < n — 2, and
let D C X be a closed subset of dimension < n — 1. Then any element
0 € R"(X) can be written in the form 6 = (f). for a single (possibly
reducible) Cartier curve C, such that

(a) C is reduced

(byCnAa=10

(c) CN D is empty or consists of finitely many points.

Corollary 1.4. If U C Xyeg is an open and dense subscheme, then

CH"(X) = Z"(U)/R"(X, U)
and CH"(X)degO = Zn(U)degO/Rn(X’ U) :

Proof. First note that the zero cycles supported on U generate
CH"(X) since the corresponding assertion holds true for curves. The
moving lemma 1.3 for D =X — U implies that R"(X)NZ"(U) =
R'(X,U). O

Remark 1.5. Let X denote the union of the n-dimensional irre-
ducible components of X, and let X" be the unlon of the lower
dimensional components. Applying the corollary to X and the open
subset

U= X(n) - Xsing =X - )(sing - X(n) - Xs(i’;)g )
we see that the natural map from CH”(X) to CH"(X™) is surjective.
It seems plausible that a stronger form of lemma 1.3 holds, where 4 is
allowed to be any closed subset of X of codimension >2 which is
disjoint from supp(d). If this is true, then applying it to X with
A=X"NX<" one sees that for any & € R*(X")NZ"(X) there
exists a reduced Cartier curve C in X, disjoint from 4, and
f € R(C,X™) with § = (f),. Then C is also a Cartier curve on X, and
5 € R"(X). We deduce that CH"(X) — CH"(X™) is an isomorphism.
We have as yet been unable to prove this.
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Remark 1.6. Keeping the notation from the previous remark, we note
further that for k = C, the natural maps

H>(X,Z(n)) — H*(X",Z(n)), D"(X) — D"(X"),
A(X) — A"(X™)

are isomorphisms, since X<" has constructible cohomological
dimension <2(n — 1) and coherent cohomological dimension <n — 1.

As reflected by the notation, R(C,X) depends on the pair (C,X),
and is not necessarily intrinsic to C. Since we have not imposed any
unit condition at singular points of C which lie in X, the functions
f € R(C,X) are defined on some curve C’, birational to C.

Definition 1.7. Let C' be a reduced projective curve and 1 : C' — X be a
morphism. Then (C', 1) will be called admissible if 1 : C' — C = 1(C") is
birational, if C is a reduced Cartier curve and if for some open neigh-
bourhood W of Xging the restriction of 1 to 17N (W) is a closed embedding.

If (C’',1) is admissible one has an inclusion R(C',C") C R(C,X)
which is an equality if 17! (X;eg) is non-singular.

Lemma 1.8. Let (C',1) be admissible. Then there exists a homomor-
phism (of abstract groups)

n: PiCO(Cl) = CH](C,)degO - CH”(X)degO

which maps the isomorphism class of Oc:(p — p') to y(1(p)) — y(1(p)).
Proof. By definition Pic(C’") = Z'(C’,,)/R(C’,C’) and one has a map

reg

yor1:ZY(Cl,) — CH"(X) .

reg

The equality (1.1) shows that for f € R(C’,C’) the image of (f) in
CH"(X) is zero. ]

Notations 1.9. Let Y be a non-singular scheme with irreducible
components Y1, ..., ¥, let G be an abstract or an algebraic group, and
let 7 : Y — G a map or morphism.

(i) After choosing base points p; € ¥; a map

Tt 2 S™(Y) ::S’”(LSJY,) — G,

i=1
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is defined by 7, (v1, - .., ¥m) = D11 () — 7(pp(y)))> where p(j) = i if
Yj € Y.

(i) To avoid the reference to base points, we will frequently use
different maps:

7'5(7>:Hy:UY,-><Y,-—>G
=1
is defined by 77 (y,)') = n(y) — =n(y/), and =) : S"(Tly) — G is
the composite S”(Ily) — $™(G) = G.
If G is an algebraic group, then the images of () lie in the connected
component of 0. In particular for U open and dense in X we will
frequently consider

y) = y(f) Iy — CH”(X)dego
and Ym = yU,m : Sm(U) B CH"(X)degO '

Lemma 1.10. Let G be a d-dimensional smooth connected commutative
algebraic group and let T C G be a constructible subset which generates
G as an abstract group. Then

(i) the image of the composite map S*(I') — S¢(G) 0 Gis dense

(i) $2(I') — S2(G) 25 G is surjective

(iii) if B is a non-singular scheme with connected components
By,...,By and if 9:B — G is a morphism with image " then the
morphism

9\ s4(M0p) = 87 (UB,. x B,~> .G

i=1

with 0 ((b1,B)), ..., (ba, b)) = 30 (9(b;) — 9(BL)) is surjective.
Proof. Let T'j,..., Ty be the irreducible components of the closure
I' of T, and let I; =I;NT. It is sufficient to find non-negative
integers dy,...,d; with Y ,d; <d such that the image of
S4(T) x -+ x 8%(Ty) is dense in G. To this end, we may assume that
the identity of G lies on each I7;.

Let '} be the closure of the image of $"(T';) in G. Since I'] C [}
there exists some d; < d with [" = T%*™! ‘and d is minimal with this
property. Hence I'"" = I and T'Y' is a subgroup of G of dimension
lagger than or equal to d;. If s =1, i.e. if T is irreducible, then
M=

In general, replacing G by G/ l:f‘ one obtains 1.10 (i) by induction
on s.
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The second part is an easy consequence of (i). Let U be an open
dense subset of G, contained in $4(I'y) x --- x §%(T). Given p € G
the intersection of the two open sets U and p — U is non-empty and
hence there are points a,b € U with p — b = a.

Replacing B by some open subscheme we may assume for (iii) that
the image of B; is dense in I;. By (i) one finds dj,...,d; with
>, d; = d such that the image of the composite

S (B)) x -+ x §%(B;) — §4(I') — §(G) — G

contains a subset U which is open in G. Given p € G the intersection
of U and of p+ U is non empty and hence p=a — b for two points
a and b in U. Obviously a — b lies in the image of 19( O

Corollary 1.11. Let C' be a reduced curve, let By,...,Bs be the con-
nected componenls of B=C,, let b; € B; be base points and let
¥ : B — Pic’(C") be the morphism with 19|B( ) =C0c/(b—"b}). Then
there exists some open connected subscheme W of Sg(B), for

g = dimy (Pic’(C")), such that Oy = 9|, is an open embedding.

Proof. By 1.10 we find some W with ¥y (W) open and Jy finite over
its image. On the other hand, any fibre of ¥, is an open subset of
P(H°(C', Oc/(D))) for some divisor D on C’; hence the projective
spaces corresponding to points of ¥y (W) must be 0-dimensional. []

Lemma 1.12. Let G be a smooth commutative algebraic group,
U C Xy an open and dense subset, and n : U — G a morphism. Then
the following two conditions are equivalent.

(@) There exists a homomorphism (of abstract groups)
¢ CH”(X)dego — G such that ') = ¢ 095 (as maps on the closed
points).

(b) For all admissible pairs (C',1) with B = (1~ (U))reg dense in C'
there exists a homomorphism of algebraic groups  : Pic" (-G
such that the diagram

(=)
m, 2 PicC)

commutes. Here ¥ : B — Pic(C') denotes the natural morphism, map-
ping a point p to the isomorphism class of the invertible sheaf Oc (p).
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Moreover, if the equivalent conditions (a) and (b) are true, the mor-
phism  in (b) factors as

Pic’(C’) L CH" (X)) gego
v\ S ¢
G

and the image of ¢ : CH"(X)geqo — G is contained in the connected
component of the identity of G.

Proof. Assume (a) and let (C’, 1) be admissible and g = dim(Pic’(C")).
Choosing base points b € B;, one finds by 1.11 an open subscheme
W of §9(B) such that the morphism ¥y : W — Pic’(C’) is an open
embedding. By 1.8 one obtains a homomorphism

Yo Pic®(C) = CH"(X)yogp — G

of abstract groups. By assumption 7(~) is a morphism of schemes and
the same holds true for 7(7) o1 : Iz — G. Thereby the restriction of
Y to the open subscheme W C Pic’(C’) is a morphism of schemes,
and being a homomorphism on closed points iy is a morphism of
algebraic groups.

Since each point of X, lies on some Cartier curve, the images of
the connected algebraic groups Pic’(C’) generate CH" (X )dego and the
image ¢(CH"(X)4.40) lies in the connected component of G, which
contains the identity. R

The morphism 7{~) induces a map ¢ : Z"(U) gego — G and it re-
mains to verify that (b) implies that ¢(R"(X,U)) =0. By 1.3 each
0 € R"(X,U) is of the form (f) for a reduced Cartier curve C. There
exists an admissible pair (C’, 1) with 1(C") = C and with 1! (X;¢,) non-
singular. (f). is the image of (f). in Z"(U) and by assumption
1o n(-) factors through Pic’(C"). O

Corollary 1.13. Let ¢ : CH"(X)4e00 — G be a homomorphism to a
smooth commutative algebraic group G. Then the following conditions
are equivalent.

() ¢ o) Iy, — G is a morphism of schemes.

(i1) There exists an open dense subscheme U of X such that
¢ o y<_)|HU is a morphism of schemes.

(iii) Given a base point p; on each irreducible component U! of some
open dense subscheme U of Xwo, the map n:U — G with
n\Ui,(x) = ¢(x — p;) is a morphism of schemes.



606 H. Esnault et al.

(iv) Given any m > 0 and base points p; on each irreducible com-
ponent U] of some open dense subscheme U of Xwg, ¢o07,:
S"™(U) — G is a morphism of schemes.

Of course, “n is a morphism of schemes” stands for “there exists a
morphism of schemes whose restriction to closed points coincides
with 7°, an abuse of terminology which we will repeat throughout
this article.

Proof. Obviously (i) implies (ii). For a given U C X, the equivalence
of (i1), (i), and (iv) is an easy exercise. In fact, the morphism 7 in 1.13
(iii) is just ¢ o y;.

Assume that (iii) holds true for some U. We will show that the
corresponding property holds true for X, itself. To this aim consider
the map 7 : Xy — G With 7(x) = ¢(x — p;), for x in the closure of U]
in X,e,, and the graph I'; of @ in X¢; x G. By definition, I'; N U x Gis
the graph I';. Let Z be the closure of I'; in X¢e X G.

I'z is contained in Z. In fact, given a point x € X, one
can find a Cartier curve C through x with U N C dense in C and
with B = C NXe non-singular. By lemma 1.12 the morphism
(n|CmU) : Meny — G factors through a morphism Pic’(C) — G of
algebraic groups and, in particular, it extends to a morphism
Il — G. Again this implies that the restriction of & to B is a morp-
hism, hence I'; N B x G is closed and therefore contained in Z.

By construction the morphism p; : Z — X, induced by the pro-
jection is birational and surjective. Let V' C X, be the largest open
subscheme with p; | pri(r) AN isomorphism. Then 7|, is a morphism of
schemes and codlmXreg (Xreg — V) > 2. By theorem 1 in [BLR], 4.4, n\V
extends to a morphism X, — G. The graph of this morphism is
contained in Z, hence it is equal to Z and 7 is a morphism. OJ

We end this section by giving the definition of a regular homo-
morphism, used already in the formulation of the main theorems in
the introduction.

Definition 1.14. Let G be a smooth commutative algebraic group. A ho-
momorphism ¢ : CH"(X) o090 — G (of abstract groups) is called a regular
homomorphism, if one of the equivalent conditions in 1.13 holds true.

Lemma 1.15. The image of a regular  homomorphism
¢ : CH"(X) o0 — G is a connected algebraic subgroup of G.

Proof. Let G' denote the Zariski closure of ¢(CH"(X)geq)- By 1.12,

G' is connected and it is generated by the image of Iy, — G'. Hence

1.15 follows from the third part of lemma 1.10. O
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2. The cycle class map

Throughout the next three sections we will assume that the ground
field £ is the field of complex numbers. Oy and QY /T will respectively
denote the sheaves of holomorphic functions and (analytic Kéhler)
differential m-forms. As in the introduction consider the Deligne
complex

I(n)y = (0= Zx(n) = Ox = Qy )¢ = - — Y — 0) ,

and associated cohomology group D"(X) = H*'(X,Z%(n),). In this
section we construct the cycle class homomorphism CH"(X) —
D"(X), using Cartier curves C in X.

By the moving lemma 1.3 it will be sufficient to consider reduced
Cartier curves C in X. Note, however, that we do not have that C is a
local complete intersection in X, in general; this is only given to hold
at points of C N Xgine. This leads to a slight technical difficulty. We
will need to define ‘Gysin” maps for Cartier curves C in X. These are
directly defined in case C is a local complete intersection, and in
general one has first to make a sequence of point blow ups centered
in X, to reduce to this special case. Indeed, even to show that the
cycle homomorphism Z"(X) — D"(X) respects rational equivalence,
a similar procedure needs to be followed.

Note that the exterior derivative yields a map of complexes
P (n)y — Qyc[—n], and there is an obvious map Z(n)y — Z(n)y.

Lemma 2.1. For x € X;q,, there is a unique element [x] € H{ZJ’C’} (X,2(n)y)
which maps to the topological cycle class of x in H{z”} (X,Z(n)) as well as
to the “Hodge cycle class™ of x in fo} (X, QX/C)

This gives rise to a well-defined cycle class homomorphism
Z"(X) — D'(X), whose composition with D"(X) — H*'(X,Z(n)) is the
topological cycle class homomorphism.

Proof. The element [x] exists because the topological and Hodge
cycle classes both map to the de Rham cycle class of x in
H{z;’}(X C) = {x}(X QY ¢), by a standard local computation. See
[EV], §7, for example (though X is singular, the terms in the above

computation depend only on a neighbourhood of x in X, and we have
X € Xreg; hence [EV], §7 is applicable). O
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Lemma 2.2. In the above situation, if dim X = 1, then there is a natural
quasi-isomorphism (1), = Oy[—1|, yielding an identification
Pic(X) = D'(X) (and hence also Pic’(X) = A'(X)). Under the id-
entification, the class of a smooth point [x] € D'(X) corresponds to the
class of the invertible sheaf Ox(x).

Proof. The natural quasi-isomorphism is equivalent to the exactness
of the exponential sequence. The description of the class of a point x
as the class of the invertible sheaf (Ox(x) is also a standard local
computation. O

As we will see in lemma 3.2 the cycle map X,.; — D"(X) in lemma
2.1 is trivially analytic. Our point will be to see that it is algebraic.

First we argue as in [BiS], in order to show that the map
Z"(X) — D"(X) factors through CH"(X). We follow the convention
that the truncated de Rham complex of Kéhler differentials

Qe = (0— Cx — - — Qb —0)

has Oy placed in degree 0; thus we have an exact sequence of com-
plexes
0 — Qye[-1] — Z(n)y — Z(n)y — 0 .

Lemma 2.3. Let X be a projective variety of dimension n over C, and
C C X be a reduced Cartier curve which is a local complete intersection
in X. Then there is a commutative diagram

l

DY(C) — D'(X)

! |

H*(C,Z(1)) == HY(X,Z(n))

ALI(S) — Z"(X)
(

Proof. Consider the local (hyper) cohomology sheaves %Jc(@ (n),) of
the complex Z(n), with support in C. We claim that for any point
x € C, the stalks #.(Z(n)y), vanish for j# 2n — 1, unless x is a
singular point of C. Indeed, if x € C is a non-singular point (so that
X € Xpeo as well), then there is a long exact sequence of stalks
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— AL E)y), @ AT e),
—)]fj 1((1:)() —>ch(,@( )X)x
— HL(Z(n)y), ® AL (X je), — He(Cx), —

However #¢(Z(n)y), = #(Cx), = 0 fori #2n =2, #F*(Z(n)y)
injects into %2” 2((]3;() and #-(Qy,¢), =0 unless i =n—1, for a
non-singular pointx € C as above This implies that #7.(Z(n) ), = 0
for j #2n— 1, for such x. Also # 2 (% (n),), fits into an exact
sequence

0 — HEACZ(n)y), — HE (D (0),)

— A 1( X/(E) — 0,

X

with # 2 2(Cx/Z(n),), = C/Z(1) = C*.
Thus, #[.(Z(n)y) is supported at a finite set of points, if
j # 2n — 1. Hence in the local-to-global spectral sequence

EyY = HP(C, A (D (n)y)) = HZ(X, D (n)y)

we have E5? = 0 for p > 0, ¢ # 2n — 1. In particular, there is a well-
defined injective map

o HY(C, A E ™ (Z(n)y)) — HE (X, Z(n)y) .
We will next construct a natural map of sheaves on C
Op — HE™(D(n)y).

The desired Gysin map D'(C) — D"(X) is then defined to be the
composition

HY(C,0¢) — H'(C, ¢ (2 (n)y))
— HZ'(X, Z(n)y) — H(X,2(n)y) = D"(X)

To construct the map on sheaves Of — #2~1(Z(n),), we argue
locally, as follows. Let U be an affine neighbourhood in X of a point
x € C, on which the ideal of C is generated by a regular sequence of
functions fi,...,f, 1, determining a morphism f : U — AL such
that /~'(0) = C N U. Note that there are well-defined sections (of the
skyscraper sheaves)

% e F(%%}_Z(Z(n)%q)) =2Z(1), Bel (Al (QN ve))
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which  have the same image 7)€ F(é‘/%g}z( -t /c))
F(%{O} Q; e ‘/cc))7 under the obvious maps, and such that B is an-

nihilated by “the 1deal of 0 in F(@N 1), for the natural module
structure on I'(A7, hQr, e /c)) In fact, these conditions uniquely

determine such a pair of sections (o, f) up to sign, and there is a
standard choice, with f determined by dlog(z;) A --- A dlog(z,—1),
where z; are the coordinate functions, so that f is the cup product of
the local divisor classes

dlog(z_,) F(AZ: I,Cé@xl‘An 1((/{2 0},9#\" 1/(]:))
(2'1) F(A’}C 17 %{z/ O}(QA" l/q;)) :
Hence y is also determined. Now consider

frae (U, 3(/2cn72( (m)y)), fBelU,x¢ I(Qx/c))
and f*y e T(U, #¢7 (Q]e))

where f*o and f*f both map to f*y, and f*f is annihilated by any
section of the ideal sheaf of CN U in U. Thus f*o and f*f yield maps
of sheaves

Z(W)e |y — HEHZ(n)y) lu, Oclv — A& Qo) v s
giving rise to a commutative diagram of sheaves

ZW)cly — AT (Z(n)y) v

|

Ocly  — AL Q) lu
There is a long exact sequence of sheaves on C

o AL ) — H Q) — A (D))
— A B)y) — -

Hence from the exponential sequence
0— Z(1)p — O —2 05— 0

and the above commutative diagram, we deduce that there is a well-
defined map of sheaves
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* 2n—1
Ul — A (Z(n)x) lu

We will now show that these locally defined maps patch together to
give well-defined sheaf maps

(22)  Oc— AP (Qy)e) and  Op — AT (D(n)y) -

To do this, it suffices to show that the classes f*o, f*f and f*y defined
above are in fact independent of the map f, i.e., of the choice of
generators for the ideal of C in U. This too can be seen “universally”’.
Since the ideal sheaf of C in X is locally generated by a regular
sequence, any two such sets of local generators for .#¢ on the affine
open set U differ by the operation of an element of GL,_(Ox(V)),
for some neighbourhood ¥V of CNU in U. Hence it suffices to
show that if p:GL,_;(C) x €' — @' is the projection, and
m:GL,_(C) x €' — "' the map given by the operation of
GL,_(C) on €"' by invertible linear transformations, then
prau=m*a, p*f = m*p, and hence also p*y = m*™y. We leave the veri-
fication of this to the reader, as a simple application of the Kiinneth
formula.

Finally, note that for U = X;¢;, we have a commutative diagram
with exact rows

N
(Z(n

0— —_— Oc |lu —_— Ot lu — 0

IR

— A L(n)y) lu—HEHe) lv— HE (D (n)x) [v— 0

where the left vertical arrow is an isomorphism. For a smooth point
x € C, apply the functors E%”E  to the rows of the above diagram, and
note that %{{ 1(Z(1)¢) = 0for j # 2, and jf’{ 1(Oc) = 0for j #1. We
then obtain another diagram with exact rows

0— H1y(Oc) — H 1y (0F) — Ay (Z()e)  —0

l I

0— A G(HE Q) — Hly(HE(Ln)y))— A (AT (Z(n)y))— 0

The bottom row may be identified (see [Ha2], III, Ex. 8.7, pg. 161)
with the exact sequence

0— AU (QFe) — A1 (Z(n)y) — AT (Z(n)y) — O .
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We claim that, under the above identification, the local cycle class of
xin A# {x}(@( )C) H {x}(@*) maps to the corresponding local cycle
class of x in # {X}(@(n) ). Choosing a suitable regular system of
parameters on X at x, we reduce to checking this in the special case
when x € X is the origin 0 € C", and the curve C is the z,-axis, given
by the vanishing of the first n — 1 coordinates. We again leave this
verification to the reader.
This means that, in the commutative diagram

(C,0r) — HYC,0:) =D (C)

|

HE (X, 2(n)y) — D'(x)

{x}

the cycle class of x in D'(C) maps to that of x in D"(X). Hence we
have shown that there is a commutative diagram

pc) & prx)

It remains to show that the Gysin map Pic(C) = D!'(C) — D"*(X) is
compatible with the topological Gysin map H?*(C,Z(1)) —
H*(X,Z(n)). Since Z'(C) — D'(C) is surjective, the compatibility of
the two Gysin maps is clear from the fact that each one maps the class
of x on C to the corresponding class on X. N

Remark 2.4. Assume that the local complete intersection curve C lies
in the Cohen-Macaulay locus Xcy of X. Then the first sheaf map in
(2.2) factors as

(2.3) Oc — Exty ' (Oc, Uy o) — AL ( Qi) -
To see this, note that
n—1 n—1 n—1 n—1
per(mg ey (0o 2t o)) < T(a 275 (U o))
as it is the product of the classes dlog(z;) in (2.1). Further the map
U— Ag !'is flat in a neighbourhood of CN U, as it is equidimen-

sional. Thus f*p defines a class in I'(U, &xt’y 1(0%, X/(r)) mapping to
LU, 7 (Q0))- As
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1 _
EX‘[" (@)X 1((9GL,1 | )X{O}’QGL,, {(©)x C”’I/C)

C HEL}:—I(C)X{O}(GLnil(C) x ¢! QZ}LI,, (@xee)) o

the class f*f defines the factorization (2.3).

Lemma 2.5. Let X be projective of dimension n over C, f:Y — X
the blow up of a smooth point x € X. Then the natural maps
fe :CH"(Y) — CH"(X) and f*:D"(X)— D"(Y) are isomorphisms,
and there is a commutative diagram

z(Y) — D'(Y)
NP
7(X) — D'(X)

Proof. The isomorphism on Chow groups is easy to prove, using the
fact that the exceptional divisor E is a projective space (the details are
in [BiS]). That /™ : D"(X) — D"(Y) is an isomorphism is also easy to
see, for the same reason, using also the exact sequence

So we need to prove thatif y € Y is any smooth point, then its class in
D"(Y) is the inverse image of that of f(y) in D"(X). This is clear if
f() #x. If f(y) =x, we may argue as follows. There is a commu-
tative diagram with exact rows

0 — H{ (Y, 2(n)y) — H (Y, Z(n)) ® H}y, (Y, Q5 ¢) — H (Y, C(n)) — 0

|

0— HF(Y,2(n)y) — HEF(Y,Z(n)) @ HA(Y, Q) ¢) — HF(Y,C(n)) — 0
il 7 |
0 — H{L (X, Z(n)y) — HI (X, Z(n) @ H}\y (X, Qy j¢) — Hy (X, C(n)) — 0
Here the downward vertical arrows are the natural maps (“‘increase
support”). It is standard that the topological local cycle classes of x
and y have the same images in H3"(Y,Z(n)). Similarly, the images in
HMY, Qy/c) of the local cycle classes of x and y in Hodge coho-
mology are also known to be equal; for example, this follows from
the- existence of a Gysin map f. : H. }(Y Qy¢) — {”x}(X7 Qe
which maps the local class of y to that of x, and which factors through
()"
) —

HE(Y,Qy¢) — {x}(X Q) -



614 H. Esnault et al.

Thus f*[x] = [y] € HZ(Y,Z%(n)y), and hence a similar equality is
valid in D"(Y) as claimed. O

Lemma 2.6. The map Z"(X) — D"(X) factors through CH"(X), and
hence determines a homomorphism ¢ : CH"(X ) goqg — A" (X).

Proof. This is similar to the corresponding proof in [BiS]. Let C C X
be a reduced Cartier curve, and f € R(C,X). Let n: Y — X be a
composition of blow ups at smooth points so that the strict transform
C of C in Y satisfies Csing =Cn Yoing =2 C N Xging. Then

R(C,X)=R(C,Y)=R(C,C) ,

and n,.(f)e = (f)c € Z"(X). Now from lemma 2.2, (f)z—0 € D"(Y),
and so from lemma 2.5, (f). = n.(f)c = 0 € D"(X). O

Corollary 2.7. If f:Y — X is a composition of blow ups at smooth
points, then we have a commutative diagram

fo| = = T .

CH"(X) — D'(X

~

CH'(Y) — D'(Y)
)

Corollary 2.8. For any reduced Cartier curve C C X, there are com-
mutative diagrams

Z'(C) SN 7"(X)

Pic(c) 2 cHr(x) Pic”(C) —  CH"(X)geqo

% and o~

pi(c) & p) A(C) —  A(X)
Gysin

H*(C,Z(1)) —— H”(X,Z(n))

Proof. As in the proof of lemma 2.6, by a compositon of blow-ups at
smooth points, we reduce to the case when C is a local complete
intersection in X. Then lemma 2.3 implies the corollary. O
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Considering embedded resolution of singularities one obtains
from 2.7 and 2.8 a second construction of the Gysin map in 1.8 over
C. At the same time, it gives the compatibility of this map with the
Gysin map for the Deligne cohomology, constructed in 2.3.

3. Some general properties of 4"(X) over C

It is shown in [BiS] that if X is projective over C of dimension #, then
there is a natural surjection (which is referred to in [BiS] as the Abel-
Jacobi map)

AT} - CH"(X) gogo — J"(X)
_ H” (X, €(n))
" FOHM-1(X C(n)) 4 image H> (X, Z(n)) ’

where by results of Deligne, J”(X) is a semi-abelian variety (since
the non-zero Hodge numbers of H*'~!(X Z(n)) lie in the set

{(_LO)? (07 _1)7 (_17 _1)})'

Lemma 3.1. Let X be projective of dimension n over C. Then there is a
natural surjection Y : A"(X) — J"(X), whose kernel is a C-vector
space. A"(X) has a unique structure as an algebraic group such that s is
a morphism of algebraic groups, with additive kernel (i.e., with kernel
isomorphic to a direct sum of copies of G,).

Proof. By a result of Bloom and Herrera [BH], the natural map
H* (X, C(n)) — Hpyp ' (X/C) = H*' (X, Q%)

is split injective. As explained in [D] (9.3.2), if X, — X is a suitable
hypercovering by a smooth proper simplicial scheme, the splitting
may be given by the composition

Hpp '(X/€) — Hpp ' (X./C) = H* 7! (X,, €(n)) = H' (X, C(n)) .

From this description, the splitting is a map of filtered vector spaces,
where H*'~!(X,C(n)) has the Hodge filtration for the mixed Hodge
structure while H7% !(X/C) has the truncation filtration (i.e., the
filtration béte).
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Hence we obtain a commutative diagram

H» (X, C(n)) ———— H* (X, C(n))/F'H* (X, C(n))
N 7y
H”' (X, Q)

The map o comes from C(n) — Q% ¢ — Qy/¢, whereas ¥ comes from
the fact that QS( ¢ 1s a simplicial sheaf and the definition of
F'H?>-1(X,C(n)). The map ¥ induces the map y taking quotients
modulo H*~!(X,Z(n)). Note that by weight considerations, the
natural map

H” (X, Z(n)) — H* 1 (X, C(n))/F°H* (X, C(n))

has a torsion kernel. Hence the kernels of iy and ¢ are the same (and
the latter is a C-vector space). This represents 4”(X) as an analytic
group extension of the semi-abelian variety J”(X) by an additive
group G/, for some r, and hence as an analytic group extension of an
abelian variety by a group G/, x G},. As noted in [D], (10.1.3.3), for
any abelian variety 4 over €, the isomorphism classes of analytic and
algebraic groups extensions of 4 by either G, or by G,, coincide (as a
consequence of GAGA); hence a similar property is valid for exten-
sions by G}, x G;,. This implies that 4”(X) has a unique algebraic
structure such that i is a homomorphism of algebraic groups over C,
as claimed. O

The following argument is fairly standard, though we do not have a
specific reference for it.

Lemma 3.2. Considering D"(X) as an analytic Lie group, with identity
component A"(X), the composite map

Xeg — Z"(X) — D'"(X),
x + cycle class of x in D"(X) ,
is analytic.

Proof. More generally, if Y is any irreducible non-singular variety
(or connected complex manifold) together with a morphism (holo-
morphic map) f : ¥ — X, we will show that

v — cycle class in D"(X) of f(y)
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is analytic. The graph I'y of f* determines a closed analytic sub-
manifold of ¥ x X which is purely of codimension » and contained in
Y X Xpeg. As such, I'y has a cycle class

[T/ € D"(Y x X) =H"(Y x X, 2(n)y, ) ,
namely the image of the localized cycle class defined as in [EV], §7 in
]I_I%Vlf(y X X7 ‘@(n)YXX) - ]I_I%’;(Y X le g(n)YxX)

where X’ — X is any desingularization. If 7 : ¥ x X — Y is the pro-
jection, one considers the image of this class [I'y] under the map

HY (Y X X, % (n)y,y) — H(Y,D"(X)y) ,
with
D'(X)y = R"n,(0 — Zyxx — Oyxx
- Q;xx/y - T Qr)l/;lX/Y —0) .
One has the following properties:
(i) R'n,Z(n) is the constant sheaf on Y with fibre H'(X, Z(n))
(ii) the sheaf

R'7.(0 — Oyx — Q%/XX/Y - T Qr)l’;lX/Y —0)

coincides with the sheaf of holomorphic sections on Y of the trivial
vector bundle with fibre

n—1

]Hi(X7(0—>@X—> )l(/q:—> —>Qx/¢—>0))

(iii) from (i) and (ii), one deduces that D"(X), is the sheaf of
holomorphic maps from Y to D"(X), considered as a commutative
analytic Lie group.

It now remains to note that, by an obvious functoriality property of
the cycle class [EV], §7, the above section of D"(X),, i.e., the holo-
morphic map ¥ — D"(X), is just

y +— cycle class of f(y) in D"(X) .

O

For X a curve, as in (i) of the next corollary, note that Pic’(X) has the
natural algebraic structure obtained by representing a suitable Picard
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functor. In particular, given an algebraic family of divisors (of degree
0) on X parametrized by a variety (or scheme) 7, the induced map
T — Pic’(X) is automatically a morphism. On the other hand, 4' (X)
has the algebraic structure given by lemma 3.1. Hence, a priori, the
induced map T — A4'(X) obtained from such a family is only analytic,
since it is essentially given by integration. From (i) of the corollary,
it will follow that it is in fact algebraic. The content of (ii) of the
corollary is similar.

Corollary 3.3. (i) If X is a curve, then the natural isomorphism

Pic’(X) = 4" (X) of lemma 2.2 is an isomorphism of algebraic groups.
(i) In general, if C C X is a reduced Cartier curve, then the induced

homomorphism A'(C) — A"(X) of corollary 2.8 is algebraic.

Proof. (i) The identification is certainly analytic, and in both cases,
when one represents the algebraic group as an extension of an abelian
variety by a commutative affine group, the abelian variety in question
is just Pic’(X) = J(X) = D'(X), the Jacobian of the normalized curve
X (by which we mean the product of the Jacobians of the connected
components of X). Now one argues that the identification must be
algebraic as well, since one has the one-one correspondence between
analytic and algebraic extensions of an abelian variety by G/, x G;,.

(i) Let X — X be a desingularization of X such that the
proper transform C of C is the normalization of C. First note that one
has a factorization

A(C) — A"X)
| |
J(C) — J'(X)

l l

A(C) — ()

where all maps are analytic group homomorphisms, and the vertical
ones are algebraic (lemma 3.1). Indeed the map C — X induces
a morphism of mixed Hodge structures H'(C) — H*'~!(X), and
therefore an analytic group homomorphism J!(C) — J"(X), which
has to be algebraic as it is compatible with its abelian part
JY(C) — 4"(X) and all analytic group homomorphisms G, — G,
are algebraic. Similarly, all group homomorphisms G — GZ are
algebraic, and therefore 4'(C) — 4"(X) is algebraic as well. O

Definition 3.4. For any commutative algebraic group A over C, let Q(A)
denote the dual vector space to the Lie algebra Lie(4). We may then
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identify Q(A) with the vector space of (closed) translation invariant
regular 1-forms on A.

Our next goal is to give a description of Q(4" (X)), generalizing the
fact that for a non-singular projective variety X, Q(4"(X)) is the
space of holomorphic 1-forms on X (since in that case, A”(X) is the
Albanese variety of X).

Lemma 3.5. Let X be projective of dimension n over C, and let wy
denote the dualizing module of X (in the sense of [Ha], Ch. 111, §7). Let
X" be the union of the n-dimensional components of X, and let wy)
denote its dualizing module.

() wy is annihilated by the ideal sheaf of X\ in X. With its natural
induced structure as an Oyn-module, wyxy = wyw, and is a torsion-free
Oyw-module. Hence for any coherent Ox-module %, the sheaf
Homy, (7, wx) is also naturally an O yw-module, which is Oy -torsion
free, and for any dense open set U C X", the restriction map

HOIHX(%, O)X) — HOIIIU<9'T ‘U,COX ‘U)

is injective. In particular, taking U = Xieg, s0 that oy |y = Q’l’]/c, and
taking F = Q}’{/CIE, we have that HomX(QS’{/(]E,a)X) may be identified
with a C-subspace of the vector space of holomorphic 1-forms on Xeg
which are meromorphic on X,

(i) Q(A"(X)) is naturally identified with the subspace of
HomX(Q"X_/(IE, wy) consisting of closed 1-forms.

(iii) When n =1,

Q(4'(X)) = Q(Pic" (X)) = H'(X, wy) .

(iv) Let j: Xem — X be the inclusion of the open subset of Cohen-
Macaulay points. The natural map

Q(A"(X)) — (closed 1-forms in HomX(Q;’(7(1E,j’fj*wX))
is an isomorphism, where j7' denotes the meromorphic direct image.

Proof. (i) We note first that wy = wyw, and the latter is a torsion-free
Oyw-module. Indeed, if we fix a projective embedding X—IPY, then

Wy = é)xtg;"(@x, wﬂ,g),

and there is an analogous formula for wy. As in [Ha], we see by
Serre duality on Py that &xt'(7, wﬂ,g) =0 for all i <N —n for any
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coherent sheaf # supported in dimension < n. This gives the desired
isomorphism, and implies that any local section of Oy, which is a
non zero-divisor, is also a non zero-divisor on &czN "(Ox,wpy). This
means exactly that wyw is torsion-free. ‘

We conclude that for any coherent (x-module %, the sheaf
Homy(F ,wy) is a torsion-free Oy -module as well. Applying this to
F = Qy ¢ gives (i),

(iii) is a special case of (ii). To prove (ii), first note that from the
definition of 4”(X), we have

(3.1) Lie(4"(X)) = coker(d : H"(X QX/C)——>H”( QX/(E)) .

From Serre duality for A" and Hom, as in the definition of the
dualizing sheaf in [Ha], we have an identification of the dual vector
space

Hn(X’ Q‘S{/C)* = HOl’Il(oX (Q‘;(/(D? wX) )

for any i. Thus Q(4"(X)) is identified with the subspace of
Hom@X(Q}’/}E, wy) of elements ¢ such that the composition

CIH(X, QR -5 HX, QL) T HY(X ) = C

is 0. It remains to show that, identifying elements
XS Hom@X(QfY_/(lE,wX) with certain holomorphic 1-forms on Xy,
Q(A"(X)) is just the subspace of closed 1-forms.

To see this, since we may consider ¢ as a meromorphic 1-form on
X which is holomorphic on X.,, we can find a coherent sheaf of ideals
#, defining the Zariski closed subset X, C X (i.e., the subscheme
determined by # has X, as its underlying reduced scheme), such
that

(i) n—n A ¢ defines an element of Homg, (fQX/@ QX/(E)
(i1) n+—n N de defines an element of Homy, (fQX/C,wX) where
we view wy as a certain coherent extension of meg s to X.

(Here #% denotes image (¥ @ # — &), for any ideal sheaf ¢ and
coherent sheaf 7). Since # defines X, within X, the natural map

H"(X,fQ;’(‘/(ZE) — H"(X QX/(IZ)

is surjective, and for any ¢ € Hom(oX(Q;’(_/}E, wy), the composition

0 H'(X, 795 ¢) 4 H(x, Q) —— H'"(X,0y) = C
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factors through /. Thus
peQA' X)) <= 6=0.
We have 2 other related linear functionals
H'(X, §Q¢) — €, L3 H"(X, 7Qy¢) — C

defined by

n— A dq n
b H'(X, 78 —2 H"(X, 0x) = C,

b H' (X, g0 2) 2 B, Q) =5 H'(X,ox) = C

where in the definition of /3, we have let d also denote the composite
of the exterior derivative Q;’{/CIE — Qy ¢ with the natural map
Q;'(/c — wy. The formula

dinA @) =dnho+(=1)""nAde

for any n — 2 form #, implies that /3 = ¢ + (—1)"_262.

Now by Serre duality and the Oy -torsion freeness of
Homp, ( fﬂ}’/?r,wx) (see (1)), #» vanishes precisely when dp = 0 as
a 2-form on Xreg On the other hand, we claim that for any
¢ € Homg, (QX I wy), the map ¢; constructed as above is always 0.
This will imply that ¢; = 0 <= ¢ is a closed meromorphic 1-form.

To prove that ¢3 vanishes, it suffices to prove that the map

d n
H'(X,Q6) -5 H'(X, o)

vanishes. One way to understand this is to note thatif n: ¥ — X isa
resolution of singularities, then there is a commutative diagram

d n
H' (X, Qk) ——  H"(X,x)

| T

d
H"(Y QY/(]?) — H"(Y,wy)

which reduces us to proving that H"(Y, Qy/c)—LH”(Y,wy) van-
ishes. This follows from Hodge theory, or alternately may be proved
as in [Ha2], III, lemma 8.4.

Proof of (iv): We begin by recalling that since X is reduced, it is
Cohen-Macaulay in codimension 1, so that Z =X — j(Xcm) has
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codimension >2 in X. Let .# denote the ideal sheaf of Z in X. Let 2,
be the complex of sheaves

D :(O - j!ZXCM (l’l) - fm+n_1 —d_> fm+n_2Q;(/(E
I o

Then &, is a subcomplex of % (n),, whose cokernel complex consists
of sheaves supported on Z; the 0-th term of the cokernel is Z(n),,
while the other terms are coherent sheaves supported on Z. Since
dimZ < n — 2, we see that IH’ of this cokernel complex vanishes for
i >2n — 1. Hence H*'(X, 2,,) — H*(X,%(n),) is an isomorphism,
for all m. Now as in the proof of (i), one uses duality, to conclude that
for all m, there are isomorphisms

Hom(Q}’(_/(IE,wX)—> Hom(/"QY /C,wX)

Hom(QX/C,wX) — Hom(J’”QX/C,wX) ,

and taking the direct limit over all m, we obtain (iv). O

Our next goal is the proof of proposition 3.8, which gives us an-
other useful way to recognize elements of the vector space Q(4"(X)).
We make use of two lemmas.

Lemma 3.6. Let X C IPQ:’ be a reduced projective variety of dimension n.
Then we can find a finite number of linear projections m; : X — Py,
each of which is a finite morphism, such that the induced sheaf map

@ anﬁ';}c — O I

is surjective.
Proof. For any linear projection 7 : X — IPg., there is a factorization

* n

where the natural map  is surjective.
So it suffices to prove the stronger assertion that there are pro-
jections m; as above such that the induced sheaf map

@E*Q?P”/(E —s 7\//(]:®OX

is surjective.
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We claim that for any x € X, we can find a finite set of such
projections m; : X — IPg such that the map of C-vector spaces

(—B anf’PZ/lc ® C(m;(x)) — Qﬁ,@c ® C(x)

is surjective. Indeed, the Grassmannian Gg(n+ 1,N + 1) (of n+ 1
dimensional subspaces of CV*!) parametrizes linear projections from
]Pg to IPg, and it contains a dense Zariski open subset corresponding
to projections which are finite morphisms on X. Hence the n-
dimensional vector subspaces

QL r e ® C(n(x)) C Q%Pg/c ® C(x)

also range over a Zariski open subset of the Grassmannian of n-
dimensional subspaces of the cotangent space of P} at x. In partic-
ular, we can find a finite number of them whose (n — 1)-th exterior
powers span the (n — 1)-th exterior power of this cotangent space,
namely Qifp?/c ® C(x).

Now suppose m7y,...,7n, are chosen finite linear projections
X — IP%., and that

. *yn—1 n—1
@ni Q]P"/(]: — QIP%/C & @X
=

is not surjective. We can then find a point x € X at which the cokernel
is non-zero. By the above claim, we can augment the set of projec-
tions to wy,..., 7, T1,. .., T SO that the cokernel of the new map

r+s

*yn—1 n—1 n

does not have x in its support. Thus the support of the cokernel has
strictly decreased. Now the lemma follows by Noetherian induction.

O

Lemma 3.7. Let F be a reflexive coherent sheaf on Py, and v a me-
romorphic section of F ® QIIPH /T which is regular on some given (non-
empty) Zariski open subset W c IPe. Suppose there is a non-empty
open set Vin G¢(2,n + 1), the Grassmannian of lines in Pg, such that

(1) each line L € V meets W, and is disjoint from the non-locally free
locus of F

(ii) for each L € V, the image of @ in (F ® Qi/qj) |Lw extends to a
regular section of F @ Q /¢ on L.

Then w extends (uniquely) to a regular section on Pg of F ® QJIP’& /-
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Proof. Since 7 is reflexive, it is locally free outside a Zariski closed set
A (of codimension >3), and any section of # ® Qlll,n /T defined in the
complement of 4 extends uniquely to a section on alf of IP.. Since w is
a meromorphic section, it determines a (unique) regular section of
some twist # ® QI " /C (D), for an effective divisor D; there is a unique
such twist D which is minimal with respect to the partial order on
effective divisors (determined by inclusion of subschemes). Our goal
is to show that D = 0.

If F is an irreducible component of supp D which appears in D
with multiplicity » > 0, then we can find a point x € F such that

(1) x is a non-singular point of F, and does not liec on any other
component of D; further, # is locally free near x

(i1) V contains a line through x

(iii) there is a regular parameter ¢ € O, p:. (i.€., ¢ is part of a regular
system of parameters) such that ¢ defines the ideal of F at x, and such
that /o determines a regular, non-vanishing section of # ® Q]IP,(,r /T in
a neighbourhood of x. '

It then follows that for a non-empty Zariski open set of lines L
through x, we have L € V, and #"w maps to a regular, non-vanishing
section of 7 ® Q] /¢ near x, while o itself maps to a regular section of
F Q) s¢- However, ¢ vanishes at x. This is a contradiction. O

If C C X is a reduced, IOCdl complete intersection Cartier curve,
then in fact C C Xem NX™ (recall that Xcy denotes the (dense)
Zariski open subset of Cohen-Macaulay points of X). The sheaf map
Oc — szc"’l(ﬂx/(r) in (2.2) induces a composite map

ac: H'(C,0c) — H'(C, 4 (@ ¢))
— HJ(X, QX/C)——»IHZ” "X, Q%) -

This is just the map Lie(Pic’(C)) — Lie(4"(X)) on Lie algebras
induced by the composition of the group homomorphisms
Pic’(C) — 4'(C) and the Gysin map A4'(C) — 4"(X).

Proposition 3.8. (a) Let C C X be a reduced, local complete intersec-
tion Cartier curve, and let U C X.oy be a dense open subset such that
UNC is dense in Cro. Then the dual o of oc: HY(C,0c) —
H>'(X, vie) (ie., of Lie(Pic’(C)) — Lie(4"(X))) fits into a
commutative diagram
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C

Q4a"x)) — HO(Xrega Q;(rcg/c)

laé lrestriction

H(C,oc) — H(CNU, Q) -

(Here the right hand vertical arrow is given by restriction of 1- forms.)
(b) Let U C Xy be a dense Zariski open set, and let
w € T(U,Qy,¢) be closed. Then o € Q(A"(X)) if and only if

(1) w yields a meromorphic section on X of Q)l( /T

(i1) for any reduced, local complete intersection Cartier curve C C X
such that C N U is dense in C, the restriction of w to B = Creg N U is in
the image of the natural injective map

H'(C,w¢) — H(B,Qy¢) -

Proof. First we prove (a). From lemma 3.5, it suffices to prove that if
Be: HY(C,0c) — H"(X, an?clc) is the obvious map through which a¢
factors, then the dual map B/ fits into a commutative diagram

HO(Xv %OmX(QSZ(7(1I?7wX)) i’ HO(Xregvg)l(reg/C)
l ﬁé lrestriction

HO(C, wc) = HO(Cereg’(’ocereg) .

Here we have used Serre duality on X and C to make the identifi-

cations
Hn( 7931(7(1E)v = HO(X’ %OmX(Q;?/(lE?wX))a

H'(C,0¢)" = H*(C,wc) -

Since C is a reduced, local complete intersection Cartier curve in X
(so that C C Xcm NX™), we have the adjunction formula

n—1
wc = Homc (/\ fc/fé,w)( ® (ﬁc) .
Hence there is a natural sheaf map

n—1
Ve c%’omX(Q;’{/}E,wX) — Homc (/\ JC/J%, oy ® (Dc) = wc
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induced by restriction to C, and composition with the natural map

n—1
NIel st — Qe @ Cc,
SJIN A furdfi A dfu-1 -

On any open set U C Xy With U N C C Creq, one verifies at once,
from the explicit description, that the map /- |y is just the restriction
map on I-forms Q%//c — Qlch/c-

Hence the desired commutativity (which implies (a)) follows from:

Claim 3.9. 8" is the map induced by Vi on global sections.

To prove the claim, first note that for the local complete inter-
section curve C in Xcym, one also has

P w fora=1
Exty (@QCUX):{OC for a # 1

Hence there is a Gysin map given as the composite

H'(C,oc) = H'(X, 8xty (Oc, mx)) — Exth(0Oc,wy)
— H\(X, 0x) — H"(X, wx)

where € is the isomorphism resulting from the (degenerate) spectral
sequence

ESP™ = HY(X, éxt579(Oc, wy)) = Exty(Oc, wy) .
The trace map Tr¢ : H'(C,wc) — € (of Serre duality on C) factors as

Tre : HY(C,0¢) 225 H'(X, 0x) 25 €

(one way to verify this is to show that the composite Try o Gysin has
the universal property of Tr¢).

Now the claim 3.9 amounts to the assertion that the following
diagram commutes:

Gysi e
HY(C,0c) —= H"(X,Qy¢)
‘P(:((P)l f/)l

H'(C,oc) 2N g (X, o)

From remark 2.4, this will follow if we prove the commutativity of
the diagram of Ox-linear maps
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Oc — &xtiy (Oc, Ay )

Yelo) | Lo

we — Ext (O, wy)

As wc¢ is torsion-free, it is enough to check this commutativity on a
suitable open subset of the regular locus of C, where it is easily
verified.

We now show the ““if”” part of (b) (note that the other direction
follows directly from (a)). By lemma 3.6, it suffices to prove that for
each finite, linear projection n : X — IPg, the meromorphic 1-form w
determines a section of

,}fomX(n*Q’ﬁ,Er}c,wX).

Since = is a finite morphism,
T Wy = %Om]% (TC*(QX, a)ijC) ,

and we have a sequence of natural identifications of sheaves

*yn—1 n—1
T A omy (T Q]P,&/C, wy) = %om]pgt(!)ﬂyé/c ® 1Oy, a)]pgt)

= A ompy (1. 0y, J/omlpfé(ﬂﬁ’,?/c, op)) = F @ o) e

where 7 = AHomp, (n.0Ox,Up:) is a (non-zero) coherent reflexive
sheaf on IPg.

Let W C IP{. be a dense open subset such that n~! (W) C U. Then
o determines a section of # ® Q]Pn ¢ on W, and we want to show it
extends to a global section of this sheaf. We do this by verifying that
the hypotheses of lemma 3.7 are satisfied.

Let L be a line in Py, disjoint from the non-flat locus of
m: X" — Pg (which is a subset of IP4 of codimension >2, since X
is reduced and purely of dimension 7). Then the scheme-theoretic
inverse image of L in X" is a closed, local complete intersection
subscheme of X, purely of dimension 1, which is contained in the
Cohen-Macaulay locus of X (since X is Cohen-Macaulay pre-
cisely at all points x € X where n is flat). If further L is not contained
in the branch locus of = on X (i.e., m is étale over all but finitely
many points of L), then n~!(L) = D is non-singular outside a finite
set. Thus D is a reduced, complete intersection curve in X. Further,
if DN X<" = (), then D is a reduced local complete intersection curve
in X, whose non-singular locus is contained in X,,. In particular D is
a reduced Cartier curve in X. Finally, if L is not contained in the
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image of X — U, then D has finite intersection with X — U, and hence
DN Uisdense in D. Clearly the set of all such lines L contains a non-
empty open subset of the Grassmannian of lines.

For a line L as above, we have

mwp = A omy (m.Op, ) = Homy(n.0x @ O, )

= Hom (m.Oy @ 01,9 )¢) =2 F Q¢

since F ® () = %omL(rc*(OD,(OL) (as m is flat over L). Since we are
given that the image of » in Q}, ., /¢ extends to a global section of wp,
it follows that the correspondlng section of # ® QL /T |Lnw extends to
a global section of # ® QL /- Thus we have verified the hypotheses of
lemma 3.7. O

Remark 3.10. Two properties of A”(Y), which are true for smooth
projective varieties Y, do not carry over to the general case: the
compatibility with products, and its dimension being constant in a
flat family. We give examples to illustrate these pathologies.

Let X and Y be projective varieties of dimension » and m, res-
pectively, and let »(X) and r(Y) denote the number of irreducible
components of dimensions n and m respectively. By [D] the Kiinneth
decomposition

H2(n+m)—l(X x Y, Z)/(

torsion)

= [Hzn_l (X, Z)r(y) @ H2m—1 (Y, Z)V(X)] / (torsion)

is compatible with the Hodge structure. Thus
JHX x YY) =J" (X)) x gy (3.2)

For A" (X x Y) the picture is wilder. By (3.1) in the proof of 3.5, we
have

Lie(4""(X x Y))
H"(Q¢) © H™(Q1¢) & H"(Q /¢) @ H™(Q1¢)
H"(Qy¢) ® H™(QY¢) & H"(Qy¢) © H™(Q)¢) & H'(Qy ¢) @ H"(Q¢)

where the maps from the denominator are

dy ®idy, dy ®@idy 4 (—1)"'idy ® dy and idy @ dy .
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Consider an elliptic curve E, the rational curve I' = (x* — y?z) C Pg,,

with a cusp, and the union of three rational curves C = (x)z) C Pg.
They all are fibres of the family 4 — IP = P(H(IP?, Op2(3))) of
curves of degree three in IP%.

Hodge theory implies that

d:H'(E,0p) — H'(E,Qp) and d : H'(C, 0¢) — H'(C,Q}) ~ €*
are both zero. Using (3.3) this shows

AX(C X E)=J*(C x E)=A4"(C) x A(E)’ = G,y x E*
A2(CxC)=J*CxC)=A4"(C) x4'(C)’ =GE .

On the other hand, T' — (0 : 1 : 0) = Spec(C[%,#]) and, if n: T — T
denotes the normalization, one has exact equations

0— Or — n,(0p) — Ct — 0

and

0— Q¢ — m(Qf,¢) — Cdt — 0 .

1
r/C
Thus €t = H' (T, Or) % (Edt?Hl (T, Qp¢) = € and one obtains
by 3.3 B

AT XE)=G6G, x E=A4"T) x A" (E)

2 2
AT xT) = % = G’ whereas
AYT) x ANT) = G, x G, .

In particular, a product formula as (3.2) fails for 4” instead of J”, and
the dimension of J" and 4" are not constant for the fibres
€ x€— IPxP.
It is amusing to write down the cycle map for the last example.
Writing
Fieg X Treg = (= (0:0:1)) x ('=(0:0:1))
= Spec(Clu] @ C[v]) ,

QI xT) = Homrxr(Qll—Xr/c,wrxr)d decomposes as
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(H(T, A om(Qr ¢, or)) © H(T, or)

@ H (T, wr) ® H(T, :%”om(er/c, or)))q
= (Cdv @ Cudv ® Cdu ® Cvdu),
= Cdv & Cdu & C(udv + vdu).

The cycle map is

Ir,.xr

reg reg

:A%E XA%E—NB?,
duy — x|

'(1 7'(2 I }17 }2 av y2 ’[2

4. The universal property over C

Let Uy,..., U, be the connected components of X, and for each i,
let p; € U; be a base point.

Let G be a commutative algebraic group. By 1.14 and 1.13 a ho-
momorphism (of abstract groups) ¢ : CH"(X)4e,o — G is regular, if
and only if ¢ 0 y,, : 8" (Xee) — G is a morphism of varieties, for some
m > 0.

Theorem 4.1. (i) The homomorphism ¢ : CH"(X)geqq — A"(X) con-
structed in lemma 2.6 is regular and surjective.

(i) The cokernel of the map H\(Xieg, Z) — Lie(4" (X)), defined by
integration of 1-forms over homology classes, is naturally isomorphic to
A"(X) and the composite (¢ o y)(f) My, = CH"(X) g0 — A"(X) is
given by u

¥

o [o

X

(ii1) (Universality) ¢ satisfies the following universal property: for
any regular homomorphism ¢ : CH"(X )degO — G to a commutative
algebraic group there exists a unique homomorphism h : A"(X) — G of
algebraic groups with ¢ = ho @.

Proof of (i). It suffices to prove that p oy, : U = Xep — A"(X) is a
morphism. Note that by lemma 3.2 it is analytic. Further, we have the
following.
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(a) The composition U — 4"(X) — Alb(X) is a morphism, where
X is a resolution of singularities of X", since we may then regard U
as an open subset of X, and the map U — Alb(X) is the restriction of
the Albanese mapping for X, with appropriate base-points. Here
Alb(X) is the product of the Albanese varieties of the connected
components of X, and 4”(X) is an extension of Alb(X) by a group
G’ x G, so that in particular 4”(X) — Alb(X) is a Zariski locally
trivial fibre bundle.

(b) For each reduced Cartier curve C C X, the composite

Creg— U—4"(X)

is a morphism. Indeed, for each component By of Cys, the compo-
sition
Bo— U CH"(X) geg0 —4"(X)

agrees with
By— Pic’(C) — CH"(X) gog0 —— A"(X)
up to a translation, and by corollary 3.3, the latter is algebraic.

Now we may argue as in [BiS]: we are reduced to proving thatif Visa
non-singular affine variety, a holomorphic function on ¥ which is
algebraic when restricted to ““almost all”” algebraic curves in V, is in
fact an algebraic regular function. This may be proved using Noether
normalization and power series expansions for holomorphic func-
tions on C", or deduced from [Si], (1.1).

Since Q(4"(X)) is a finite dimensional subspace of 1-forms on U,
there exist reduced local complete intersection Cartier curves C; C X,
fori=1,...,s, such that

Q4" (X)) — DH(Ci, o)
i=1
is injective. Hence

PPic(C) 21 47(x)
i=1

is surjective.

Proof of (ii) and (iii): Let ¢ : CH"(X) 4,9 — G be a regular homo-
morphism to a commutative algebraic group G. By lemma 1.12 the
image of ¢ is contained in the connected component of the identity of
G. Hence we may assume without loss of generality that G is
connected.
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Now Q(G) consists of closed, translation-invariant 1-forms. Thus

if
h= d) S U—G ’

then the image of 4* : Q(G) — I'(U, Q)l(/c) is contained in the sub-
space of closed 1-forms. We claim that in fact 2*(Q(G)) C Q(4"(X)).

This is deduced from the criterion of proposition 3.8, (b), since we
know that for any reduced Cartier curve C in X, the composition

Pic’(C) — CH"(X)geqp — G

is a homomorphism of algebraic groups. Now we observe that if By is
any component of C,, then

By — Pic’(C) = Lie(4'(C))/image H)(Creg, Z)

is given by integration of 1-forms in H°(C, w¢). Moreover the com-
posite
By— U L G

agrees with
By — Pic’(C) — G,

up to a translation by an element of G (and elements of Q(G) are
translation invariant). Dualizing the above inclusion on 1-forms, we
thus obtain a map on Lie algebras Lie(4"(X)) — Lie(G). This fits
into a commutative diagram

H(U,Z) — Lie(4"(X))

| |

H|(G,Z) —  Lie(G)

where the horizontal arrows are given by integration of 1-forms over
homology classes. Further there is a commutative diagram

U — Lie(4"(X))/image H,(U,Z)

| t

¢

CH"(X)4eq0 — G = Lie(G)/image H,(G,Z)
where ¢ is a homomorphism of analytic groups, and where the upper
horizontal arrow is given by integration of 1-forms in Q(4"(X)).

We claim that the map H;(U,Z) — Lie(4"(X)) = Q(4"(X))"
factors through the (surjective) composition
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H(U,Z) = H* (U, Z(n))—» H" (X, Z(n)) ,

where H denotes compactly supported cohomology, and the is-
omorphism is by Poincaré duality. Indeed, let C ¢ X be a suffi-
ciently general reduced complete intersection curve in X Then

CNX<" =0, Cgpg=CNX"

sing

= C N Xsing,
and one has a Gysin homomorphism

HY(C,Z(1)) — H™ (X, Z(n)) =~ H*" '(X", Z(n))
which fits into a commutative diagram with exact rows

HO(Cing, Z(1)) — HNCNU,Z(1)) —s  HY(C,Z(1))

| Jo-

H» (X0 Z(n) —  HP WU, Z(n) — H»(X©

n

sing’ ) Z(I’l))

The left hand vertical arrow is in fact surjective, since
Hz”‘Z(XS(iﬁ)g,Z(n —1)) is the free abelian group on the (n — 1)-di-
mensional components of Xs(i'l'lg, and (since C is a general complete
intersection) Cgine has non-empty intersection (which is supported at
smooth points, and is transverse) with each such component of Xs(i'r'l) .
Now we note that the composite H,(CNU,Z) — H|(U,Z) —
Lie(4"(X)) factors through the surjective composite H;(U,Z)
~ HYU,Z(1)) — H'(C,Z(1)), since CNU — U — A"(X) is com-
patible with a homomorphism Pic’(C) — 4”(X) (here “compatible”
means that for any component By of CNU, the composites
By — U — 4"(X) and By — Pic’(C) — 4"(X) agree up to translation
by an element of 4"(X)). Now a diagram chase implies the claim
made at the beginning of the paragraph.

Thus in the diagram (4.1) we see that Lie(4"(X))/image H,(U,Z)
is identified with

Lie(4"(X))/image H*" (X, Z(n)) = A"(X) .

Hence there is a homomorphism ¢ :A4"(X) — G, such that
y10¢:U— G factors through A"(X). Since yj:Q(4"(X)) —
(U,Q s¢) is injective, the induced map 4"(X) — G with this
property is unique, since the corresponding map on Lie algebras is
uniquely determined. Since image y, generates CH" (X )degO’ the two
homomorphisms
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¢ : CH"(X) gogo— Gy CH"(X)gegp ——s A" (X) —= G

must coincide. This proves the universal property of ¢, except that we

need to note that ¢ is a morphism. By lemma 1.13, ¢ induces an
algebraic group homomorphism PicO(C ) — G for all admissible pairs
(C';1), with C =1(C’). As above, we can choose reduced complete
intersection curves C;, i = 1,...,s, such that

@]Pic%c,-) S rx)

is surjective. As ¢ o (®y,) is an algebraic group homomorphism, b is
an algebraic group homomorphism as well. O

Remark 4.2. Lemma 3.1, combined with the Roitman Theorem
proved in [BiS], imply that ¢ : CH"(X) 4., — A"(X) is an isomorp-
hism on torsion subgroups. In other words, the Roitman Theorem is
valid for ¢ : CH"(X)4eq9 — 4"(X), over €. This is another similarity
with the Albanese mapping for a non-singular projective variety.

Remark 4.3. The proof of theorem 4.1 is close in spirit to the
construction of a ‘““generalized Albanese variety” in [FW]. There
Faltings and Waiistholz consider a finite dimensional subspace
V C H(Xreg, Q)l(re ), containing the 1-forms with logarithmic poles on
some desingularigzation of X", and they construct a commutative
algebraic group Gy together with a morphism X, — Gy, which is
universal among the morphisms 7:X,, — H to commutative
algebraic groups H, with t*(Q(H)) C V.

5. Picard groups of Cartier curves

In the next section, we give an algebraic construction of 4"(X) for a
reduced projective n-dimensional variety X, defined over an alge-
braically closed field k. As in the analytic case, we will use the Picard
scheme for Cartier curves in X and for families of such curves. In this
section, we discuss some properties of such families of curves, and the
corresponding Picard schemes. In particular, we establish the tech-
nical results 5.6 and 5.8, which are important steps in the algebraic
construction of 4" (X).

Let S be an irreducible non-singular variety, and let f : ¥ — S be a
flat proper family of projective curves with reduced geometric fibres
Cs = f~!(s). By [G], 7.8.6, the morphism " is cohomologically flat in
dimension zero. Hence f,04 and R'f,(04 are both locally free and
compatible with base change and
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. 1 : 0
9(Cy) = dimy(,) H' (Cy, Oc,) and #C; := dimy, H" (Cy, Oc,)

are both constant on S. Moreover, the relative Picard functor Picy/s
is represented by an algebraic space Pic(%/S) (see [BLR], 8.3,
theorem 1).

If S — S is a finite covering such that ' : ' = € x5S — §'is the
disjoint union of families of curves ¢, — §', for i =1,...,r with
connected fibres, then

Pic(€/S) x5 S" = Pic(¢'/S’) = Pic(¥¢,/S') xs -+ xs Pic(¥./S") .
For the smooth locus €, of f consider the g-th symmetric product
S8 )S) — S

over §’. For any open subscheme W’ C §%(%.,,/S’) there is a natural
map Jdy : W — Pic(%¢'/S’). By [BLR], 9.3, lemmas 5 and 6, one has
the following generalization of 1.11:

Lemma 5.1. Afier replacing S’ by an étale covering, there exists an
open subscheme W' C S9(%,,/S’) with irreducible fibres over S', such
that Oy : W' — Pic(€¢'/S') is an open embedding.

Recall that X denotes the union of the n-dimensional irreducible
components of X, and X<" is the union of the smaller dimensional
components.

Notations 5.2. For a very ample invertible sheaf % on X" we write
|2 = PO (XM, #)) x - x P(H' (X", #))  (n— 1)-times

and |$|g_1 for the open subscheme defined by »n — l-tuples
Dy,...,D,_; of divisors such that

i) C=DynN---ND,_;is a reduced complete intersection curve in
X

(i) CNX<" =), and

(ii1) Xreg N C is non-singular and dense in C.

Note that by (ii), C is a reduced Cartier curve in X which is a local
complete intersection. By abuse of notation we will sometimes write
C e |2|"" instead of (Dy,...,D,_1) € |Z|"".

The normalization 7 : C — C induces a surjection 7* : Pic’(C) —
Pico(é). By [BLR], 9.2, the kernel of =* is the largest linear subgroup
H(C) of Pic(C). One has
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dim(H(C)) = dim(Pic’(C)) — dim(Pic’(C))
= dim(H'(C, 0¢)) — dimy(H' (C, 0))
(51) = X(éa @C‘) - X(Cv (QC) - (#é - #C)7

where again #C and #C denote the numbers of connected compo-
nents of C and C, respectively.

Given a flat family of projective curves f : € — S over an irre-
ducible variety S with reduced geometric fibres Cj, there exist a finite
covering 8’ — § and an open dense subscheme S C §’ such that the
normalization of % xg S is smooth over S. Hence #C,, and the
dimension of the linear part H(C;) of Pic’(Cy), are both constant on
the image of Sj.

Definition 5.3. For a reduced projective curve C we define r(C) to be the
number of irreducible components of C, and u(C) to be the dimension of
the largest linear subgroup of Pic’(C).

By [F], Satz 5.2, for a very ample invertible sheaf % the open
subscheme | % \8_1 is not empty. Let (%) and u(¥) denote the values
of (C) and of u(C) for C € \ff]g_l in general position.

By the equality (5.1) one has:

1(C,0¢) = 1(C,0c) > u(C) > 1(C, 0g) = 1(C,0c) = r(C) + 1 .
(5.2)

Lemma 5.4. For a very ample invertible sheaf & and for a positive
integer N,

W) <N (L) H(2) 1)

Proof. Given Dj@ ||, fori=1,...,N and j=1,...,n—1, we
write
I=A{1,....N}"!

c =pWn...AD™ ) for i={(iy,... i) €]
n—1

and C = Uc(z) _ ﬂ(Dj(-l) U"'UD](-N)) ‘

iel J=1

Claim 5.5. There exists a choice of the divisors Dg»i) € |Z| such that
() C0 € |27, w(CO) = u(2) and r(CD) = ()
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(b) CYNCY N Xng = 0 for i # 17

(c) each point x € Cging N Xy lies on exactly two components c®
and CY). In this case, there exists one v with i —z for all j#w.
Locally in x the surface

Y =D n...nDM N D" N Xy

is nonsingular and contains CY and CY as two smooth divisors
intersecting transversally.
(d) C is a reduced complete intersection curve in | %" |”_1.

Proof. (d) follows from (a), (b) and (c). Since \$|O is open and
dense in |#|"", (a) holds true for sufficiently general divisors.
Counting dlmenswns one finds that for iz i the intersection
CcO N is either empty or consists of finitely many points. The
latter can only happen, if all but one entry in i and 7 are the same,
and obviously one may assume that the intersection points all avoid
Xsing. Moreover

cOD )t = 0

for pairwise different i, i/ i” € I. Now (c) follows from the Bertini

theorem [F], Satz 5.2, saymg that for sufficiently general divisors Dj(>

Y =D n--nDM - n D) N Xy
CY=ynD{® and C¥=yn Dg )

are non-singular and that C® and C%) meet tranversally on Y. []

Let AY*! < | #V|"! be an affine open subspace contalmng the point
so which corresponds to the tuple {D Wy...u D( }ici and let

..... n—1»
IPY be the projective space parametrizing lines in AM+1, passing
through sy. There is a line S € PV such that

(1) the total space € of the restriction

¢ X
rl
C

N 7

of the universal family to S is non-singular in a neighbourhood of
each point x € Csing N Xreq

(ii) the intersection of X, with the general fibre of f : 4 — S is
non-singular.



638 H. Esnault et al.

In fact, using the notation from 5.5 (¢), we can choose for a
point x € Cgpg N X a line § connecting sy with a point
(D},...,D. |) € A", where

1 D) (V) ;
D;=D;"U---uD;" for j#v,

where D/, N Y, is non singular, and where x ¢ D). By this choice, in a
neighbourhood of x the restriction of the universal family € to S is
just a fibering of Y over S. Hence the condition (i) is valid for the
chosen point x.

However, for each point x € Cging N Xiee, the condition (i) is an
open condition in IPY, and hence for a general line S, (i) holds for all
points in Cgng N Xreg; clearly the second condition (ii) holds as well.
The family f : ¥ — S has only finitely many non-reduced fibres and
outside of them U = t7!(X,,) contains only finitely many points,
which are singularities of the fibres.

Replacing S by an open neighbourhood of 59, we may assume
thereby, that for s # sy the fibre C; = f~!(s) is reduced, that C; N Xyeg
is non-singular and dense in C, and that u(Cy) = u(#"). In particular
U is non-singular outside of the points Cgpg N Xree, and by condition
(i), U is non singular. Moreover, f|, : U — S is semi-stable; hence
f1y 1s a local complete intersection morphism, smooth outside a finite
subset of U. Let L be a finite extension of the function field £(S) such
that the normalization of % xg Spec (L) is smooth over L, and let &
be the normalization of S in L. Consider

¢ T GxsS . @
f\g lprz if

/

s 1. s
where ¢ denotes the normalization. Since U xgS8 — S’ is a local
complete intersection morphism, smooth outside a finite subset of the
domain, U xg §' is normal and ¢ restricted to U’ = ¢~ ! (U x5 §') is an
isomorphism. By construction the general fibre of f” is smooth and %’
is normal. Since for all s’ € §' the fibres C, = f’~'(s') of f’ are re-
duced on the open dense subvariety U’, they are reduced everywhere.
Note also that ¥ — U — S is finite, and hence so is 4’ — U’ — §'.
Let §',s5 € 8’ be points, with sg = n(s;), and with s =n(s’) in
general position. The inequality (5.2) implies that

(LN = pu(Cy) < x(Cl, Oc,) = 1(Cs, Oc,)
= X(C;E), (QC:, ) — X(CSO, @Cso) .
%
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Since C’ N U’ is isomorphic to Cy, N U the curve C’ is finite over and
birational to C = Cs,- Moreover, the fibres C’ AU and CN U have
the same number 6 of double points. ertmg 'Y for the preimage
of C% in C!, one obtains

0
X(C7 @C) + 5 = ZX(C(£)7 @C(D)a
i€l

72(CL cfc/ +5—Z%C' Ov)

icl

and u(LY) < Z(X(C/ Y 000) = 2(CY,0)) -

il

Finally, C'% s finite over and birational to C, thus it is dominated
by the normalization of C® and (5.2) implies

S, 0p0) = 1CD, On))

icl
< 3 ((C) + HC) ~ 1)
N (D) 2) - 1) -

Replacing % by its N-th power one obtains by lemma 5.4 ample
invertible sheaves on X with many more linearly independent
sections than u(¥). For example, if Xj,...,X, are the irreducible
components of X", then

image (H'(X"), 2V) — H(x;, 2Vy)) = H' (X, 2V

for sufficiently large V, and its dimension is bounded below by a non-
zero multiple of N, whereas by 5.4, u(<") is bounded above by
(W(Z) +r(&) —1)-N"!. One obtains:

Corollary 5.6. There exists a very ample sheaf & on X" with
dimy (image (H*(X"), 2) — H'(X;, Z|y))) 22 u(ZL) +r+2

for i=1,...r

Over a field k of positive characteristic we will need a stronger
technical condition. Recall that Ily,, = U_,(U: x U;), where
U; = X; N Xiee are the irreducible components of Xre,.
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Assumption 5.7. Ler Z C §%(Ily,,
dence variety of points

(((xlvxll)ﬂ s (xd7xil)) ((derl?xilJrl)? R (x2dax/2d))7 (D17 s 7Dn*1))
€ §%(Ix,,) x 8(My,,) x |Z[;™"

) x §4(Ty,,) x | Z]¢™" be the inci-

with x1,...,%4,Xy,...,x5; € C=D;N---ND,_i. Then the projection
pry=pral,: Z — STy ) x SY(ITy,

reg reg )

is dominant.

Proposition 5.8. There exists a very ample sheaf & on X" which
satisfies the assumption 5.7, for all d < u(%).

Proof. Let .; be the ideal sheaf of |, X; on X Then .#; is anni-
hilated by the ideal sheaf of X; in X (”) In particular, one can talk
on its cohomology on JX;, as being the same as its cohomology on
X Hence if # is a torsion-free coherent sheaf on X and
JN\F :=image(# ® S; — F) then

H(X, S \T) = H' (X", s\F)
and é—)HO(X,»,J,-\ﬁ) c H'x™ 7) .
i=1
Claim 5.9. There exists a very ample invertible sheaf ¥ on X" such
that
dimy(image(H'(X;, & ® Sl ) — H'(C, &) = 4 - n(&) , (5.3)
fori=1,...,r, and for all C € |$|g_l.

Proof. Given a very ample invertible sheaf . it suffices to find a lower
bound for the dimension of the image of the composite map

T HO X, 2 @ Sy) — H'(x™, Ny — H(C, 2V|,)

which is independent of C € |$N o~ 'and grows like N". If ¢
denotes the ideal sheaf of C on X, then

ker(t) = H'(X;, F\(£N @ #0.)) c H' X", Y @ 7.) .
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Hence it is sufficient to give an upper bound for
dim(H(X", 2V ® #.)) by some polynomial in N of degree n — 1,
independent of C.

For j < n the dimension of /(X" , #~V) is bounded by a poly-
nomial of degree n—2. In fact, X ) is a subscheme of
PY = P(H°(X"), %)) and by [Ha], I11.7.1 and I11.6.9 one has, for N
sufficiently large,

Hj(X(n), cf*N) = EXthj(@Xo]) X cf*N, G)[PM)
>~ HO(PM, xtM (O, opy @ Opu(N)))
=~ HO(IPM, gxthj((ﬁX@),w]PM) ® Opn (N)) .
Since X is Cohen-Macaulay outside of a subscheme 7' of codimension
2, the support of &xt" /(O yw, wpw) lies in T for M — j > M — n.
The curve C being a complete intersection of divisors in ||, a

resolution of the ideal sheaf #. on X is given by the Koszul
complex

n—1 , 2 e
00— g*(nfl)N: /\(n@l 3N> s ... _>/\<@1 $N>
n—1
— o gV - Ffc—0.

Therefore dim(H°(X", #Y ® #.)) is bounded from above by
n=2 . Jtl n—1
> dimy (H-’ <X<">, "o N\ ( ® yN))
=0
dimy (Hf (X<">, ff—ﬂv)) (” - ) .
J+1

n—

2
J=0

O

Let  be a very ample invertible sheaf on X which satisfies
n—1

the inequality (5.3) in 5.9. We fix some curve C € ||, and some
natural number d < u(%).
Each irreducible component of §¢(Ily,,) x $¢(Ily,,) is of the form

Sq = (S"(Uy x Up) x -+ x §%(U, x U,))
X (SdrH(Ul X Ul) X oo X Sdz;-(Ur % Ur)) ,

for some tuple d = (di, ..., d,) of non-negative integers with
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d1+"'+dr:dr+1+"'+d2r:d .

Given such a tuple d, we claim that there are (pairwise distinct) points
Xi,- e, X2d, X)y .., Xy, With x,,x, € CN U, for

r4i—1 rti

i—1 i
Y di<v<d dy andfor Y di<v<> d;,
J=1 j=1 J=1 J=1

such that the restriction map

2d
(5.4) H'X", 2) — Pk, @ ky
i=1

is surjective. In fact, by the inequality (5.3) the dimension of the
image of
HY(X, £ @ Jily) — H(CNX;, £ @ Il cpy,) — H(C, Z|)))

isatleast4- u(¥)>4-d>2-(d;+d.;) and for sufficiently general
points xi,...,X24,X},...,x,; € C the composite

- 2d
H'X, 2 & 7y) cH' X", Z) — Dk, & ky
=1 i=1

1

1

is surjective.
By construction

W i= (((xhxll)a SRR (xdvxfj))7 ((xd+17xla!+1)7 ) (x2d7xl2d))) € SZ .
Let 7 denote the subspace of divisors D € || with
xl,...,xzd,xll,...,xlzd eD .

The fibre pr'}; (w) of the morphism pr/, : Z — $9(Ilx,,) x $9(Ilx,,) is
the intersection of V"~ with |#[¢~". In particular, since (w,C) € Z,
this intersection is non-empty.

If 6 =dim(]%]), the surjectivity of the restriction map (5.4)
implies that dim(V)=0—4-d and dim(p’}, (w)) = (n — 1)-
(0 —4-d). The fibres of pr}, : Z — |Z|3"" are equidimensional of di-
mension 4-d and hence Z is equidimensional of dimension
(n—1)-044-d. Therefore the dimension of pr{,(Z) NS, can not be
smaller than -

(n—1)-0+4-d—(n—1)-(0—4-d)=n-4-d=dim(S,) . O
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6. The algebraic construction of 4"(X)

Let X be a projective variety of dimension n, defined over an alge-
braically closed field £. As a first step towards the construction of
A"(X) we need to bound the dimension of the image of a regular
homomorphism

¢ : C'H"(X)dego — G

to a smooth connected commutative algebraic group G.

By the theorem of Chevalley and Rosenlicht (theorems 1 and 2 in
[BLR], 9.2) there exists a unique smooth linear subgroup L of G such
that G/L = A4 is an abelian variety. In addition, L is canonically is-
omorphic to a product of a unipotent group and a torus. Let us write

0—L—G L A—0
for the extension.

Lemma 6.1. There exists a unique smooth connected algebraic sub-
group H of G, with 6(H) = A, such that every smooth connected
algebraic subgroup J of G with 6(J) = A contains H. Moreover, the
quotient group G/H is linear.

Proof. Given a smooth algebraic subgroup J of G, one has the
commutative diagram of exact sequences

0 0 0
l l |
0O — LnJ — J — 46J) — 0
l | L
0 — L — G —_ A —s 0
G%J — A/6(J) — O
|
0

!

0 — L/(LNJ) —
|
0

O— e—

Since 4/0(J) is an abelian variety and L/(LNJ) a linear algebraic
group, 6(J) =4 if and only if G/J is linear. Observe further, that
0(J) = 4 if and only if 6(J') = 4 for the connected component J’ of J
containing the identity.

Choose H to be any smooth connected algebraic subgroup of G
with 6(H) = A4 and such that 6(H') # A for all proper algebraic
subgroups H' of H. For J as in 6.1 consider the commutative diagram
of exact sequences
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0O — JNH — G — G/(JNH) — 0
al )
0 — JH — GGG — G/JEBG/H — 0

where A is the diagonal embedding. Since JNH = A~'(J & H) the
morphism 1 is injective on closed points, and hence G/(J NH) is a
linear algebraic group. By the choice of H one obtains JNH = H. []

Recall that X has n-dimensional irreducible components
Xi,...,X,, whose union is denoted X", and U; = X;eg N X;. Also X <"
is the union of the lower dimensional components of X.

Proposition 6.2. Let & be a very ample invertible sheaf on X" which
satisfies the assumption 5.7. Let g = dim(H'(C, O¢)), for C € |$|8_1.

Let ¢ : CH" (X)dego — G be a surjective regular homomorphism to a
smooth connected commutative algebraic group G. Then the induced
morphism (see 1.9)

¢

nl) SO HO) (Tl ) — CH"(X) gy — G

reg deg
is dominant, for v > 0, and surjective, for v > 1. In particular the di-
mension of G is bounded by 2 -n- (g + p(%)).

Probably the bound for the dimension of G is far from being
optimal. We will indicate in 6.4 how to obtain dim(G) < g in char-
acteristic zero, under a weaker assumption on Z.

Proof of 6.2. Let again L be the largest smooth linear algebraic
subgroup and 6 : G - 4 = G/L the projective quotient group. Recall
that |.& ]g_l denotes the set of tuples (Dy,...,D,_;) of divisors in the
linear system |¥| for which C=D;Nn---ND,_; is a reduced
complete intersection curve (in X)), CNX<"=(, and C N Xreg
non-singular and dense in C.

Claim 6.3. There exists an open dense subscheme S C ||t such that

Pic’(C) - ¢ - 4

is surjective and such that the dimension of image(y : Pic’(C) — G) is
constant, for C € §.

Proof. Returning to the notation introduced in 5.2 let S C |-¥ |’5—1 be
an open subvariety, and let
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¢ 2, X
7l
S

denote the restriction of the universal complete intersection to S. The
smooth locus of f is gy = 0! (Xreg) and @y is dominant over Xre,.
Let ' — S be the finite morphism, and let W’ C S9(%m x5 S'/S’) be
the open subscheme considered in lemma 5.1, with irreducible fibres
over §’. By 5.1 the morphism

19W/ W — PIC((g/S) Xs S = PIC((g Xs S//S/)

is an open embedding. On the other hand, one has a morphism of
schemes

h:W — 8§ (Csm x5 8'/S) — S (Xiee)

and the image of the connected scheme W’ lies in some connected
component, say Sy =8 (U1) x --- x 8(U,). Since
¢ : CH"(X ) geq0 — G 1s regular, the composite

W) W xg W — S, x S, - G

is a morphism, where
g

1

1

O(x,x") = d)( (xi) — ZV@))
i—1

The morphism /() induces $’-morphisms
h(S/_) W xg W — G xS and hg,_>05: W xgW —A4xS8 .

Since W' xg W' is irreducible one can choose irreducible locally
closed subschemes W; and W, of the images

WS (W xg W) and B o 5(W' xg W)

respectively, dense in the closure of the images. Choosing S’ and S
small enough, one may assume that S’ — S is surjective and that W
and W, are both equidimensional over §’. For C € S choose a point
s" € 8 mapping to C € § and let 7, denote the fibre of W’ over s'.
Then the image of W, x W, in Pic’(C) is dense and thereby
dim(y(Pic’(C))) and dim(d(y(Pic’(C)))) = d’ are both constant on S.
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Assume that @’ < dim(4). The closure of (A=) (W x W.)) is the
image of Pic’(C), hence d(h")(W/. x W.)) lies in some abelian sub-
variety B of 4 of dimension ¢’ < dim(4). Since $' and W’ are con-
nected, and since an abelian variety 4 does not contain non-trivial
families of abelian subvarieties, B is independent of the curve C
chosen.

%sm being dominant over Xy, this implies that the image
0¢(CH"(X)4eq0) lies in B, contradicting the assumptions made. [

In general, a commutative algebraic group G can contain non-
trivial families of subgroups and the argument used above does not
extend to G instead of 4.

Let H C G be the smallest connected algebraic subgroup with
0(H) = A, as constructed in 6.1. By 6.3 and by the universal property
in 6.1, for C € S the image of y(Pic’(C)) contains H.

By 1.10 the image of $9(Ilc,,) in G is ¥(Pic’(C)) and hence H is
contained in the image of §9(Ily,,). In order to show that
Sﬁu g))(HX ) - CH”(X)degO i) G

reg

is dominant, it suffices to verify that the image Yy of the composite

7)1 S¥(Iy,,,) — CH"(X) gego 26— G/H

reg
is dense, for some u < (). Applying claim 6.3 to G/H mstead
of G one finds a non-empty open subscheme § C ]ff\o such
that the dimension d of /(Pic’(C)) is constant on S, where
' : Pic’(C) — G/H is the natural map (see 1.12). Since G/H is a
linear algebraic group, we must have d < u(%), and choosing S small
enough, we may assume that

(6.1)  d=dim/(Pic’(C))) < u(C) = u(¥), forallCes .

Since Y generates the group G/H, it is dense in G/H if and only if its
closure Y is a group. By assumption the image of the incidence variety

r’ () x7(=)
z 22 Sy ) x SYMy ) 5 ¥ x ¥

reg reg

defined in 5.7 contains some open dense subscheme 7. By definition,
for each e T there exist divisors Dj,...,D,; with
C=Din---ND,_; €8 and with

=

t € image (S%(Ip) x Sd(HB) 'Y x Y)
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for B=CNX., and for the induced map 9) from Iy to G/H.
By 1.10 y/(Pic’(C)) = 9\7)(89(I1p)) C Y. Since ' (Pic’(C)) is an
algebraic subgroup of G/H, the image of ¢ under the morphism

diff : G/H x G/H — G/H with (¢,¢') g —¢

is contained in y/(Pic’(C)), hence in Y.
Thereby T is a subset of diff '(Y), and the same is true of its
closure ¥ x Y. One obtains that diff(Y x Y) C Y and Y is a subgroup
of G/H.
Since ¥, is dense in G/H, by lemma 1.10 (ii) the image of §2/(Iy,,)
is G/H. [

As indicated already, the proposition 6.2 can be improved in char-
acteristic zero.

Variant 6.4. Assume that char(k) = 0. Let & be a very ample invertible
sheaf on X" with

dimy (image(H* (X", #) — H°(X;, L)) =22 -wW(&L)+r+2,
(6.2)

fori=1,...,r. Let G be a smooth connected commutative algebraic
group, and let ¢ : CH”(X)degO — G be a surjective regular homo-
morphism. Then there exists an open dense subvariety S C | L\~ ! such
that for each C € S the induced homomorphism (see 1.12)

Y Pic”(C) — CH"(X)geqp — G
is surjective. In particular the dimension of G is bounded by

g =dim; H'(C, 0¢).

Proof. The first part of the proof is the same as the one for 6.2. In
particular we may assume claim 6.3 to hold true.

Let H C G be the smallest subgroup with §(H) = 4, as constructed
in 6.1. By 6.3 and by the universal property in 6.1, for all C € §
the image of ¥ (Pic’(C)) contains H. Hence  : Pic’(C) — G is
surjective if and only if

Pic’(C) - G — G/H

is surjective. In order to prove 6.4 we may assume thereby that G is
linear and 4 = 0. By claim 6.3 we may assume that for all C € S the
dimension of image(y/ : Pic’(C) — G) is the same.
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For C €S, let y3:B=CNX,y — CH"(X) denote the natural
map and let I'g be the image of the composite

o)
9 Ty 2 CH"(X)gego —— G

For any subset M C G we will denote by G(M) the smallest algebraic
subgroup of G which contains M. If M contains a point of infinite
order, then dim(G(M)) > 0. In characteristic zero the converse holds
true, as well. In fact, if dim(G(M)) > 0 then G(M) contains a sub-
group isomorphic either to G, or to G,,. In characteristic zero, both
contain points of infinite order.

Hence if the dimension of G(I'z) = (Pic’(C)) is larger than zero,
the constructible set I'p contains a point «; of infinite order and
dim(G(a)) > 0. Repeating this for G/G(ay, .. .,a,) instead of G, we
find recursively points oy, ..., 0, € I'p with G(I'g) = G(o, ..., 04).

Let us choose points  xi,...,x4,x},...,x;, €B  with
o = ﬁ(‘)((xj,x})), and moreover, for each component X; of X,
choose a base point ¢; € BN X;.

Claim 6.5. There exists a closed suscheme Z C S such that the re-
striction

o'=aly () C

¢ =Cxsz 4 xm S, x
r=fle |
z — s — |z

of the universal family satisfies:

(a) For each point z € Z the curve C, = f’_l(z) contains the points
Xlyeeoy Xds Xyeo oy X qly oo G -
(b) ¢ : ¢ — X" is dominant.
Proof. For
Vi = (image(HO(X™, %) — HO(X,, #],)) — 0)/k" C (2],

consider the rational map p; : |#|"" — ¥"~!. Since each C € S is a
complete intersection curve, the restriction p;: S — V"1 of p, is
a morphism.

For x € X; N a(%) the condition “x € C;” defines a multilinear
subspace A’ of 7"~! of codimension n — 1. Let [; C {1,...,d} denote
the set of all the v with x,,x, € X;. Then the codimension of
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A=A N[ (ALNAL)
vel;
isat most (n—1)-(2-#L +1). '
Let ' — A’ be the intersection on X; of the divisors in A" C /7"~
Then the general fibre of ¥ — X; has dimension at least

dim(A") + 1 — dim(X) = dim(¥""') + 1 — n — codim(A")
>dim(V" )41 —n—(n—1)-2-#L+1)
> (n—1)- (2 (u(L) = #1) +r 1) .

Since some C € S contains all the points xj,x} and ¢;, the intersection

Z=5n ﬁpﬂ(A")

i=1

is non-empty. For the restriction 4" of the universal curve % to Z the
dimension of the general fibre of ¢’ : 4’ — X over X; has dimension
larger than or equal to

(= 1) Q- (L) = #1) +r—1) =S (1= 1)- 2 #L,+ 1)
Vil

=n-1)-2 Z#] (n—1)-2-(WL)—d) .

By the inequality (6.1) the last expression is larger than or equal to 0
and ¢’ is dominant. O

Let G(C.) denote the image of Pic’(C.) in G. By the choice of Z

the intersection B, = C. N Xy, is non-singular and the dimension of

G(C.) = G(I'p,) is the same as the dimension of G(I'g) =G(ay, ..., o).
By 6.5 the points o; = ¢(d'(x;) — ¢’(x})) are contained in I'p_, hence

G(C.) = G(I'p,) = G(I'p) = G(C)

forallz e Z.

As ¢’ is dominant o'(%¢') contains some V, open and dense in X,
(and hence in X")). For ¢ € ¥ N X; one finds some z € Z with ¢ € C..
By 5.7 C, contains the chosen base point ¢g; and

¢((q:) —v(q)) € G(C.) = G(C).
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By 1.4 (i), the points y(g;) —y(q) (for g € V) generate CH"(X) -
Since ¢ was assumed to be surjective, we obtain G = G(C), as
claimed. [J

Using proposition 6.2 or its variant 6.4 the construction of A"(X)
proceeds now along the lines of Lang’s construction in [La] of the
Albanese variety of a smooth projective variety.

Theorem 6.6. There exists a smooth connected commutative algebraic
group A"(X) and a  surjective  regular  homomorphism
Q: CH”(X)degO — A"(X) satisfying the following universal property:
For any smooth commutative algebraic group G and for any regular
homomorphism ¢ : CH"(X )4eq0 — G there exists a unique homo-
morphism h : A"(X) — G of algebraic groups with ¢ = h o ¢.

Moreover, if k C K is an extension of algebraically closed fields,
then

An(X XkK) :An(X) XkK .

Proof. By lemma 1.15 it is sufficient to consider connected groups G,
and surjective regular homomorphisms ¢.

By 5.8 there exists a very ample invertible sheaf ¥ which satisfies
the assumption 5.7 and we can apply 6.2. (As we have seen in 5.6 the
inequality (6.2) in 6.4 holds true for some %, and if char(k) = 0 we
can use the variant 6.4, as well.)

Let g = dimi(H'(C, O¢)), for some curve C € |$|8_1 in general
position. Then for all regular homomorphisms ¢ : CH"(X)4eqg — G
to smooth connected commutative algebraic groups G the induced
morphism

)
TE(_) :Sg+u($)(HXreg) M))_} CH”(X)degO i’ G
has a dense image in G. Hence for the product IT of all the different
connected components of S9+HZ )(HXreg) the induced morphism
' : 1 — G is dominant and n' induces a unique embedding of
function fields £(G) C k(IT).

If ¢, : CH"(X)geg0 — Gy, for v=1,2 are two surjective regular
homomorphisms to smooth connected commutative algebraic
groups, then

¢3 1 CH"(X) gegp — G1 X G2

is regular. Let G; be the image of ¢5. Then ¢, factors through the
regular homomorphism ¢3 : CH"(X)yee0 — G3 and k(G,) C k(G3) C
k(IT), for v=1,2.
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Hence among the smooth connected commutative algebraic
groups G with a regular surjective homomorphisms from
¢ : CH"(X)4e00 — G, there is one, A"(X), for which the subfield
k(4"(X)) is maximal in £(IT) and 4"(X) dominates all the other Gin a
unique way.

It remains to show that 4”(X) satisfies base-change for algebrai-
cally closed fields. Let us write Zx = Z x; K, for a variety Z defined
over k. We first show:

Claim 6.7. Let K D k be an algebraically closed extension field of k.
The cycle map X,({) s (M, ) — A"(X) factors through a surjective
homomorphism ug j : A" (Xg) — A"(X)x of algebraic groups.

Proof. Let U = X,¢g, and let (C’, 1) be an admissible pair defined over
K, with B = l_l(UK)reg‘ Choose a rational function f € R(C', Xk)

such that
div /=) ai— ) b

for p = (ay,b1,...,am, by) € S"(I1p)(K). Choose a smooth k-variety
S with £(S) C K, such that C’, B, p, a;, b;, f come by base-change
from k(S) to K from

¢ —S, #—S, n:8S—8"Iys), wpi:S— B, ¢ €k(AB)"

with div ¢ = > o; — > f;. Since f € R(C', Xk), we can replace S by a
dense open subscheme, so that we can arrange that for each s € S(k),
if we specialize to 4. = 4’ x5, then n(s) maps to zero in Pic’(%"). As

S"(Iy,) — S"(I1y) x s — A"(X) x s
factors through Pico((gi,), the composite morphism
S s 8"(Tlys) — S™(Iy) x S — A"(X) x §

maps all k-points of S to the zero section. Thus it is the zero section,
and therefore S”(Ily), — A"(X) factors through CH"(Xx), induc-
ing ug x by lemma 1.12. O

Since di := dimA"(Xx) is bounded by 2n(g + u(¥)) (proposi-
tion 6.2), there is an algebraically closed field K; with dx, = d; for all
L D K, algebraically closed. For any ascending chain K; C K;, of
algebraically closed fields with K; D K; one has deg ug x, <
deg ux,,, x,- Since the latter is bounded by the degree of the algebraic
closure of K;(4"(Xk,)) in K;(Ilx_) one concludes that there is an

reg
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algebraically closed field £ D K such that ug; 1s an isomorphism for
all algebraically closed fields L D E.
We will make use of the following lemma.

Lemma 6.8. Let K be a field, W, Y, Z be geometrically integral K-
varieties, such that there are K-morphisms o : W — Y, : W — Z, such
that o has dense image. Then:
(1) there is at most one K-morphism f : Y — Z such that f = f o «
(i1) suppose that for some extension field L of K, there is an L-
morphism h : Y, — Zy such that f; = hovy, : W, — Z;; then there is a
K-morphism [ : Y — Z as in (1), and we have h = f7.

Proof. Let I’ C W xx Z be the graph of B, and let I’ C Y xx Z be the
closure of (« x 17)(I'). The projection I' — Y has dense image. If
there is a K-morphism f : Y — Z as in (i), then T’ must be its graph,
and so there is at most one such morphism, which exists precisely
when I' — Y is an isomorphism. Clearly if this is an isomorphism
after base change to L, it is an isomorphism to begin with. O

There is a smooth k variety S, with k(S) C E, together with a
smooth commutative S-group scheme .7 — S with connected fibres,
such that A"(Xg) = .o/ xs Spec E. Choosing S small enough one also
has a natural surjective S-morphism ugy : o/ — 4"(X) x S and a
natural morphism IT x § — .o/ which is fibrewise dominant for the
irreducible variety Il constructed in the first part of the proof.

Let F be an algebraic closure of the quotient field of E ®; E,
p k(S X S) — F the natural inclusion, and let

prk(S) = k(S % S), i=1,2

be the inclusions defined by the two projections p; : S x; S — S. Set
g; = po p;, and for any S-scheme T, let ¢; T be the F-scheme obtained
by the base change to F' determined by g;.
The S-morphism IT x § — .o/ gives rise to the fibrewise dominant
morphism
OC; : q;k(H XkS) = HF e q;k&{ .

By the assumption on E the two F-varieties ¢;.o/ are isomorphic via
' =up g, o uply, : 414" (Xg) — ¢54"(Xg)

where FE; CF are the images of the two embeddings
E—SE®FE—F, x— x®1 and x— 1 ®x. By construction, #’
satisfies a5 = ' o a].
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Hence by lemma 6.8, applied to the extension of fields
k(S xx S) — F, the isomorphism #' comes from an isomorphism

u:(p- ) k(SxxS) — 1287 ) k(Sx4S)
Then u in fact extends uniquely to an isomorphism of groups schemes
(again denoted u)
u: (1 )y — (2 )y

over an open dense subset U C S x; S. Replacing S by some open
dense subscheme, we may assume that p;: U — S is surjective,
for i =1,2. Further, if o; : I1 x U — (p;.o/), i = 1,2 are the natural
fibrewise dominant maps, then o, = u o «;.

The uniqueness statement in lemma 6.8 (i) similarly implies that u
satisfies the “cocycle condition”

U3 O U1p = U3 - ET% — 713;&{

on the fibres over the generic point of S x; S x; S, and hence (by
continuity) over the open dense subset

m, (U) Ny (U) N (U) C 8 xS x4 S

Here 7; : § x; S X § — § are the 3 projections, and u;; = U, for the
3 projections m;; : § X S xx § — 8§ X S.

Given two points s; € S(k), one finds a third one s € S(k) such that
(s1,s) € U(k) and (s,s2) € U(k). The cocycle condition implies that
the induced composite isomorphism

u‘(s,sz)
S

ul(sl ,)

Os,5, = | | o |

S1 52

does not depend on the point s € S(k) chosen. Also u is compatible
with the surjective morphisms IT x U — p}.o/.

We claim that for each closed point s € S(k), the morphism
I x s — /| induces a regular homomorphism CH"(X )y, — /.
Let (C’,1) be an admissible pair on X, defined over k, with
B=1"(U),,. The morphism (Ilz), — 4"(Xg) = dE, and the re-
sulting morphism S (HB) — o/ (with g := dim Pic’(C")) induces a
homomorphism Pic’(C’ ) — <, since by the defining property of
A"(Xg), we have a factorization through CH"(XE)gego- Since
S9(Ig) - Pic’(C’), lemma 6.8 gives a map Pic’(C’) x; k(S ) — LK)
compatlble with the maps from (Ilg), g K(S) . This then induces a map
Pic’(C') x 8 — Zq for some open dense subscheme S° C S.
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Choosing a k-point s; € S°(k), we get that the map Ilp x s; — |, 1s
compatible with a homomorphism Pic’(C’) — /|, . The isomorp-
hism u is compatible with the morphisms Ilz x U — p;.o/. Hence, the
isomorphisms 0, are compatible with the maps Il = Il x s — o/|,
and Iz = I x 51 — /|, for all s € S(k). We deduce that for any
s € S(k), the map Iz x s — o/| gives rise to a compatible morphism
Pic’(C’) x; s — .o/|,. This implies that there is an induced regular
homomorphism CH"(X) 4,0 — /|, for each s € S(k).

Hence, one obtains morphisms v, :A"(X) — /|, verifying
v, =0go0vg for all s, t € S(k). Choosing now s € S(k), we set
G = /|,, and v = v,. The fibrewise dominant morphism IT x; § — o/
induces a dominant map from IT x; s onto G, hence v is surjective.
Since the composite

usgov: A"(X) — G— A"(X)

is an isomorphism, v is an isomorphism. Thus wugy : o7 — A"(X) x §
is an isomorphism when restricted to each ¢ € S(k), and is hence
an isomorphism. By base change to E one finds that ugy : 4" (Xg) —
A"(X) is an isomorphism.

Now if K Dk is any algebraically closed field, we choose an
algebraically closed field F with F D K D k and F D E D k, hence

ugr @idrour g =upp =upy idrourg ,

and wug , is an isomorphism as well. O

7. Finite dimensional Chow groups of zero cycles

The definition of finite dimensionality for the Chow group of 0-cycles
is a natural generalization of the definition in the non-singular (and
normal) case (see [M], [S]).

Definition 7.1. CH"(X) is said to be finite dimensional if for some
m > 0, the map

Vm Sm(Xreg) - CH”(X)degO

(introduced in 1.9) is surjective.

One can see that this is also equivalent to the statement that for
some integer m’ >0, depending only on X, any element of
CH"(X)4eq0 is represented by a O-cycle Y7, ¢;, where for each i, the
cycle J; is a difference of two effective O-cycles of degree m’ supported
n X;.
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In the proof of the next theorem we will use the notion of a regular
map [+ Z — CH"(X) g0 from a variety Z. This is a map of sets such
that

(i) the composition Z — CH"(X)geqq — 4"(X) is a morphism

(ii) there is a surjective morphism W — Z such that

W—Z Lo CH"(X) g0

factors as W—h—>S’”(Xreg) LR CH"(X ) geg» for some morphism A.
For example, let C’ be a reduced Cartier curve in X or, more gen-
erally, let (C’,1) be an admissible pair. Then the homomorphism
n: Pic’(C') — CH"(X)gego constructed in lemma 1.8 is regular. In
fact, the first condition holds true by 1.12 whereas the second
one follows from the dominance of S§9(C,) — Pic’(C"), for
g = dimk(Hl(Cl, (Qc/)).

Recall that k£ is called a universal domain, if its trancendence
degree over the prime field is uncountable.

Theorem 7.2. Let X be a projective variety of dimension n over a uni-
versal domain k. Then CH"(X) is finite dimensional if and only if

¢ CH(X)gugy — A"(X)

defines an isomorphism between CH" (X )degO and (the closed points of)
A"(X).

Proof. Let us write U = X,,. By lemma 1.10 (ii) the composite
S"(U) — CH"(X)gepg — A"(X)

is always surjective for m = 2 - dim(4"(X)). Hence, if CH"(X)geq9 —
A"(X) is an isomorphism, then CH"(X) is finite dimensional.

So the main thrust of the theorem is the converse, that
if CH"(X ) geq 1s finite dimensional, then CH"(X)ye,0 — 4"(X) is an
isomorphism. We imitate Roitman’s proof of this result in the
non-singular case, and the analogous argument for the normal case in
[S]; however there are extra refinements needed here, particularly
in characteristic p > 0.

First, we note that by [LW], proposition 4.2, the “graphs of
rational equivalence”



656 H. Esnault et al.
Fr,s = SF(U) XCH”(X)degO S?(U)

decompose as a countable union of locally closed subvarieties, for
each r,s. This immediately implies that if fj:Z; — CH"(X) 4405
j =1,2, are regular maps, then

Zy Xemn(x)yy, Z2 = {(21,22) € 21 X 25 fi(z1) = fo(22)}

is a countable union of locally closed subvarieties of Z; x Z,.

Now arguing as in [S], lemma (1.3), (where one uses the require-
ment that k£ be a universal domain), we first see that if G is a smooth
connected commutative algebraic group, and f : G — CH"(X )degO is
any regular map which is a group homomorphism, then there is a
well-defined connected component of the identity G C ker f, which
is a connected algebraic subgroup of G, and which has countable
index in ker f. Then the induced homomorphism

G/G® — CH" (X) dego

has a countable kernel. Hence, for any such homomorphism
G — CH"(X) 0> We can define the dimension of the image of G to be
the dimension of G/G".

Next, notice that if Gi — CH"(X)yee0 and Ga — CH"(X) 4., are
two regular homomorphisms from smooth connected commutative
algebraic groups G; such that image G is properly contained in image
G, then in fact

dim image G| < dim image G, .

Indeed, we may assume the maps G; — CH"(X) 4., have countable
kernel, so that we wish to assert that dim G; < dim G;. Now
o0 G, is a subgroup of G| x G, which is a countable
union of locally closed subvarieties, and hence has a connected
component of the identity which is a connected algebraic group, say
H. Then H — G; are homomorphisms of algebraic groups with
countable, hence finite kernels, such that H — G is surjective, and the
image of H in G, is a strictly smaller subgroup. Thus
dim G| = dim H < dim G».

Now suppose 7, is surjective. We claim that for any homomorp-
hism

G— CH"(X)degO

as above, with countable kernel, we have dim G < dim $”(U). In-
deed,
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m
G XCH”<X)degﬂ S (U)

is a countable union of subvarieties of G x $”(U) which projects onto
G, and maps to S”(U) with countable fibres. Hence some irreducible
component of this fibre product dominates G under the projection,
and maps to S”(U) with finite fibres.

We now claim that we can find a finite number of reduced com-
plete intersection curves Ci,...,Cs such that the induced homo-
morphism from @Pic’(C;) to CH"(X )dego 18 surjective. Indeed, given
a finite collection of such curves, if

P =@ Pic’(C;) — CH"(X)4eq0
is not surjective, we can find a curve C of the same sort such that
image(Pic’(C) — CH" (X ) gego)
is not contained in the image of P. Then the induced map
P x Pic’(C) — CH"(X)ge40
has strictly larger dimensional image than that of P. Since the
dimension of the image is bounded above by dimS™(U) = mn,

this process can be repeated at most a finite number of times.
So we may assume given a surjective regular homomorphism

with countable kernel, where 4 is a connected smooth commutative

algebraic group, and for some Cartier curves Cy,...,Cs a surjective
homomorphism

s . 0 ®p;
(7.1) @Pic’(C;)) — 4 .

J=1

Note that the composition h: 4 — CH"(X)4ee0 — A"(X) is then a
surjective homomorphism of algebraic groups.

We now distinguish between the case £ = €, and that of a general
universal domain £.

Proof of 7.2 for k= C. We first show that the surjective homo-
morphism % : A»A"(X) is an isogeny. Clearly A induces an injective
homomorphism
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B Q(A"(X)) — Q(A) .

We will use proposition 3.8 to show that 4* : Q(4"(X)) — Q(4) is an
isomorphism. Since #* is injective, it suffices to prove that
dimQ(4) < dimQ(4"(X)).

Consider the set I' = U X CH (X )gego A. This is a countable union of
algebraic subvarieties, and maps surjectively to U under the projec-
tion. Recalling that U = U;U;, we can then find irreducible varieties
I'; C T such that I'; dominates U; under the projection I' — U. Then
n; : I'; — U; has countable, and hence finite, fibres. Let d; be the
degree of m;, and let V; C U; be a dense open subset such that
T njfl(Vj) — Vj is an étale covering of degree d;. Let ¢ be the l.c.m.
of the d;, and let ¢ = djc;. If g : I' — A is the second projection, then
consider the morphism

p:V=Jv— 4,
J

pix)=c¢; Y qy) for xeV;.

yen; ' (x)

One verifies at once that the diagram

Uv=v 5% A

(7.2) l l r

c.’\/ n
UiUi=U — CH"(X)gey

commutes.

The image of w(V) in CH"(X)yee generates CH"(X)g,o as a
group, since CH"(X )degO is c¢-divisible, and any 0-cycle on X is ra-
tionally equivalent to a cycle supported on V. Hence the subgroup of
A generated by p(V) has countable index, and is also a countable
increasing union of constructible subsets, namely the images of
w(V)* under the maps

O A" —— 4, m>1,
(ar,...,am)—~ar+ -+ ay—api1 — - — ay -

By dimension considerations, one of the subsets a,,(u(¥)*") must be
dense in 4, and then o2, (u(¥)*™) = 4. Hence the induced map on 1-

forms
Q(4) — H'(V*™", Q)
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is injective. Now the action of a,, on 1-forms is given by
*
(@) =(0,...,0,—0, -0, -, —o) .

This means that the map on 1-forms Q(4) — HO(V, Q%,/C), induced
by the morphism V' — u(V)—4, is injective.

We claim that image Q(4) C Q(4"(X)), so that dimQ(4) <
dim Q(4"(X)). To see this, it suffices by proposition 3.8 to show that
for any reduced local complete intersection Cartier curve C C X with
B= (Creg) NV dense in C, the image of any element of Q(4) in
H(B,Q} s¢) lies in the image of H°(C, w¢). Fixing base pomts in each
component of B, we obtain a morphism 9 : Creq — Pic’(C). If C; is
any component of Cr,, then the two induced maps

C; — Pic’(C) — CH"(X)yeq0-
Ci — UL) CH”(X)degO
agree up to translation by a fixed element of CH"(X)ye40-

Now consider the subgroup I'c = Pic’(C) xCHn(X) A As before,
this is a countable union of subvarieties of Pic’(C) x 4. Hence there
is a connected algebraic subgroup FO C I'c such that FC/F is a
countable group. Further, I'c — Pic’ (C) is surjective with countable

fibres. Hence FO — Pic” (C) is an isogeny. Restricting (7.2) one ob-
tains a commutative diagram

B 4 A

| ;

91

Creg — CH"(X)gego
and hence a morphism B — F% such that
(i) for each component C; of Cr,, the composite
C;NB—T% — Pic’(C)
equals the restriction of the composite
C; — Pic(C) - Pic’(C)
up to a translation (here ¢- denotes multiplication by c¢)

(i) C;NB — F% — A agrees with g, up to a translation.
Hence, by (ii),
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image (Q(4) ~= T(B,0L,¢)) C image(g(rg) . F(B,QIC/C))

while by (i),
image Q(I'%) = image Q(Pic’(C)) = image I'(C, w¢) .

Since C was arbitrary, we have verified the hypotheses of proposi-
tion 3.8. This completes the proof that the composite
h:A4— CH"(X)e,0 — A"(X) is an isogeny.

In particular, f : A»CH"(X)4,, has a finite kernel. Replacing 4
by A4/(kerf), we may assume given a regular homomorphism
f:4— CH"(X) dego Which is an isomorphism of groups. Now
repeating the above arguments once more, we obtain (7.2) with
¢=1. By corollary 1.13, this means the group isomorphism
f1 t CH"(X)gego — A4 18 a regular homomorphism, which must
factor through ¢ : CH"(X )4, - 4"(X). This forces ¢ to be an
isomorphism of groups, as well. O

Remark 7.3. Over the field of complex numbers the last part of the
proof of 7.2 is consistent with the Roitman theorem proved in [BiS].
In fact, if

A4 22 CH"(X)gego — A"(X)

is surjective with finite kernel the generalization of Roitman’s theo-
rem implies that the composite

4 2 CH'(X) gogg — A"(X) — J'(X)

is an isomorphism on torsion subgroups, so that
CH"(X)gego — A"(X) is an injection on torsion subgroups. Hence the
isogeny A 22 CH"(X ) geqg — A"(X) must be an isomorphism.

In the algebraic case we have to modify the arguments, in par-
ticular since the lower horizontal morphism in the diagram (7.2) need
not to be surjective in characteristic p > 0.

Proof of 7.2 for k a universal domain. Let us write B for the kernel of
h:A4— A"(X), a closed subgroup scheme of A4, not necessarily re-
duced. We may replace 4 by 4/x, for any (zero dimensional) closed
subgroup scheme x of B such that x(k) C ker f.

The group B acts on UXxgyx)4 with  quotient
U X gn(x) A"(X) = U. The kernel 4" of the map A(k) — CH"(X)4eq
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consists of countably many closed points, the induced action on
U X CHP(X) gogo A is free, and the induced map on the quotient

(U Xcrnx)ypo A/ A =U Xy, A/ A7) — U

is a bijection on the closed points.

Let V' C U be an open dense subscheme, and let I'; be a locally
closed irreducible subscheme of V Xy 4, contained in
V Xcrn(x),,, 4 and dominant over the component V; = V' N U; of V
under the first projection. For V small enough, we may assume that
I'; — V; is finite. Let x; C 4" be the subgroup of elements g with
g(I';) = T';. Then k; is a finite group and I';/k; — ¥ is an isomorp-
hism on the closed points. Replacing I'; by its image in
U X 4n(x) (4/x;) and 4 by 4/x; we may assume that x; is trivial, and
thereby that I'; — ¥ is purely inseparable.

Repeating this construction for the different components of U we
finally reduce to the situation, where U has an open dense subscheme
V, and where V' X cpn( Xgego A has a closed subscheme I" which is finite,
surjective and purely inseparable over V.

Assume that I' — ¥ is not an isomorphism, in particular, that the
characteristic of k is p > 0. The restriction of the group action to
B x T factors as

BXT — (V X A) xr T L5 ¥V %) 4

and the preimage S(I') of I' C ¥ X 4u(x) 4 is isomorphic to I' x I'.
Thus S(I') is a subscheme of B x I', supported in the zero section
{e} x I'. Hence S(I') is contained in the v-th infinitesimal neigh-
bourhood {e}, x I' of the zero section, for some v > 0.

The kernel ") of the v'-th geometric Frobenius F(") : B — B(") is
defined by the sheaf of ideals in (', generated by the p”-th powers of
the generators of the sheaf of ideals m defining {e} C B. For some
V' > 0 it is contained in m" and {e}, is a subscheme of x").

Dividing 4 by ), we may assume that S(I') =T x, I is
isomorphic to I', and thereby that I' is isomorphic to V.

Independent of the characteristic of k£, we have thus reduced to the
situation where U has an open dense subscheme ¥, for which

pri: |14 XCH"(X)degOA —sV

has a section, such that by projecting to 4 we obtain a morphism
u:V — A4 and (using the notation introduced in 1.9) a commutative
diagram
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A
(73) | |

»(=)
My “— CH"(X)40 -

Claim 7.4. There exists a surjective homomorphism ¢ : CH"(X) 4000 — A4
with f=) = ¢ o y(*>|m. In particular, ¢ is regular.

Proof. Let (C’,1) be an admissible pair with B = (z*I(V))reg dense in
C'. By restriction (7.3) gives rise to a commutative diagram

H/(*)
HB I A

(7.4) -| It

,O)
Iy — CH"(X)4eq0
where ¢ = p|z. By lemma 1.12 the lower horizontal map in the dia-
gram (7.4) factors as
)
¥
Mz = CH"(X)gego
N o) nT

Pic’(C’) .

(7.5)

Let T'Y, be the connected component of T'cr = Pic’(C") X CH (X) gogo
containing the origin. ['¢/T %, is a countable group and
1"(();, — Pic’(C") is an isogeny. Since the diagrams (7.4) and (7.5) are
commutative, the image of
(=) (=)
M, 2, pid(C') x 4

is contained in T%. This implies that T'% — Pic’(C’) must be an
isomorphism. In fact, by 1.11 there is an open connected subscheme
W of §(B) such that the morphism 9y : W — Pic’(C) is an open
embedding. On the other hand, ¥, factors through the isogeny
Y, — Pic’(C).

Hence the morphism #/ ) in the diagram (7.4) is the composite

29=) )
Mz —— Pic’(C) =T 22 4,

and the condition (b) in lemma 1.12 holds true.
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Thereby the homomorphism ¢ in 7.4 exists, and it remains to
show that ¢ is surjective. Equivalently, it suffices to show that the
image of ¢ generates 4 as a group, which will follow if we show that
) (Ty) generates 4. But we know that y(7)(IT;) generates
CH"(X)gego> and so u ) (I1;) generates a subgroup of countable in-
dex in A4. Since k is a universal domain, u(7)(IT;) generates 4.  []

By claim 7.4 and by the universal property for A”(X) the regular
homomorphism ¢ : CH"(X) 4., — 4 factors through a homomorp-
hism of algebraic groups y: A"(X) — A. Since ¢ is surjective, the
induced morphism y is surjective as well. Further, the composite

n ¢ f n
CH (X)dego — A4 — CH (X)degO

is clearly the identity, since it is so on the image of I1;, which is a set
of generators. By the universal property of ¢ : CH"(X) deg0 A"(X),
we deduce that the composite

A"X) L a4 s arx)

is the identity. Hence y and % are inverse isomorphisms of algebraic
groups, and f :4 — CH"(X)4ee0 and ¢ : CH"(X) g0 — A"(X) are
both isomorphisms (of groups) as well. O
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