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Let X be a projective variety of dimension n de®ned over an alge-
braically closed ®eld k. For X irreducible and non-singular, Mats-
usaka [Ma] constructed an abelian variety Alb�X � and a morphism
a : X ! Alb�X � (called the Albanese variety and mapping respec-
tively), depending on the choice of a base-point on X , which is uni-
versal among the morphisms to abelian varieties (see Lang [La], Serre
[Se] for other constructions). Over the ®eld of complex numbers the
existence of Alb�X � and a was known before, and has a purely
Hodge-theoretic description (see Igusa [I] for the Hodge theoretic
construction). Incidentally, the terminology ``Albanese variety'' was
introduced by A. Weil, for reasons explained in his commentary on
the article [1950a] of Volume I of his collected works (see [W]), one of
which is that the paper [Alb] of Albanese de®nes it (for a surface) as a
quotient of the group of 0-cycles of degree 0 modulo an equivalence
relation.

Let CHn�X �deg 0 denote the Chow group of 0-cycles of degree 0 on
X modulo rational equivalence. When X is irreducible and non-sin-
gular, a remarkable feature of the Albanese morphism a is that it
factors through a regular homomorphism u : CHn�X �deg 0 ! Alb�X �,
that is a homomorphism, which when composed with the cycle map
c : X ! CHn�X �deg 0, gives an algebraic morphism. This follows im-
mediately from the fact that an abelian variety does not contain any
rational curve. Thus one can reformulate Matsusaka's theorem as the
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statement that there is a universal regular quotient of CHn�X �deg 0 as
an abelian variety.

For n � 1, u is an isomorphism, and moreover CH1�X �deg 0 �
Pic0�X �, the Picard variety of X . Since Pic is a well understood fun-
ctor, one de®nes the Chow group CH1�X �deg 0 and the generalized
Albanese variety A1�X � by

CH 1�X �deg 0 � A1�X � � Pic0�X �

even in the singular case. This has several consequences for the ex-
pected structure of the generalized Albanese variety An�X � of a pro-
jective reduced variety X of dimension n. First, it forces the correct
de®nition of the Chow group CHn�X �deg 0, as proposed by Levine and
Weibel in [LW]. Second, it shows that An�X � should be a smooth
commutative algebraic group, that is an extension of an abelian va-
riety by a linear group, where the latter is a product of additive and
multiplicative factors. Third, the cycle map to CHn�X �deg 0 is only
de®ned on the regular locus Xreg of X . Consequently the expected
generalized Albanese mapping should be only de®ned on Xreg. But
already for curves, a morphism from Xreg to a smooth commutative
algebraic group G need not factor through CH 1�X �deg 0, as G contains
rational subvarieties. Therefore, the expected An�X � should be con-
structed as a regular quotient of CHn�X �deg 0 in the category of
smooth commutative algebraic groups. Note here that the di�culty
comes from the non-normality of X . In fact for normal surfaces and
for irreducible normal varieties in characteristic zero (see [S]), it is
known that An�X � � Alb� ~X �, where ~X is a resolution of singularities,
and that the cycle map does factor through CHn�X �deg 0.

Roitman [R] proved that, when k is a universal domain, u is an
isomorphism precisely when the Chow group of 0-cycles is ®nite di-
mensional in the sense of Mumford [M]. This result was generalized
for irreducible normal varieties in characteristic zero for An�X � �
Alb� ~X � (see [S]).

In this article we prove the existence of a universal regular quo-
tient of the Chow group of 0-cycles for singular projective varieties.
We note that the term ``variety'' is used to mean a reduced quasi-
projective scheme of ®nite type over a ®eld; in particular it need not
be irreducible, or equidimensional. A regular homomorphism is de-
®ned in 1.14 and the ®nite dimensionality of the Chow group in 7.1.

Theorem 1. Let X be a projective variety of dimension n, de®ned over an
algebraically closed ®eld k.
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(i)There exists a smooth connected commutative algebraic group
An�X �, together with a regular homomorphism u : CHn�X �deg 0 !
An�X �, such that u is universal among regular homomorphisms from
CHn�X �deg 0 to smooth commutative algebraic groups.

(ii) Over a universal domain k the Chow group is ®nite dimensional
precisely when u is an isomorphism.

(iii) An�X �k K� � An�X � �k K, for all algebraically closed ®elds K
containing k.

We also give a second construction of An�X � and u using tran-
scendental arguments when k � C. Over k � C, there is a natural
semi-abelian variety

J n�X � � H2nÿ1�X ;C�n��
F 0H2nÿ1�X ;C�n�� � image H2nÿ1�X ;Z�n�� ;

that is a commutative algebraic group without additive factors,
whose construction is implicit in Deligne's article [D]. (For k¤C, one
can in fact de®ne Jn�X � over k; see [BS] and also [FW]; a related
algebraic construction of 1-motives is given in [Ra]). From the dis-
cussion above, one sees that An�X � cannot be isomorphic to J n�X �.
However, there is an Abel-Jacobi mapping

AJn : CHn�X �deg 0 ��! Jn�X �

with very good properties. For example, if X is irreducible and non-
singular, then Roitman [R2] proved that the Albanese mapping u is
an isomorphism on torsion subgroups. For any reduced, projective X
of dimension n, the Abel-Jacobi map AJn induces an isomorphism on
torsion subgroups as well (see [BiS] for the general result, and [L], [C],
[BPW] for earlier partial results). This indicates that Jn�X � should
di�er from An�X � only by additive factors. This, together with the
classical theory for curves, was the main motivation for our con-
struction. Note that M. Levine also studied KaÈ hler di�erentials in the
singular case, see [L].

Theorem 2. Let X be a projective variety over C. For any m � 0, de®ne
the Deligne complex

D�m�X ��0 ��! ZX �m� ��! OX ��! X1
X=C ��! � � � ��! Xmÿ1

X=C ��! 0� ;

and associated cohomology group Dm�X � �H2m�X ;D�m�X �: For
n � dimX , let
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An�X � � ker Dn�X � ��! H2n�X ;Z�n��ÿ �
be the kernel of the map induced by the natural surjection
D�n�X ! Z�n�X of complexes. Then

(i) the analytic group An�X � has an underlying algebraic structure
and for some s � 0 a presentation via an exact sequence of commutative
algebraic groups

0 ��! �Ga�s ��! An�X � ��! Jn�X � ��! 0

(ii) there is a cycle class homomorphism CHn�X � ! Dn�X �; such
that the composite CHn�X � ! H2n�X ;Z�n�� is the degree homomorp-
hism, induced by the topological cycle class map, and giving rise to a
commutative diagram

CHn�X �deg 0 ��!u An�X �??y ??y
CHn�X � ��! Dn�X �

(iii) the homomorphism u is the universal regular homomorphism
from the Chow group CHn�X �deg 0 to commutative algebraic groups
over C

(iv) u is an isomorphism precisely when the Chow group is ®nite
dimensional.

We give examples in 3.10 illustrating two pathological properties
of An�X �. First we give examples of irreducible projective varieties
X and Y of dimensions n and m, respectively, for which
dim�An�m�X � Y �� > dim�An�X � � Am�Y ��. Next, we exhibit a ¯at
family X! S, with geometrically integral ®bres, for which the
dimension of An�Xs� is not locally constant on S.

We do not study higher dimensional cycles in this article. For
this reason we do not analyze Dm�X �, Am�X � � ker�Dm�X � !
H2m�X ;Z�m�� and their relation to the Chow ring CH��X ;Xsing�
considered by Levine in [L2].

After recalling the de®nition ([LW]) of the Chow group
CHn�X �deg 0 and its relation to the Picard group of curves, and a
moving lemma from [BiS], we construct the analytic cycle class map
in section 2 and prove theorem 2, (ii). In section 3 we prove theorem
2, (i) and give a cohomological description for the Lie algebra of
An�X �. The regularity of u : CHn�X �deg 0 ! An�X � and the universal
property (iii) for u are shown by analytic methods in Section 4.

The next two sections, independent of the transcendental argu-
ments used before, contain the algebraic part of the article. We recall
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in Section 5 some of the properties of Picard groups of curves and
apply them to general curves in X . The main technical tool in Section
6 is the boundedness of the dimension of a regular quotient. This
being guaranteed An�X � is constructed essentially using Lang's
arguments [La].

In Section 7 we give two slightly di�erent proofs for part (iv) of
theorem 2 and (ii) of theorem 1, the ®rst one building up on the
transcendental methods, the second one using the algebraic argu-
ments developed in Sections 1, 5 and 6.

1. Chow groups and regular homomorphisms

We begin by recalling the de®nition of the Chow group of 0-cycles
CHn�X �, as given in [LW] (see also [BiS]). As in [BiS], we adopt the
convention that a point lying on a lower dimensional component of X
is deemed to be singular. Let Xsing denote the (closed) subset of sin-
gular points, and Xreg � X ÿ Xsing the complementary open set. The
closure of Xreg is the union of the n-dimensional components of X .

The group Zn�X � of 0-cycles is de®ned to be the free abelian group
on the closed points of Xreg. The subgroup Rn�X � of cycles rationally
equivalent to 0 is de®ned using the notion of a Cartier curve.

De®nition 1.1. A Cartier curve is a subscheme C � X , de®ned over k,
such that

(i) C is pure of dimension 1
(ii) no component of C is contained in Xsing

(iii) if x 2 C \ Xsing, then the ideal of C in Ox;X is generated by a
regular sequence (consisting of nÿ 1 elements).

If C is a Cartier curve on X , with generic points g1; . . . ; gs, and OS;C

is the semilocal ring on C of the points of S � �C \ Xsing� [
fg1; . . . ; gsg, there is a natural map on unit groups

hC;X : O�S;C ��! a
s

i�0
O�gi;C

:

De®ne R�C;X � � image hC;X . For f 2 R�C;X �, de®ne the divisor of
�f �C as follows: let Ci denote the maximal Cohen-Macaulay sub-
scheme of C supported on the component with generic point gi. Then
for any x 2 Ci the map

Ox;Ci ��! Ogi;Ci � Ogi;C
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is the injection of a Cohen-Macaulay local ring of dimension 1 into its
total quotient ring. If fi is the component of f in Ogi;C, then fi � ax=bx

for some non zero-divisors ax; bx 2 Ox;Ci . De®ne

�f �C �
Xs

i�1
�fi�Ci

�
Xs

i�1

X
x2Ci

�`�Ox;Ci=axOx;Ci� ÿ `�Ox;Ci=bxOx;Ci�� � �x� :

Standard arguments imply that this is well-de®ned (i.e., the coe�cient
of �x� is independent of the choice of the representation fi � ax=bx,
and vanishes for all but a ®nite number of x).

Suppose C is reduced. Then in the above considerations, Ox;Ci is
an integral domain with quotient ®eld Ogi;C. If v1; . . . ; vm are the
discrete valuations of Ogi;C centered at x, then the multiplicity of x in
�f �Ci

is

`�Ox;Ci=axOx;Ci� ÿ `�Ox;Ci=bxOx;Ci� �
Xm

j�1
vj�fi��1:1�

(compare [Ful], Example A.3.1.). In fact, let R be the integral closure
of O � Ox;Ci in Ogi;C. The Chinese remainder theorem implies that

`�R=axR� �
Xm

j�1
vj�ax� ;

and similarly for bx. Multiplying ax and bx by the same element of O
we may assume that both axR and bxR are contained in O, and

`�O=axO� � `�R=O� � `�R=axR� � `�axR=axO� :

Since ax 6� 0 the second terms on both sides are equal.

De®nition 1.2. Let U � Xreg be an open dense subscheme. Rn�X ;U� is
de®ned to be the subgroup of Zn�U� generated by elements �f �C as C
ranges over all Cartier curves with C \ U dense in C, and f 2 R�C;X �
with �f �C 2 Zn�U�. For U � Xreg we write Rn�X � instead of Rn�X ;Xreg�
and de®ne

CHn�X � � Zn�X �=Rn�X � :

Mapping a point x 2 Xreg to its rational equivalence class de®nes a map

c : Xreg ��! CHn�X � :
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If U1; . . . ;Ur denote the irreducible components of Xreg, then Zn�X �deg 0
and CHn�X �deg 0 denote the subgroups of Zn�X � and CHn�X �, respec-
tively, of cycles d with deg�djUi

� � 0 for i � 1; . . . ; r.

As noted in [BiS], lemma 1.3 of [LW] allows one to restrict to
considering only curves C such that C \ Xreg has no embedded points,
and any irreducible component C0 of C which lies entirely in Xreg

occurs in C with multiplicity 1. The moving lemmas 2.2.2 and 2.2.3 of
[BiS] allow stronger restrictions on C:

Lemma 1.3. Let A � Xsing be a closed subset of dimension � nÿ 2, and
let D � X be a closed subset of dimension � nÿ 1. Then any element
d 2 Rn�X � can be written in the form d � �f �C for a single (possibly
reducible) Cartier curve C, such that

(a) C is reduced
(b) C \ A � ;
(c) C \ D is empty or consists of ®nitely many points.

Corollary 1.4. If U � Xreg is an open and dense subscheme, then

CHn�X � � Zn�U�=Rn�X ;U�
and CHn�X �deg 0 � Zn�U�deg 0=Rn�X ;U� :

Proof. First note that the zero cycles supported on U generate
CHn�X � since the corresponding assertion holds true for curves. The
moving lemma 1.3 for D � X ÿ U implies that Rn�X � \ Zn�U� �
Rn�X ;U�. (

Remark 1.5. Let X �n� denote the union of the n-dimensional irre-
ducible components of X , and let X<n be the union of the lower
dimensional components. Applying the corollary to X �n� and the open
subset

U � X �n� ÿ Xsing � X ÿ Xsing � X �n� ÿ X �n�sing ;

we see that the natural map from CHn�X � to CHn�X �n�� is surjective.
It seems plausible that a stronger form of lemma 1.3 holds, where A is
allowed to be any closed subset of X of codimension �2 which is
disjoint from supp�d�. If this is true, then applying it to X �n� with
A � X �n� \ X<n, one sees that for any d 2 Rn�X �n�� \ Zn�X � there
exists a reduced Cartier curve C in X �n�, disjoint from A, and
f 2 R�C;X �n�� with d � �f �C. Then C is also a Cartier curve on X , and
d 2 Rn�X �. We deduce that CHn�X � ! CHn�X �n�� is an isomorphism.
We have as yet been unable to prove this.
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Remark 1.6. Keeping the notation from the previous remark, we note
further that for k � C, the natural maps

H2n�X ;Z�n�� ��! H2n�X �n�;Z�n��; Dn�X � ��! Dn�X �n��;
An�X � ��! An�X �n��

are isomorphisms, since X<n has constructible cohomological
dimension �2�nÿ 1� and coherent cohomological dimension�nÿ 1.

As re¯ected by the notation, R�C;X � depends on the pair �C;X �,
and is not necessarily intrinsic to C. Since we have not imposed any
unit condition at singular points of C which lie in Xreg, the functions
f 2 R�C;X � are de®ned on some curve C0, birational to C.

De®nition 1.7. Let C0 be a reduced projective curve and i : C0 ! X be a
morphism. Then �C0; i� will be called admissible if i : C0 ! C � i�C0� is
birational, if C is a reduced Cartier curve and if for some open neigh-
bourhood W of Xsing the restriction of i to iÿ1�W � is a closed embedding.

If �C0; i� is admissible one has an inclusion R�C0;C0� � R�C;X �
which is an equality if iÿ1�Xreg� is non-singular.

Lemma 1.8. Let �C0; i� be admissible. Then there exists a homomor-
phism (of abstract groups)

g : Pic0�C0� � CH1�C0�deg 0 ��! CHn�X �deg 0
which maps the isomorphism class of OC0 �p ÿ p0� to c�i�p�� ÿ c�i�p0��.
Proof. By de®nition Pic�C0� � Z1�C0reg�=R�C0;C0� and one has a map

c � i : Z1�C0reg� ��! CHn�X � :

The equality (1.1) shows that for f 2 R�C0;C0� the image of �f �C0 in
CHn�X � is zero. (

Notations 1.9. Let Y be a non-singular scheme with irreducible
components Y1; . . . ; Ys, let G be an abstract or an algebraic group, and
let p : Y ! G a map or morphism.

(i) After choosing base points pi 2 Yi a map

pm : Sm�Y � :� Sm
[s
i�1

Yi

 ! ��! G ;
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is de®ned by pm�y1; . . . ; ym� �
Pm

j�1�p�yj� ÿ p�pq�j���, where q�j� � i if
yj 2 Yi.

(ii) To avoid the reference to base points, we will frequently use
di�erent maps:

p�ÿ� : PY �
[s
i�1

Yi � Yi ��! G

is de®ned by p�ÿ��y; y0� � p�y� ÿ p�y0�, and p�ÿ�m : Sm�PY � ! G is

the composite Sm�PY � ! Sm�G� ��!sum G.

If G is an algebraic group, then the images of p�ÿ�m lie in the connected
component of 0. In particular for U open and dense in Xreg we will
frequently consider

c�ÿ� � c�ÿ�U : PU ��! CHn�X �deg 0
and cm � cU ;m : Sm�U� ��! CHn�X �deg 0 :

Lemma 1.10. Let G be a d-dimensional smooth connected commutative
algebraic group and let C � G be a constructible subset which generates
G as an abstract group. Then

(i) the image of the composite map Sd�C� ��! Sd�G� ��!sum G is dense
(ii) S2d�C� ��! S2d�G� ��!sum G is surjective
(iii) if B is a non-singular scheme with connected components

B1; . . . ;Bs and if # : B! G is a morphism with image C then the
morphism

#
�ÿ�
d : Sd�PB� � Sd

[s
i�1

Bi � Bi

 ! ��! G

with #
�ÿ�
d ��b1; b01�; . . . ; �bd ; b0d�� �

Pd
i�1�#�bi� ÿ #�b0i�� is surjective.

Proof. Let �C1; . . . ; �Cs be the irreducible components of the closure
�C of C, and let Ci � �Ci \ C. It is su�cient to ®nd non-negative
integers d1; . . . ; ds with

Ps
i�1 di � d such that the image of

Sd1�C1� � � � � � Sds�Cs� is dense in G. To this end, we may assume that
the identity of G lies on each Ci.

Let �Cm
1 be the closure of the image of Sm�C1� in G. Since �Cm

1 � �Cm�1
1

there exists some d1 � d with �Cd1
1 � �Cd1�1

1 , and d1 is minimal with this
property. Hence �Cd1

1 � �C2d1
1 and �Cd1

1 is a subgroup of G of dimension
larger than or equal to d1. If s � 1, i.e. if �C is irreducible, then
�Cd1
1 � G.
In general, replacing G by G=�Cd1

1 one obtains 1.10 (i) by induction
on s.
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The second part is an easy consequence of (i). Let U be an open
dense subset of G, contained in Sd1�C1� � � � � � Sds�Cs�. Given p 2 G
the intersection of the two open sets U and p ÿ U is non-empty and
hence there are points a; b 2 U with p ÿ b � a.

Replacing B by some open subscheme we may assume for (iii) that
the image of Bi is dense in Ci. By (i) one ®nds d1; . . . ; ds withPs

i�1 di � d such that the image of the composite

Sd1�B1� � � � � � Sds�Bs� ��! Sd�C� ��! Sd�G� ��! G

contains a subset U which is open in G. Given p 2 G the intersection
of U and of p � U is non empty and hence p � aÿ b for two points
a and b in U . Obviously aÿ b lies in the image of #

�ÿ�
d . (

Corollary 1.11. Let C0 be a reduced curve, let B1; . . . ;Bs be the con-
nected components of B � C0reg, let b0j 2 Bj be base points and let
# : B! Pic0�C0� be the morphism with #jBj

�b� � OC0 �bÿ b0j�. Then
there exists some open connected subscheme W of Sg�B�, for
g � dimk�Pic0�C0��, such that #W :� #gjW is an open embedding.

Proof. By 1.10 we ®nd some W with #W �W � open and #W ®nite over
its image. On the other hand, any ®bre of #g is an open subset of
P�H0�C0;OC0 �D��� for some divisor D on C0; hence the projective
spaces corresponding to points of #W �W � must be 0-dimensional. (

Lemma 1.12. Let G be a smooth commutative algebraic group,
U � Xreg an open and dense subset, and p : U ! G a morphism. Then
the following two conditions are equivalent.

(a) There exists a homomorphism (of abstract groups)
/ : CHn�X �deg 0 ! G such that p�ÿ� � / � c�ÿ� (as maps on the closed
points).

(b) For all admissible pairs �C0; i� with B � �iÿ1�U��reg dense in C0

there exists a homomorphism of algebraic groups w : Pic0�C0� ! G
such that the diagram

PB ��!#�ÿ� Pic0�C0�
i

??y ??yw

PU ��!p�ÿ� G

commutes. Here # : B! Pic�C0� denotes the natural morphism, map-
ping a point p to the isomorphism class of the invertible sheaf OC0 �p�.
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Moreover, if the equivalent conditions (a) and (b) are true, the mor-
phism w in (b) factors as

Pic0�C0� ��!g CHn�X �deg 0
w& . /

G

and the image of / : CHn�X �deg 0 ! G is contained in the connected
component of the identity of G.

Proof. Assume (a) and let �C0; i� be admissible and g � dim�Pic0�C0��.
Choosing base points b0j 2 Bj, one ®nds by 1.11 an open subscheme
W of Sg�B� such that the morphism #W : W ! Pic0�C0� is an open
embedding. By 1.8 one obtains a homomorphism

w : Pic0�C0� ��!g CHn�X �deg 0 ��!/ G

of abstract groups. By assumption p�ÿ� is a morphism of schemes and
the same holds true for p�ÿ� � i : PB ! G: Thereby the restriction of
w to the open subscheme W � Pic0�C0� is a morphism of schemes,
and being a homomorphism on closed points w is a morphism of
algebraic groups.

Since each point of Xreg lies on some Cartier curve, the images of
the connected algebraic groups Pic0�C0� generate CHn�X �deg 0 and the
image /�CHn�X �deg 0� lies in the connected component of G, which
contains the identity.

The morphism p�ÿ� induces a map ~/ : Zn�U�deg 0 ! G and it re-
mains to verify that (b) implies that ~/�Rn�X ;U�� � 0. By 1.3 each
d 2 Rn�X ;U� is of the form �f �C for a reduced Cartier curve C. There
exists an admissible pair �C0; i� with i�C0� � C and with iÿ1�Xreg� non-
singular. �f �C is the image of �f �C0 in Zn�U� and by assumption
i � p�ÿ� factors through Pic0�C0�. (

Corollary 1.13. Let / : CHn�X �deg 0 ! G be a homomorphism to a
smooth commutative algebraic group G. Then the following conditions
are equivalent.

(i) / � c�ÿ� : PXreg
! G is a morphism of schemes.

(ii) There exists an open dense subscheme U of Xreg such that
/ � c�ÿ�jPU

is a morphism of schemes.
(iii) Given a base point pi on each irreducible component U 0i of some

open dense subscheme U of Xreg, the map p : U ! G with
pjU 0i �x� � /�xÿ pi� is a morphism of schemes.
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(iv) Given any m > 0 and base points pi on each irreducible com-
ponent U 0i of some open dense subscheme U of Xreg, / � cm :
Sm�U� ! G is a morphism of schemes.

Of course, ``p is a morphism of schemes'' stands for ``there exists a
morphism of schemes whose restriction to closed points coincides
with p'', an abuse of terminology which we will repeat throughout
this article.

Proof. Obviously (i) implies (ii). For a given U � Xreg, the equivalence
of (ii), (iii), and (iv) is an easy exercise. In fact, the morphism p in 1.13
(iii) is just / � c1.

Assume that (iii) holds true for some U . We will show that the
corresponding property holds true for Xreg itself. To this aim consider
the map �p : Xreg ! G with �p�x� � /�xÿ pi�, for x in the closure of U 0i
in Xreg, and the graph C�p of �p in Xreg � G. By de®nition, C�p \ U � G is
the graph Cp. Let Z be the closure of Cp in Xreg � G.

C�p is contained in Z. In fact, given a point x 2 Xreg one
can ®nd a Cartier curve C through x with U \ C dense in C and
with B � C \ Xreg non-singular. By lemma 1.12 the morphism
�pjC\U ��ÿ� : PC\U ! G factors through a morphism Pic0�C� ! G of
algebraic groups and, in particular, it extends to a morphism
PB ! G. Again this implies that the restriction of �p to B is a morp-
hism, hence C�p \ B� G is closed and therefore contained in Z.

By construction the morphism p1 : Z ! Xreg induced by the pro-
jection is birational and surjective. Let V � Xreg be the largest open
subscheme with p1jpÿ1

1
�V � an isomorphism. Then �pjV is a morphism of

schemes and codimXreg
�Xreg ÿ V � � 2. By theorem 1 in [BLR], 4.4, �pjV

extends to a morphism Xreg ! G. The graph of this morphism is
contained in Z, hence it is equal to Z and �p is a morphism. (

We end this section by giving the de®nition of a regular homo-
morphism, used already in the formulation of the main theorems in
the introduction.

De®nition 1.14. Let G be a smooth commutative algebraic group. A ho-
momorphism/ : CHn�X �deg 0 ! G (of abstract groups) is called a regular
homomorphism, if one of the equivalent conditions in 1.13 holds true.

Lemma 1.15. The image of a regular homomorphism
/ : CHn�X �deg 0 ! G is a connected algebraic subgroup of G.

Proof. Let G0 denote the Zariski closure of /�CHn�X �deg 0�. By 1.12,
G0 is connected and it is generated by the image of PXreg

! G0. Hence
1.15 follows from the third part of lemma 1.10. (
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2. The cycle class map

Throughout the next three sections we will assume that the ground
®eld k is the ®eld of complex numbers. OX and Xm

X=C will respectively
denote the sheaves of holomorphic functions and (analytic KaÈ hler)
di�erential m-forms. As in the introduction consider the Deligne
complex

D�n�X � �0! ZX �n� ! OX ! X1
X=C ! � � � ! Xnÿ1

X=C ! 0� ;

and associated cohomology group Dn�X � �H2n�X ;D�n�X �: In this
section we construct the cycle class homomorphism CHn�X � !
Dn�X �, using Cartier curves C in X .

By the moving lemma 1.3 it will be su�cient to consider reduced
Cartier curves C in X . Note, however, that we do not have that C is a
local complete intersection in X , in general; this is only given to hold
at points of C \ Xsing. This leads to a slight technical di�culty. We
will need to de®ne `Gysin' maps for Cartier curves C in X . These are
directly de®ned in case C is a local complete intersection, and in
general one has ®rst to make a sequence of point blow ups centered
in Xreg to reduce to this special case. Indeed, even to show that the
cycle homomorphism Zn�X � ! Dn�X � respects rational equivalence,
a similar procedure needs to be followed.

Note that the exterior derivative yields a map of complexes
D�n�X ! Xn

X=C�ÿn�; and there is an obvious map D�n�X ! Z�n�X .

Lemma 2.1. For x 2 Xreg, there is a unique element �x� 2 H2n
fxg�X ;D�n�X �

which maps to the topological cycle class of x in H2n
fxg�X ;Z�n�� as well as

to the ``Hodge cycle class'' of x in Hn
fxg �X ;Xn

X=C�.
This gives rise to a well-de®ned cycle class homomorphism

Zn�X � ! Dn�X �, whose composition with Dn�X � ! H2n�X ;Z�n�� is the
topological cycle class homomorphism.

Proof. The element �x� exists because the topological and Hodge
cycle classes both map to the de Rham cycle class of x in
H2n
fxg�X ;C� �H2n

fxg�X ;X�X=C�, by a standard local computation. See

[EV], x7, for example (though X is singular, the terms in the above
computation depend only on a neighbourhood of x in X , and we have
x 2 Xreg; hence [EV], x7 is applicable). (
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Lemma 2.2. In the above situation, if dimX � 1, then there is a natural
quasi-isomorphism D�1�X � O�X �ÿ1�, yielding an identi®cation
Pic�X � � D1�X � (and hence also Pic0�X � � A1�X �). Under the id-
enti®cation, the class of a smooth point �x� 2 D1�X � corresponds to the
class of the invertible sheaf OX �x�.
Proof. The natural quasi-isomorphism is equivalent to the exactness
of the exponential sequence. The description of the class of a point x
as the class of the invertible sheaf OX �x� is also a standard local
computation. (

As we will see in lemma 3.2 the cycle map Xreg ! Dn�X � in lemma
2.1 is trivially analytic. Our point will be to see that it is algebraic.

First we argue as in [BiS], in order to show that the map
Zn�X � ! Dn�X � factors through CHn�X �. We follow the convention
that the truncated de Rham complex of KaÈ hler di�erentials

X<n
X=C � �0 ��! OX ��! � � � ��! Xnÿ1

X=C ! 0�

has OX placed in degree 0; thus we have an exact sequence of com-
plexes

0 ��! X<n
X=C�ÿ1� ��! D�n�X ��! Z�n�X ��! 0 :

Lemma 2.3. Let X be a projective variety of dimension n over C, and
C � X be a reduced Cartier curve which is a local complete intersection
in X. Then there is a commutative diagram

Z1�C� ��! Zn�X �??y ??y
D1�C� ��!Gysin

Dn�X �??y ??y
H2�C;Z�1�� ��!Gysin

H2n�X ;Z�n��

Proof. Consider the local (hyper) cohomology sheaves Hj
C�D�n�X � of

the complex D�n�X with support in C. We claim that for any point
x 2 C, the stalks Hj

C�D�n�X �x vanish for j 6� 2nÿ 1, unless x is a
singular point of C. Indeed, if x 2 C is a non-singular point (so that
x 2 Xreg as well), then there is a long exact sequence of stalks
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� � � ��!Hjÿ1
C �Z�n�X �x �Hjÿ1ÿn

C �Xn
X=C�x��!Hjÿ1

C �CX �x ��!Hj
C�D�n�X �x��!Hj

C�Z�n�X �x �Hjÿn
C �Xn

X=C�x ��!Hj
C�CX �x ��! � � �

However Hi
C�Z�n�X �x �Hi

C�CX �x � 0 for i 6� 2nÿ 2, H2nÿ2
C �Z�n�X �

injects into H2nÿ2
C �CX �, and Hi

C�Xn
X=C�x � 0 unless i � nÿ 1, for a

non-singular point x 2 C as above. This implies thatHj
C�D�n�X �x � 0

for j 6� 2nÿ 1, for such x. Also H2nÿ1
C �D�n�X �x ®ts into an exact

sequence

0 ��!H2nÿ2
C �CX=Z�n�X �x ��!H2nÿ1

C �D�n�X �x��!Hnÿ1
C �Xn

X=C�x ��! 0 ;

with H2nÿ2
C �CX=Z�n�X �x � C=Z�1� � C�.

Thus, Hj
C�D�n�X � is supported at a ®nite set of points, if

j 6� 2nÿ 1. Hence in the local-to-global spectral sequence

Ep;q
2 � Hp�C;Hq

C�D�n�X �� �)Hp�q
C �X ;D�n�X �

we have Ep;q
2 � 0 for p > 0, q 6� 2nÿ 1. In particular, there is a well-

de®ned injective map

a : H1�C;H2nÿ1
C �D�n�X �� ��!H2n

C �X ;D�n�X � :
We will next construct a natural map of sheaves on C

O�C ��!H2nÿ1
C �D�n�X �:

The desired Gysin map D1�C� ! Dn�X � is then de®ned to be the
composition

H1�C;O�C� ��! H1�C;H2nÿ1
C �D�n�X ����!a H2n

C �X ;D�n�X � ��!H2n�X ;D�n�X � � Dn�X �

To construct the map on sheaves O�C !H2nÿ1
C �D�n�X �, we argue

locally, as follows. Let U be an a�ne neighbourhood in X of a point
x 2 C, on which the ideal of C is generated by a regular sequence of
functions f1; . . . ; fnÿ1, determining a morphism f : U ! Anÿ1

C such
that fÿ1�0� � C \ U . Note that there are well-de®ned sections (of the
skyscraper sheaves)

a 2 C�H2nÿ2
f0g �Z�n�Anÿ1

C
�� � Z�1�; b 2 C�Hnÿ1

f0g �Xnÿ1
Anÿ1

C =C�� ;
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which have the same image c 2 C�H2nÿ2
f0g �X�Anÿ1

C =C�� �
C�H2nÿ2

f0g �X<n
Anÿ1

C =C��; under the obvious maps, and such that b is an-

nihilated by the ideal of 0 in C�OAnÿ1
C
�, for the natural module

structure on C�Hnÿ1
f0g �Xnÿ1

Anÿ1
C =C��. In fact, these conditions uniquely

determine such a pair of sections �a;b� up to sign, and there is a
standard choice, with b determined by dlog�z1� ^ � � � ^ dlog�znÿ1�;
where zj are the coordinate functions, so that b is the cup product of
the local divisor classes

dlog�zj� 2 C�Anÿ1
C ;Ext1Anÿ1

C
�Ofzj�0g;X

1
Anÿ1

C =C��
� C�Anÿ1

C ;H1
fzj�0g�X1

Anÿ1
C =C�� :�2:1�

Hence c is also determined. Now consider

f �a 2 C�U ;H2nÿ2
C �Z�n�X ��; f �b 2 C�U ;Hnÿ1

C �Xnÿ1
X=C��;

and f �c 2 C�U ;H2nÿ1
C �X<n

X=C�� ;

where f �a and f �b both map to f �c, and f �b is annihilated by any
section of the ideal sheaf of C \ U in U . Thus f �a and f �b yield maps
of sheaves

Z�1�C jU ��!H2nÿ2
C �Z�n�X � jU ; OC jU ��!Hnÿ1

C �Xnÿ1
X=C� jU ;

giving rise to a commutative diagram of sheaves

Z�1�C jU ��! H2nÿ2
C �Z�n�X � jU??y ??y

OC jU ��! H2nÿ2
C �X<n

X=C� jU :

There is a long exact sequence of sheaves on C

� � � ��!Hj
C�Z�n�X � ��!Hj

C�X<n
X=C� ��!Hj�1

C �D�n�X ���!Hj�1
C �Z�n�X � ��! � � �

Hence from the exponential sequence

0 ��! Z�1�C ��! OC ��!exp O�C ��! 0 ;

and the above commutative diagram, we deduce that there is a well-
de®ned map of sheaves

610 H. Esnault et al.



O�C jU ��!H2nÿ1
C �D�n�X � jU :

We will now show that these locally de®ned maps patch together to
give well-de®ned sheaf maps

OC ��!H2nÿ2
C �Xnÿ1

X=C� and O�C ��!H2nÿ1
C �D�n�X � :�2:2�

To do this, it su�ces to show that the classes f �a, f �b and f �c de®ned
above are in fact independent of the map f , i.e., of the choice of
generators for the ideal of C in U . This too can be seen ``universally''.
Since the ideal sheaf of C in X is locally generated by a regular
sequence, any two such sets of local generators for IC on the a�ne
open set U di�er by the operation of an element of GLnÿ1�OX �V ��,
for some neighbourhood V of C \ U in U . Hence it su�ces to
show that if p : GLnÿ1�C� �Cnÿ1 ! Cnÿ1 is the projection, and
m : GLnÿ1�C� �Cnÿ1 ! Cnÿ1 the map given by the operation of
GLnÿ1�C� on Cnÿ1 by invertible linear transformations, then
p�a � m�a, p�b � m�b, and hence also p�c � m�c. We leave the veri-
®cation of this to the reader, as a simple application of the KuÈ nneth
formula.

Finally, note that for U � Xreg, we have a commutative diagram
with exact rows

0 ��! Z�1�C jU ��! OC jU ��! O�C jU ��! 0

�
??y ??y ??y

0 ��!H2nÿ2
C �Z�n�X � jU ��!H2nÿ2

C �X<n
X=C� jU ��!H2nÿ1

C �D�n�X � jU ��! 0

where the left vertical arrow is an isomorphism. For a smooth point
x 2 C, apply the functors Hj

fxg to the rows of the above diagram, and
note thatHj

fxg�Z�1�C� � 0 for j 6� 2, andHj
fxg�OC� � 0 for j 6� 1. We

then obtain another diagram with exact rows

0 ��! H1
fxg�OC� ��! H1

fxg�O�C� ��! H2
fxg�Z�1�C� ��! 0??y ??y ??y�

0 ��! H1
fxg�H2nÿ2

C �X<n
X=C����! H1

fxg�H2nÿ1
C �D�n�X ����! H2

fxg�H2nÿ2
C �Z�n�X ����! 0

The bottom row may be identi®ed (see [Ha2], III, Ex. 8.7, pg. 161)
with the exact sequence

0 ��!H2nÿ1
fxg �X<n

X=C� ��!H2n
fxg�D�n�X � ��!H2n

fxg�Z�n�X � ��! 0 :
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We claim that, under the above identi®cation, the local cycle class of
x in H2

fxg�D�1�C� �H1
fxg�O�C� maps to the corresponding local cycle

class of x in H2n
fxg�D�n�X �. Choosing a suitable regular system of

parameters on X at x, we reduce to checking this in the special case
when x 2 X is the origin 0 2 Cn, and the curve C is the zn-axis, given
by the vanishing of the ®rst nÿ 1 coordinates. We again leave this
veri®cation to the reader.

This means that, in the commutative diagram

H1
fxg�C;O�C� ��! H1�C;O�C� � D1�C�??y ??y

H2n
fxg�X ;D�n�X � ��! Dn�X �

the cycle class of x in D1�C� maps to that of x in Dn�X �. Hence we
have shown that there is a commutative diagram

Z1�C� ��! Zn�X �??y ??y
D1�C� ��!Gysin

Dn�X �

It remains to show that the Gysin map Pic�C� � D1�C� ! Dn�X � is
compatible with the topological Gysin map H2�C;Z�1�� !
H2n�X ;Z�n��. Since Z1�C� ! D1�C� is surjective, the compatibility of
the two Gysin maps is clear from the fact that each one maps the class
of x on C to the corresponding class on X . (

Remark 2.4. Assume that the local complete intersection curve C lies
in the Cohen-Macaulay locus XCM of X . Then the ®rst sheaf map in
(2.2) factors as

OC ��! Extnÿ1
X �OC;X

nÿ1
X=C� ��!H2nÿ2

C �Xnÿ1
X=C� :�2:3�

To see this, note that

b 2 C Anÿ1
C ;Extnÿ1

Anÿ1
C

Of0g;Xnÿ1
Anÿ1

C =C

� �� �
� C Anÿ1

C ;Hnÿ1
f0g Xnÿ1

Anÿ1
C =C

� �� �
as it is the product of the classes dlog�zj� in (2.1). Further the map
U ! Anÿ1

C is ¯at in a neighbourhood of C \ U , as it is equidimen-
sional. Thus f �b de®nes a class in C�U ;Extnÿ1

X �OC;X
nÿ1
X=C��mapping to

C�U ;Hnÿ1
C �Xnÿ1

X=C��. As
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Extnÿ1
GLnÿ1�C��Cnÿ1�OGLnÿ1�C��f0g;X

nÿ1
GLnÿ1�C��Cnÿ1=C�

� Hnÿ1
GLnÿ1�C��f0g�GLnÿ1�C� �Cnÿ1;Xnÿ1

GLnÿ1�C��Cnÿ1=C�� ;

the class f �b de®nes the factorization (2.3).

Lemma 2.5. Let X be projective of dimension n over C, f : Y ! X
the blow up of a smooth point x 2 X . Then the natural maps
f� : CHn�Y � ! CHn�X � and f � : Dn�X � ! Dn�Y � are isomorphisms,
and there is a commutative diagram

Zn�Y � ��! Dn�Y �
f�

??y �
??yf �

Zn�X � ��! Dn�X �

Proof. The isomorphism on Chow groups is easy to prove, using the
fact that the exceptional divisor E is a projective space (the details are
in [BiS]). That f � : Dn�X � ! Dn�Y � is an isomorphism is also easy to
see, for the same reason, using also the exact sequence

0 ��! f �X1
X=C ��! X1

Y =C ��! X1
E=C ��! 0 :

So we need to prove that if y 2 Y is any smooth point, then its class in
Dn�Y � is the inverse image of that of f �y� in Dn�X �. This is clear if
f �y� 6� x. If f �y� � x, we may argue as follows. There is a commu-
tative diagram with exact rows

0 ��! H2n
fyg�Y ;D�n�Y � ��! H2n

fyg�Y ;Z�n�� � Hn
fyg�Y ;Xn

Y =C� ��! H2n
fyg�Y ;C�n�� ��! 0??y ??y ??y

0 ��! H2n
E �Y ;D�n�Y � ��! H2n

E �Y ;Z�n�� � Hn
E�Y ;Xn

Y =C� ��! H2n
E �Y ;C�n�� ��! 0

f �
x?? f �

x?? f �
x??

0 ��! H2n
fxg�X ;D�n�X � ��! H2n

fxg�X ;Z�n�� � Hn
fxg�X ;Xn

X=C� ��! H2n
fyg�X ;C�n�� ��! 0

Here the downward vertical arrows are the natural maps (``increase
support''). It is standard that the topological local cycle classes of x
and y have the same images in H2n

E �Y ;Z�n��: Similarly, the images in
Hn

E�Y ;Xn
Y =C� of the local cycle classes of x and y in Hodge coho-

mology are also known to be equal; for example, this follows from
the existence of a Gysin map f� : Hn

fyg�Y ;Xn
Y =C� ! Hn

fxg�X ;Xn
X=C�,

which maps the local class of y to that of x, and which factors through

Hn
E�Y ;Xn

Y =C� ��!�f ��ÿ1 Hn
fxg�X ;Xn

X=C� :
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Thus f ��x� � �y� 2H2n
E �Y ;D�n�Y �, and hence a similar equality is

valid in Dn�Y � as claimed. (

Lemma 2.6. The map Zn�X � ! Dn�X � factors through CHn�X �, and
hence determines a homomorphism u : CHn�X �deg 0 ! An�X �.
Proof. This is similar to the corresponding proof in [BiS]. Let C � X
be a reduced Cartier curve, and f 2 R�C;X �. Let p : Y ! X be a
composition of blow ups at smooth points so that the strict transform
~C of C in Y satis®es ~Csing � ~C \ Ysing � C \ Xsing. Then

R�C;X � � R� ~C; Y � � R� ~C; ~C� ;

and p��f � ~C � �f �C 2 Zn�X �:Now from lemma 2.2, �f � ~C 7! 0 2 Dn�Y �;
and so from lemma 2.5, �f �C � p��f � ~C � 0 2 Dn�X �: (

Corollary 2.7. If f : Y ! X is a composition of blow ups at smooth
points, then we have a commutative diagram

CHn�Y � ��! Dn�Y �
f�

??y� �
x??f �

CHn�X � ��! Dn�X �

Corollary 2.8. For any reduced Cartier curve C � X , there are com-
mutative diagrams

Z1�C� ���! Zn�X �??y ??y
Pic�C� ���!Gysin

CHn�X � Pic0�C� ��! CHn�X �deg 0
�
??y ??y and �

??y ??y
D1�C� ���!Gysin

Dn�X � A1�C� ��! An�X �??y ??y
H2�C;Z�1�� ���!Gysin

H2n�X ;Z�n��

Proof. As in the proof of lemma 2.6, by a compositon of blow-ups at
smooth points, we reduce to the case when C is a local complete
intersection in X . Then lemma 2.3 implies the corollary. (

614 H. Esnault et al.



Considering embedded resolution of singularities one obtains
from 2.7 and 2.8 a second construction of the Gysin map in 1.8 over
C. At the same time, it gives the compatibility of this map with the
Gysin map for the Deligne cohomology, constructed in 2.3.

3. Some general properties of An�X� over C

It is shown in [BiS] that if X is projective over C of dimension n, then
there is a natural surjection (which is referred to in [BiS] as the Abel-
Jacobi map)

AJn
X : CHn�X �deg 0 ��! J n�X �

:� H2nÿ1�X ;C�n��
F 0H2nÿ1�X ;C�n�� � image H2nÿ1�X ;Z�n�� ;

where by results of Deligne, J n�X � is a semi-abelian variety (since
the non-zero Hodge numbers of H2nÿ1�X ;Z�n�� lie in the set
f�ÿ1; 0�; �0;ÿ1�; �ÿ1;ÿ1�g).

Lemma 3.1. Let X be projective of dimension n over C. Then there is a
natural surjection w : An�X � ! J n�X �; whose kernel is a C-vector
space. An�X � has a unique structure as an algebraic group such that w is
a morphism of algebraic groups, with additive kernel (i.e., with kernel
isomorphic to a direct sum of copies of Ga).

Proof. By a result of Bloom and Herrera [BH], the natural map

H2nÿ1�X ;C�n�� ��! H2nÿ1
DR �X=C� �H2nÿ1�X ;X�X=C�

is split injective. As explained in [D] (9.3.2), if X� ! X is a suitable
hypercovering by a smooth proper simplicial scheme, the splitting
may be given by the composition

H2nÿ1
DR �X=C� ��! H2nÿ1

DR �X�=C� � H2nÿ1�X�;C�n�� � H2nÿ1�X ;C�n�� :

From this description, the splitting is a map of ®ltered vector spaces,
where H2nÿ1�X ;C�n�� has the Hodge ®ltration for the mixed Hodge
structure while H2nÿ1

DR �X=C� has the truncation ®ltration (i.e., the
®ltration beÃ te).
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Hence we obtain a commutative diagram

H2nÿ1�X ;C�n�� ����������! H2nÿ1�X ;C�n��=F 0H2nÿ1�X ;C�n��
a
& %

#

H2nÿ1�X ;X<n
X=C�

The map a comes from C�n� ! X�X=C ! X<n
X=C, whereas # comes from

the fact that Xi
X�=C is a simplicial sheaf and the de®nition of

F 0H2nÿ1�X ;C�n��. The map # induces the map w taking quotients
modulo H2nÿ1�X ;Z�n��. Note that by weight considerations, the
natural map

H2nÿ1�X ;Z�n�� ��! H2nÿ1�X ;C�n��=F 0H2nÿ1�X ;C�n��

has a torsion kernel. Hence the kernels of w and # are the same (and
the latter is a C-vector space). This represents An�X � as an analytic
group extension of the semi-abelian variety Jn�X � by an additive
group Gr

a, for some r, and hence as an analytic group extension of an
abelian variety by a group Gr

a �Gs
m. As noted in [D], (10.1.3.3), for

any abelian variety A over C, the isomorphism classes of analytic and
algebraic groups extensions of A by either Ga or by Gm coincide (as a
consequence of GAGA); hence a similar property is valid for exten-
sions by Gr

a �Gs
m. This implies that An�X � has a unique algebraic

structure such that w is a homomorphism of algebraic groups over C,
as claimed. (

The following argument is fairly standard, though we do not have a
speci®c reference for it.

Lemma 3.2. Considering Dn�X � as an analytic Lie group, with identity
component An�X �, the composite map

Xreg ! Zn�X � ! Dn�X �;
x 7! cycle class of x in Dn�X � ;

is analytic.

Proof. More generally, if Y is any irreducible non-singular variety
(or connected complex manifold) together with a morphism (holo-
morphic map) f : Y ! Xreg, we will show that

y 7! cycle class in Dn�X � of f �y�
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is analytic. The graph Cf of f determines a closed analytic sub-
manifold of Y � X which is purely of codimension n and contained in
Y � Xreg. As such, Cf has a cycle class

�Cf � 2 Dn�Y � X � �H2n�Y � X ;D�n�Y�X � ;

namely the image of the localized cycle class de®ned as in [EV], x7 in

H2n
Cf
�Y � X ;D�n�Y�X � �H2n

Cf
�Y � X 0;D�n�Y�X �

where X 0 ! X is any desingularization. If p : Y � X ! Y is the pro-
jection, one considers the image of this class �Cf � under the map

H2n
Cf
�Y � X ;D�n�Y�X � ��! H0�Y ;Dn�X �Y � ;

with

Dn�X �Y � R2np��0 ��! ZY�X ��! OY�X��! X1
Y�X=Y ��! � � � ��! Xnÿ1

Y�X=Y ��! 0� :
One has the following properties:

(i) Rip�Z�n� is the constant sheaf on Y with ®bre Hi�X ;Z�n��
(ii) the sheaf

Rip��0 ��! OY�X ��! X1
Y�X=Y ��! � � � ��! Xnÿ1

Y�X=Y ��! 0�

coincides with the sheaf of holomorphic sections on Y of the trivial
vector bundle with ®bre

Hi�X ; �0 ��! OX ��! X1
X=C ��! � � � ��! Xnÿ1

X=C ��! 0��

(iii) from (i) and (ii), one deduces that Dn�X �Y is the sheaf of
holomorphic maps from Y to Dn�X �, considered as a commutative
analytic Lie group.

It now remains to note that, by an obvious functoriality property of
the cycle class [EV], x7, the above section of Dn�X �Y , i.e., the holo-
morphic map Y ! Dn�X �, is just

y 7! cycle class of f �y� in Dn�X � :

(

For X a curve, as in (i) of the next corollary, note that Pic0�X � has the
natural algebraic structure obtained by representing a suitable Picard
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functor. In particular, given an algebraic family of divisors (of degree
0) on X parametrized by a variety (or scheme) T , the induced map
T ! Pic0�X � is automatically a morphism. On the other hand, A1�X �
has the algebraic structure given by lemma 3.1. Hence, a priori, the
induced map T ! A1�X � obtained from such a family is only analytic,
since it is essentially given by integration. From (i) of the corollary,
it will follow that it is in fact algebraic. The content of (ii) of the
corollary is similar.

Corollary 3.3. (i) If X is a curve, then the natural isomorphism
Pic0�X � � A1�X � of lemma 2.2 is an isomorphism of algebraic groups.

(ii) In general, if C � X is a reduced Cartier curve, then the induced
homomorphism A1�C� ! An�X � of corollary 2.8 is algebraic.

Proof. (i) The identi®cation is certainly analytic, and in both cases,
when one represents the algebraic group as an extension of an abelian
variety by a commutative a�ne group, the abelian variety in question
is just Pic0� ~X � � J� ~X � � D1� ~X �, the Jacobian of the normalized curve
~X (by which we mean the product of the Jacobians of the connected
components of ~X ). Now one argues that the identi®cation must be
algebraic as well, since one has the one-one correspondence between
analytic and algebraic extensions of an abelian variety by Gr

a �Gs
m.

(ii) Let ~X ! X �n� be a desingularization of X �n� such that the
proper transform ~C of C is the normalization of C. First note that one
has a factorization

A1�C� ��! An�X �?y ?y
J 1�C� ��! J n�X �?y ?y
A1� ~C� ��! An� ~X �

where all maps are analytic group homomorphisms, and the vertical
ones are algebraic (lemma 3.1). Indeed the map C ! X induces
a morphism of mixed Hodge structures H1�C� ! H2nÿ1�X �, and
therefore an analytic group homomorphism J1�C� ! Jn�X �, which
has to be algebraic as it is compatible with its abelian part
J 1� ~C� ! An� ~X � and all analytic group homomorphisms Gs

m ! Gs0
m

are algebraic. Similarly, all group homomorphisms Gr
a ! Gr0

a are
algebraic, and therefore A1�C� ! An�X � is algebraic as well. (

De®nition 3.4. For any commutative algebraic group A over C, let X�A�
denote the dual vector space to the Lie algebra Lie�A�. We may then
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identify X�A� with the vector space of (closed) translation invariant
regular 1-forms on A.

Our next goal is to give a description of X�An�X ��, generalizing the
fact that for a non-singular projective variety X , X�An�X �� is the
space of holomorphic 1-forms on X (since in that case, An�X � is the
Albanese variety of X ).

Lemma 3.5. Let X be projective of dimension n over C, and let xX

denote the dualizing module of X (in the sense of [Ha], Ch. III, x7). Let
X �n� be the union of the n-dimensional components of X, and let xX �n�

denote its dualizing module.
(i) xX is annihilated by the ideal sheaf of X �n� in X. With its natural

induced structure as an OX �n�-module, xX � xX �n� , and is a torsion-free
OX �n�-module. Hence for any coherent OX -module F, the sheaf
HomOX �F;xX � is also naturally an OX �n�-module, which is OX �n�-torsion
free, and for any dense open set U � X �n�, the restriction map

HomX �F;xX � ��! HomU �F jU ;xX jU �

is injective. In particular, taking U � Xreg, so that xX jU � Xn
U=C, and

taking F � Xnÿ1
X=C, we have that HomX �Xnÿ1

X=C;xX � may be identi®ed
with a C-subspace of the vector space of holomorphic 1-forms on Xreg

which are meromorphic on X �n�.
(ii) X�An�X �� is naturally identi®ed with the subspace of

HomX �Xnÿ1
X=C;xX � consisting of closed 1-forms.

(iii) When n � 1,

X�A1�X �� � X�Pic0�X �� � H0�X ;xX � :

(iv) Let j : XCM ! X be the inclusion of the open subset of Cohen-
Macaulay points. The natural map

X�An�X �� ��! �closed 1-forms in HomX �Xnÿ1
X=C; j

m
� j�xX ��

is an isomorphism, where jm
� denotes the meromorphic direct image.

Proof. (i) We note ®rst that xX � xX �n� , and the latter is a torsion-free
OX �n�-module. Indeed, if we ®x a projective embedding X ,!PN

C, then

xX � ExtNÿn
PN �OX ;xPN

C
�;

and there is an analogous formula for xX �n� . As in [Ha], we see by
Serre duality on PN

C that Exti�F;xPN
C
� � 0 for all i � N ÿ n for any
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coherent sheaf F supported in dimension < n. This gives the desired
isomorphism, and implies that any local section of OX �n� , which is a
non zero-divisor, is also a non zero-divisor on ExtNÿn

PN
C
�OX ;xPN

C
�. This

means exactly that xX �n� is torsion-free.
We conclude that for any coherent OX -module F, the sheaf

HomX �F;xX � is a torsion-free OX �n�-module as well. Applying this to
F � Xnÿ1

X=C gives (i).
(iii) is a special case of (ii). To prove (ii), ®rst note that from the

de®nition of An�X �, we have

Lie�An�X �� � coker�d : Hn�X ;Xnÿ2
X=C� ��! Hn�X ;Xnÿ1

X=C�� :�3:1�
From Serre duality for Hn and Hom, as in the de®nition of the
dualizing sheaf in [Ha], we have an identi®cation of the dual vector
space

Hn�X ;Xi
X=C�� � HomOX �Xi

X=C;xX � ;

for any i. Thus X�An�X �� is identi®ed with the subspace of
HomOX �Xnÿ1

X=C;xX � of elements u such that the composition

` : Hn�X ;Xnÿ2
X=C� ��!d Hn�X ;Xnÿ1

X=C� ��!u Hn�X ;xX � � C

is 0. It remains to show that, identifying elements
u 2 HomOX �Xnÿ1

X=C;xX � with certain holomorphic 1-forms on Xreg,
X�An�X �� is just the subspace of closed 1-forms.

To see this, since we may consider u as a meromorphic 1-form on
X which is holomorphic on Xreg, we can ®nd a coherent sheaf of ideals
J, de®ning the Zariski closed subset Xsing � X (i.e., the subscheme
determined by J has Xsing as its underlying reduced scheme), such
that

(i) g 7! g ^ u de®nes an element of HomOX �JXnÿ2
X=C;X

nÿ1
X=C�

(ii) g 7! g ^ du de®nes an element of HomOX �JXnÿ2
X=C;xX �, where

we view xX as a certain coherent extension of Xn
Xreg=C to X .

(Here JF denotes image �J
F!F�, for any ideal sheaf J and

coherent sheaf F). Since J de®nes Xsing within X , the natural map

Hn�X ;JXnÿ2
X=C� ��! Hn�X ;Xnÿ2

X=C�
is surjective, and for any u 2 HomOX �Xnÿ1

X=C;xX �, the composition

`1 : Hn�X ;JXnÿ2
X=C� ��!d Hn�X ;Xnÿ1

X=C� ��!u Hn�X ;xX � � C
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factors through `. Thus

u 2 X�An�X �� () `1 � 0 :

We have 2 other related linear functionals

`2 : Hn�X ;JXnÿ2
X=C� ��! C; `3 : Hn�X ;JXnÿ2

X=C� ��! C ;

de®ned by

`2 : Hn�X ;JXnÿ2
XC � ���!^ du

Hn�X ;xX � � C;

`3 : Hn�X ;JXnÿ2
X=C� ���!^ du

Hn�X ;Xnÿ1
X=C� ��!d Hn�X ;xX � � C ;

where in the de®nition of `3, we have let d also denote the composite
of the exterior derivative Xnÿ1

X=C ! Xn
X=C with the natural map

Xn
X=C ! xX . The formula

d�g ^ u� � dg ^ u� �ÿ1�nÿ2g ^ du ;

for any nÿ 2 form g, implies that `3 � `1 � �ÿ1�nÿ2`2:
Now by Serre duality and the OX �n�-torsion freeness of

HomOX �JXnÿ2
X=C;xX � (see (i)), `2 vanishes precisely when du � 0 as

a 2-form on Xreg. On the other hand, we claim that for any
u 2 HomOX �Xnÿ1

X=C;xX �, the map `3 constructed as above is always 0.
This will imply that `1 � 0() u is a closed meromorphic 1-form.

To prove that `3 vanishes, it su�ces to prove that the map

Hn�X ;Xnÿ1
X=C� ��!d Hn�X ;xX �

vanishes. One way to understand this is to note that if p : Y ! X is a
resolution of singularities, then there is a commutative diagram

Hn�X ;Xnÿ1
X=C� ���!d Hn�X ;xX �

p�
??y x??p�

Hn�Y ;Xnÿ1
Y =C� ���!d Hn�Y ;xY �

which reduces us to proving that Hn�Y ;Xnÿ1
Y =C� ��!d Hn�Y ;xY � van-

ishes. This follows from Hodge theory, or alternately may be proved
as in [Ha2], III, lemma 8.4.

Proof of (iv): We begin by recalling that since X is reduced, it is
Cohen-Macaulay in codimension 1, so that Z � X ÿ j�XCM� has
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codimension �2 in X . Let I denote the ideal sheaf of Z in X . Let Dm

be the complex of sheaves

Dm ��0 ��! j!ZXCM
�n� ��! Im�nÿ1 ��!d Im�nÿ2X1

X=C��!d � � � ��!d ImXnÿ1
X=C� :

Then Dm is a subcomplex of D�n�X , whose cokernel complex consists
of sheaves supported on Z; the 0-th term of the cokernel is Z�n�Z ,
while the other terms are coherent sheaves supported on Z. Since
dim Z � nÿ 2, we see that Hi of this cokernel complex vanishes for
i � 2nÿ 1. Hence H2n�X ;Dm� !H2n�X ;D�n�X � is an isomorphism,
for all m. Now as in the proof of (i), one uses duality, to conclude that
for all m, there are isomorphisms

Hom�Xnÿ1
X=C;xX � ��! Hom�ImXnÿ1

X=C;xX �;
Hom�Xnÿ2

X=C;xX � ��! Hom�ImXnÿ2
X=C;xX � ;

and taking the direct limit over all m, we obtain (iv). (

Our next goal is the proof of proposition 3.8, which gives us an-
other useful way to recognize elements of the vector space X�An�X ��.
We make use of two lemmas.

Lemma 3.6. Let X � PN
C be a reduced projective variety of dimension n.

Then we can ®nd a ®nite number of linear projections pi : X ! Pn
C,

each of which is a ®nite morphism, such that the induced sheaf map

a
i

p�i X
nÿ1
Pn=C ��! Xnÿ1

X=C

is surjective.

Proof. For any linear projection p : X ! Pn
C, there is a factorization

p�Xnÿ1
Pn

C=C
��! Xnÿ1

PN
C=C

 OX ��!w Xnÿ1

X=C ;

where the natural map w is surjective.
So it su�ces to prove the stronger assertion that there are pro-

jections pi as above such that the induced sheaf map

a
i

p�i X
nÿ1
Pn=C ��! Xnÿ1

PN
C=C

 OX

is surjective.
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We claim that for any x 2 X , we can ®nd a ®nite set of such
projections pi : X ! Pn

C such that the map of C-vector spaces

a
i

p�i X
nÿ1
Pn=C 
C�pi�x�� ��! Xnÿ1

PN
C=C

C�x�

is surjective. Indeed, the Grassmannian GC�n� 1;N � 1� (of n� 1
dimensional subspaces of CN�1) parametrizes linear projections from
PN

C to Pn
C, and it contains a dense Zariski open subset corresponding

to projections which are ®nite morphisms on X . Hence the n-
dimensional vector subspaces

p�X1
Pn

C=C

C�p�x�� � X1

PN
C=C

C�x�

also range over a Zariski open subset of the Grassmannian of n-
dimensional subspaces of the cotangent space of PN

C at x. In partic-
ular, we can ®nd a ®nite number of them whose �nÿ 1�-th exterior
powers span the �nÿ 1�-th exterior power of this cotangent space,
namely Xnÿ1

PN
C=C

C�x�.

Now suppose p1; . . . ; pr are chosen ®nite linear projections
X ! Pn

C, and that

a
r

i�1
p�i X

nÿ1
Pn=C ��! Xnÿ1

PN
C=C

 OX

is not surjective. We can then ®nd a point x 2 X at which the cokernel
is non-zero. By the above claim, we can augment the set of projec-
tions to p1; . . . ; pr;pr�1; . . . ; ps so that the cokernel of the new map

a
r�s

i�1
p�i X

nÿ1
Pn=C ��! Xnÿ1

PN
C=C

 OX

does not have x in its support. Thus the support of the cokernel has
strictly decreased. Now the lemma follows by Noetherian induction.

(

Lemma 3.7. Let F be a re¯exive coherent sheaf on Pn
C, and x a me-

romorphic section of F
 X1
Pn

C=C
, which is regular on some given (non-

empty) Zariski open subset W � Pn
C. Suppose there is a non-empty

open set V in GC�2; n� 1�, the Grassmannian of lines in Pn
C, such that

(i) each line L 2 V meets W, and is disjoint from the non-locally free
locus of F

(ii) for each L 2 V , the image of x in �F
 X1
L=C� jL\W extends to a

regular section of F
 X1
L=C on L.

Then x extends (uniquely) to a regular section on Pn
C of F
 X1

Pn
C=C

.
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Proof. SinceF is re¯exive, it is locally free outside a Zariski closed set
A (of codimension �3), and any section of F
 X1

Pn
C=C

de®ned in the
complement of A extends uniquely to a section on all of Pn

C. Since x is
a meromorphic section, it determines a (unique) regular section of
some twist F
 X1

Pn
C=C
�D�, for an e�ective divisor D; there is a unique

such twist D which is minimal with respect to the partial order on
e�ective divisors (determined by inclusion of subschemes). Our goal
is to show that D � 0.

If F is an irreducible component of supp D which appears in D
with multiplicity r > 0, then we can ®nd a point x 2 F such that

(i) x is a non-singular point of F , and does not lie on any other
component of D; further, F is locally free near x

(ii) V contains a line through x
(iii) there is a regular parameter t 2 Ox;Pn

C
(i.e., t is part of a regular

system of parameters) such that t de®nes the ideal of F at x, and such
that trx determines a regular, non-vanishing section of F
 X1

Pn
C=C

in
a neighbourhood of x.

It then follows that for a non-empty Zariski open set of lines L
through x, we have L 2 V , and trx maps to a regular, non-vanishing
section ofF
 X1

L=C near x, while x itself maps to a regular section of
F
 X1

L=C. However, t vanishes at x. This is a contradiction. (

If C � X is a reduced, local complete intersection Cartier curve,
then in fact C � XCM \ X �n� (recall that XCM denotes the (dense)
Zariski open subset of Cohen-Macaulay points of X ). The sheaf map
OC !H2nÿ1

C �Xnÿ1
X=C� in (2.2) induces a composite map

aC : H1�C;OC� ��! H1�C;H2nÿ1
C �Xnÿ1

X=C����! Hn
C�X ;Xnÿ1

X=C� ��!��!H2nÿ1�X ;X<n
X=C� :

This is just the map Lie�Pic0�C�� ! Lie�An�X �� on Lie algebras
induced by the composition of the group homomorphisms
Pic0�C� ! A1�C� and the Gysin map A1�C� ! An�X �.

Proposition 3.8. (a) Let C � X be a reduced, local complete intersec-
tion Cartier curve, and let U � Xreg be a dense open subset such that
U \ C is dense in Creg. Then the dual a_C of aC : H1�C;OC� !
H2nÿ1�X ;X<n

X=C� (i.e., of Lie�Pic0�C�� ! Lie�An�X ��� ®ts into a
commutative diagram
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X�An�X �� �!� H0�Xreg;X
1
Xreg=C�?ya_C

?yrestriction

H0�C;xC� �!� H0�C \ U ;X1
C\U=C� :

(Here the right hand vertical arrow is given by restriction of 1- forms.)
(b) Let U � Xreg be a dense Zariski open set, and let

x 2 C�U ;X1
U=C� be closed. Then x 2 X�An�X �� if and only if

(i) x yields a meromorphic section on X of X1
X=C

(ii) for any reduced, local complete intersection Cartier curve C � X
such that C \ U is dense in C, the restriction of x to B � Creg \ U is in
the image of the natural injective map

H0�C;xC� ��! H0�B;X1
B=C� :

Proof. First we prove (a). From lemma 3.5, it su�ces to prove that if
bC : H1�C;OC� ! Hn�X ;Xnÿ1

X=C� is the obvious map through which aC

factors, then the dual map b_C ®ts into a commutative diagram

H0�X ;HomX �Xnÿ1
X=C;xX �� �!� H0�Xreg;X

1
Xreg=C�?yb_C

?yrestriction

H0�C;xC� �!� H0�C \ Xreg;xC\Xreg
� :

Here we have used Serre duality on X and C to make the identi®-
cations

Hn�X ;Xnÿ1
X=C�_ � H0�X ;HomX �Xnÿ1

X=C;xX ��;
H1�C;OC�_ � H0�C;xC� :

Since C is a reduced, local complete intersection Cartier curve in X
(so that C � XCM \ X �n�), we have the adjunction formula

xC �HomC

n̂ÿ1
IC=I

2
C;xX 
 OC

 !
:

Hence there is a natural sheaf map

wC : HomX �Xnÿ1
X=C;xX � ÿ!HomC

n̂ÿ1
IC=I

2
C;xX 
 OC

 !
� xC
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induced by restriction to C, and composition with the natural map

n̂ÿ1
IC=I

2
C ! Xnÿ1

X=C 
 OC;

f1 ^ � � � ^ fnÿ1 # df1 ^ � � � � � � dfnÿ1 :

On any open set U � Xreg with U \ C � Creg, one veri®es at once,
from the explicit description, that the map wC jU is just the restriction
map on 1-forms X1

U=C ! X1
C\U=C.

Hence the desired commutativity (which implies (a)) follows from:

Claim 3.9. b_ is the map induced by wC on global sections.

To prove the claim, ®rst note that for the local complete inter-
section curve C in XCM, one also has

Extnÿa
X �OC;xX � � xC for a � 1

0 for a 6� 1 ,

�
Hence there is a Gysin map given as the composite

H1�C;xC� � H1�X ;Extnÿ1
X �OC;xX �� ��!� ExtnX �OC;xX ���! Hn

C�X ;xX � ��! Hn�X ;xX �

where � is the isomorphism resulting from the (degenerate) spectral
sequence

Ea;bÿa
2 � Ha�X ;Extbÿa

X �OC;xX �� �) ExtbX �OC;xX � :
The trace map TrC : H1�C;xC� ! C (of Serre duality on C) factors as

TrC : H1�C;xC� ���!Gysin
Hn�X ;xX � ���!TrX C

(one way to verify this is to show that the composite TrX �Gysin has
the universal property of TrC).

Now the claim 3.9 amounts to the assertion that the following
diagram commutes:

H1�C;OC� ���!Gysin
Hn�X ;Xnÿ1

X=C�
wC�u�

??y u

??y
H1�C;xC� ���!Gysin

Hn�X ;xX �

From remark 2.4, this will follow if we prove the commutativity of
the diagram of OX -linear maps
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OC ��!Extnÿ1
X �OC;X

nÿ1
X=C�

wC�u�
?y ?yu

xC ��!� Extnÿ1
X �OC;xX � :

As xC is torsion-free, it is enough to check this commutativity on a
suitable open subset of the regular locus of C, where it is easily
veri®ed.

We now show the ``if'' part of (b) (note that the other direction
follows directly from (a)). By lemma 3.6, it su�ces to prove that for
each ®nite, linear projection p : X ! Pn

C, the meromorphic 1-form x
determines a section of

HomX �p�Xnÿ1
Pn

C=C
;xX �:

Since p is a ®nite morphism,

p�xX �HomPn
C
�p�OX ;xPn

C
� ;

and we have a sequence of natural identi®cations of sheaves

p�HomX �p�Xnÿ1
Pn

C=C
;xX � �HomPn

C
�Xnÿ1

Pn
C=C

 p�OX ;xPn

C
�

�HomPn
C
�p�OX ;HomPn

C
�Xnÿ1

Pn
C=C

;xPn
C
�� �F
 X1

Pn
C=C

;

where F �HomPn
C
�p�OX ;OPn

C
� is a (non-zero) coherent re¯exive

sheaf on Pn
C.

Let W � Pn
C be a dense open subset such that pÿ1�W � � U . Then

x determines a section of F
 X1
Pn

C=C
on W , and we want to show it

extends to a global section of this sheaf. We do this by verifying that
the hypotheses of lemma 3.7 are satis®ed.

Let L be a line in Pn
C, disjoint from the non-¯at locus of

p : X �n� ! Pn
C (which is a subset of Pn

C of codimension �2, since X �n�

is reduced and purely of dimension n). Then the scheme-theoretic
inverse image of L in X �n� is a closed, local complete intersection
subscheme of X �n�, purely of dimension 1, which is contained in the
Cohen-Macaulay locus of X �n� (since X �n� is Cohen-Macaulay pre-
cisely at all points x 2 X where p is ¯at). If further L is not contained
in the branch locus of p on X �n� (i.e., p is eÂ tale over all but ®nitely
many points of L), then pÿ1�L� � D is non-singular outside a ®nite
set. Thus D is a reduced, complete intersection curve in X �n�. Further,
if D \ X<n � ;, then D is a reduced local complete intersection curve
in X , whose non-singular locus is contained in Xreg. In particular D is
a reduced Cartier curve in X . Finally, if L is not contained in the
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image of X ÿ U , then D has ®nite intersection with X ÿ U , and hence
D \ U is dense in D. Clearly the set of all such lines L contains a non-
empty open subset of the Grassmannian of lines.

For a line L as above, we have

p�xD �HomL�p�OD;xL� �HomL�p�OX 
 OL;xL�
�HomL�p�OX 
 OL;X

1
L=C� �F
 X1

L=C ;

since F
 OL �HomL�p�OD;OL� (as p is ¯at over L). Since we are
given that the image of x in X1

D\U=C extends to a global section of xD,
it follows that the corresponding section of F
 X1

L=C jL\W extends to
a global section ofF
 X1

L=C. Thus we have veri®ed the hypotheses of
lemma 3.7. (

Remark 3.10. Two properties of An�Y �, which are true for smooth
projective varieties Y , do not carry over to the general case: the
compatibility with products, and its dimension being constant in a
¯at family. We give examples to illustrate these pathologies.

Let X and Y be projective varieties of dimension n and m, res-
pectively, and let r�X � and r�Y � denote the number of irreducible
components of dimensions n and m respectively. By [D] the KuÈ nneth
decomposition

H2�n�m�ÿ1�X � Y ;Z�=�torsion�
� H2nÿ1�X ;Z�r�Y � � H2mÿ1�Y ;Z�r�X �
h i�

�torsion�

is compatible with the Hodge structure. Thus

J n�m�X � Y � � J n�X �r�Y � � Jm�Y �r�X � : �3:2�

For An�m�X � Y � the picture is wilder. By (3.1) in the proof of 3.5, we
have

Lie�An�m�X � Y ��

� H n�Xnÿ1
X=C� 
 Hm�Xm

Y =C� � Hn�Xn
X=C� 
 Hm�Xmÿ1

Y =C�
Hn�Xnÿ2

X=C� 
 Hm�Xm
Y =C� � Hn�Xnÿ1

X=C� 
 Hm�Xmÿ1
Y =C� � Hn�Xn

X=C� 
 H m�Xmÿ2
Y =C�

where the maps from the denominator are

dX 
 idY ; dX 
 idY � �ÿ1�nÿ1idX 
 dY and idX 
 dY :
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Consider an elliptic curve E, the rational curve C � �x3 ÿ y2z� � P2
C,

with a cusp, and the union of three rational curves C � �xyz� � P2
C.

They all are ®bres of the family C! P � P�H0�P2;OP2�3��� of
curves of degree three in P2.

Hodge theory implies that

d : H1�E;OE� ��! H1�E;X1
E� and d : H1�C;OC� ��! H1�C;X1

C� � C3

are both zero. Using (3.3) this shows

A2�C � E� � J2�C � E� � A1�C� � A1�E�3 � Gm � E3

A2�C � C� � J2�C � C� � A1�C�3 � A1�C�3 � G6
m :

On the other hand, Cÿ �0 : 1 : 0� � Spec�C�t2; t3�� and, if p : ~C! C
denotes the normalization, one has exact equations

0 ��! OC ��! p��O~C� ��! Ct ��! 0

and

0 ��! X1
C=C ��! p��X1

~C=C� ��! Cdt ��! 0 :

Thus Ct � H1�C;OC� ��!d� Cdt ��!� H1�C;X1
C=C� � C2 and one obtains

by 3.3

A2�C� E� � Ga � E � A1�C� � A1�E�

A2�C� C� � C2 �C2

C
� G3

a whereas

A1�C� � A1�C� � Ga �Ga :

In particular, a product formula as (3.2) fails for An instead of J n, and
the dimension of J n and An are not constant for the ®bres
C� C! P� P.

It is amusing to write down the cycle map for the last example.
Writing

Creg � Creg � �Cÿ �0 : 0 : 1�� � �Cÿ �0 : 0 : 1��
� Spec�C�u� 
C C�v�� ;

X�C� C� � HomC�C�X1
C�C=C;xC�C�cl decomposes as
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�H0�C;Hom�X1
C=C;xC�� 
 H0�C;xC�

� H0�C;xC� 
 H0�C;Hom�X1
C=C;xC���cl

� �Cdv�Cudv�Cdu�Cvdu�cl
� Cdv�Cdu�C�udv� vdu�:

The cycle map is

PCreg�Creg
� A2

C �A2
C ��!G3

a

��x1; x2�; �y1; y2��#
du 7! y1 ÿ x1
dv 7! y2 ÿ x2

udv� vdu 7! y1y2 ÿ x1x2 :

8<:
4. The universal property over C

Let U1; . . . ;Ur be the connected components of Xreg, and for each i,
let pi 2 Ui be a base point.

Let G be a commutative algebraic group. By 1.14 and 1.13 a ho-
momorphism (of abstract groups) / : CHn�X �deg 0 ! G is regular, if
and only if / � cm : Sm�Xreg� ! G is a morphism of varieties, for some
m > 0.

Theorem 4.1. (i) The homomorphism u : CHn�X �deg 0 ! An�X � con-
structed in lemma 2.6 is regular and surjective.

(ii) The cokernel of the map H1�Xreg;Z� ! Lie�An�X ��, de®ned by
integration of 1-forms over homology classes, is naturally isomorphic to
An�X � and the composite �u � c��ÿ� : PXreg

! CHn�X �deg 0 ! An�X � is
given by

�x; y�# x 7!
Zy

x

x

8<:
9=;

(iii) (Universality) u satis®es the following universal property: for
any regular homomorphism / : CHn�X �deg 0 ! G to a commutative
algebraic group there exists a unique homomorphism h : An�X � ! G of
algebraic groups with / � h � u.

Proof of �i�. It su�ces to prove that u � c1 : U � Xreg ! An�X � is a
morphism. Note that by lemma 3.2 it is analytic. Further, we have the
following.
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(a) The composition U ! An�X � ! Alb� ~X � is a morphism, where
~X is a resolution of singularities of X �n�, since we may then regard U
as an open subset of ~X , and the map U ! Alb� ~X � is the restriction of
the Albanese mapping for ~X , with appropriate base-points. Here
Alb� ~X � is the product of the Albanese varieties of the connected
components of ~X , and An�X � is an extension of Alb� ~X � by a group
Gr

a �Gs
m, so that in particular An�X � ! Alb� ~X � is a Zariski locally

trivial ®bre bundle.
(b) For each reduced Cartier curve C � X , the composite

Creg ��!U ��!An�X �
is a morphism. Indeed, for each component B0 of Creg, the compo-
sition

B0 ��!U ��!c1 CHn�X �deg 0 ��!u An�X �
agrees with

B0 ��!Pic0�C� ��!CHn�X �deg 0 ��!u An�X �
up to a translation, and by corollary 3.3, the latter is algebraic.

Now we may argue as in [BiS]: we are reduced to proving that if V is a
non-singular a�ne variety, a holomorphic function on V which is
algebraic when restricted to ``almost all'' algebraic curves in V , is in
fact an algebraic regular function. This may be proved using Noether
normalization and power series expansions for holomorphic func-
tions on Cn, or deduced from [Si], (1.1).

Since X�An�X �� is a ®nite dimensional subspace of 1-forms on U ,
there exist reduced local complete intersection Cartier curves Ci � X ,
for i � 1; . . . ; s, such that

X�An�X �� ��! a
s

i�1
H0�Ci;xCi�

is injective. Hence

a
s

i�1
Pic0�Ci� ��!Rwi An�X �

is surjective.

Proof of �ii� and �iii�: Let / : CHn�X �deg 0 ! G be a regular homo-
morphism to a commutative algebraic group G. By lemma 1.12 the
image of / is contained in the connected component of the identity of
G. Hence we may assume without loss of generality that G is
connected.
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Now X�G� consists of closed, translation-invariant 1-forms. Thus
if

h � / � c1 : U ÿ! G ;

then the image of h� : X�G� ! C�U ;X1
X=C� is contained in the sub-

space of closed 1-forms. We claim that in fact h��X�G�� � X�An�X ��:
This is deduced from the criterion of proposition 3.8, (b), since we

know that for any reduced Cartier curve C in X , the composition

Pic0�C� ��! CHn�X �deg 0 ��!/ G

is a homomorphism of algebraic groups. Now we observe that if B0 is
any component of Creg, then

B0 ��! Pic0�C� � Lie�A1�C��=image H1�Creg;Z�
is given by integration of 1-forms in H0�C;xC�. Moreover the com-
posite

B0 ��! U ��!h G

agrees with

B0 ��! Pic0�C� ��! G ;

up to a translation by an element of G (and elements of X�G� are
translation invariant). Dualizing the above inclusion on 1-forms, we
thus obtain a map on Lie algebras Lie�An�X �� ! Lie�G�: This ®ts
into a commutative diagram

H1�U ;Z� ÿ! Lie�An�X ��??y ??y
H1�G;Z� ÿ! Lie�G�

where the horizontal arrows are given by integration of 1-forms over
homology classes. Further there is a commutative diagram

U ��! Lie�An�X ��=image H1�U ;Z�
c1

??y ??y ~/

CHn�X �deg 0 ��!/ G � Lie�G�=image H1�G;Z�
where ~/ is a homomorphism of analytic groups, and where the upper
horizontal arrow is given by integration of 1-forms in X�An�X ��.

We claim that the map H1�U ;Z� ! Lie�An�X �� � X�An�X ���
factors through the (surjective) composition
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H1�U ;Z� ��!� H2nÿ1
c �U ;Z�n�� ��!��!H2nÿ1�X ;Z�n�� ;

where H�c denotes compactly supported cohomology, and the is-
omorphism is by PoincareÂ duality. Indeed, let C � X �n� be a su�-
ciently general reduced complete intersection curve in X �n�. Then

C \ X<n � ;; Csing � C \ X �n�sing � C \ Xsing;

and one has a Gysin homomorphism

H1�C;Z�1�� ��! H2nÿ1�X ;Z�n�� � H2nÿ1�X �n�;Z�n��

which ®ts into a commutative diagram with exact rows

H0�Csing;Z�1�� ��! H1
c �C \ U ;Z�1�� ��!��! H1�C;Z�1��??y ??y ??yGysin

H2nÿ2�X �n�sing;Z�n�� ��! H2nÿ1
c �U ;Z�n�� ��!��! H2nÿ1�X �n�;Z�n��

The left hand vertical arrow is in fact surjective, since
H2nÿ2�X �n�sing;Z�nÿ 1�� is the free abelian group on the �nÿ 1�-di-
mensional components of X �n�sing, and (since C is a general complete
intersection) Csing has non-empty intersection (which is supported at
smooth points, and is transverse) with each such component of X �n�sing.
Now we note that the composite H1�C \ U ;Z� ! H1�U ;Z� !
Lie�An�X �� factors through the surjective composite H1�U ;Z�
� H1

c �U ;Z�1�� ! H1�C;Z�1��, since C \ U ! U ! An�X � is com-
patible with a homomorphism Pic0�C� ! An�X � (here ``compatible''
means that for any component B0 of C \ U , the composites
B0 ! U ! An�X � and B0 ! Pic0�C� ! An�X � agree up to translation
by an element of An�X �). Now a diagram chase implies the claim
made at the beginning of the paragraph.

Thus in the diagram (4.1) we see that Lie�An�X ��=image H1�U ;Z�
is identi®ed with

Lie�An�X ��=image H2nÿ1�X ;Z�n�� � An�X � :
Hence there is a homomorphism ~/ : An�X � ! G, such that
c1 � / : U ! G factors through An�X �. Since c�1 : X�An�X �� !
C�U ;X1

U=C� is injective, the induced map An�X � ! G with this
property is unique, since the corresponding map on Lie algebras is
uniquely determined. Since image c1 generates CHn�X �deg 0, the two
homomorphisms
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/ : CHn�X �deg 0 ��!G; CHn�X �deg 0 ��!u An�X � ��!~/ G

must coincide. This proves the universal property of u, except that we
need to note that ~/ is a morphism. By lemma 1.13, / induces an
algebraic group homomorphism Pic0�C� ! G for all admissible pairs
�C0; i�, with C � i�C0�. As above, we can choose reduced complete
intersection curves Ci, i � 1; . . . ; s, such that

a
s

i�1
Pic0�Ci� ���!�wi An�X �

is surjective. As ~/ � ��wi� is an algebraic group homomorphism, ~/ is
an algebraic group homomorphism as well. (

Remark 4.2. Lemma 3.1, combined with the Roitman Theorem
proved in [BiS], imply that u : CHn�X �deg 0 ! An�X � is an isomorp-
hism on torsion subgroups. In other words, the Roitman Theorem is
valid for u : CHn�X �deg 0 ! An�X �, over C. This is another similarity
with the Albanese mapping for a non-singular projective variety.

Remark 4.3. The proof of theorem 4.1 is close in spirit to the
construction of a ``generalized Albanese variety'' in [FW]. There
Faltings and WuÈ stholz consider a ®nite dimensional subspace
V � H0�Xreg;X

1
Xreg
�, containing the 1-forms with logarithmic poles on

some desingularization of X �n�, and they construct a commutative
algebraic group GV together with a morphism Xreg ! GV , which is
universal among the morphisms s : Xreg ! H to commutative
algebraic groups H , with s��X�H�� � V .

5. Picard groups of Cartier curves

In the next section, we give an algebraic construction of An�X � for a
reduced projective n-dimensional variety X , de®ned over an alge-
braically closed ®eld k. As in the analytic case, we will use the Picard
scheme for Cartier curves in X and for families of such curves. In this
section, we discuss some properties of such families of curves, and the
corresponding Picard schemes. In particular, we establish the tech-
nical results 5.6 and 5.8, which are important steps in the algebraic
construction of An�X �.

Let S be an irreducible non-singular variety, and let f : C! S be a
¯at proper family of projective curves with reduced geometric ®bres
Cs � fÿ1�s�. By [G], 7.8.6, the morphism f is cohomologically ¯at in
dimension zero. Hence f�OC and R1f�OC are both locally free and
compatible with base change and
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g�Cs� :� dimk�s�H1�Cs;OCs� and #Cs :� dimk�s� H0�Cs;OCs�

are both constant on S. Moreover, the relative Picard functor PicC=S
is represented by an algebraic space Pic�C=S� (see [BLR], 8.3,
theorem 1).

If S0 ! S is a ®nite covering such that f 0 : C0 � C�S S0 ! S0 is the
disjoint union of families of curves C0i ! S0, for i � 1; . . . ; r with
connected ®bres, then

Pic�C=S� �S S0 � Pic�C0=S0� � Pic�C01=S0� �S0 � � � �S0 Pic�C0r=S0� :

For the smooth locus Csm of f consider the g-th symmetric product

f 0g : Sg�C0sm=S0� ÿ! S0

over S0. For any open subscheme W 0 � Sg�C0sm=S0� there is a natural
map #W 0 : W 0 ! Pic�C0=S0�. By [BLR], 9.3, lemmas 5 and 6, one has
the following generalization of 1.11:

Lemma 5.1. After replacing S0 by an eÂtale covering, there exists an
open subscheme W 0 � Sg�C0sm=S0� with irreducible ®bres over S0, such
that #W 0 : W 0 ! Pic�C0=S0� is an open embedding.

Recall that X �n� denotes the union of the n-dimensional irreducible
components of X , and X<n is the union of the smaller dimensional
components.

Notations 5.2. For a very ample invertible sheaf L on X �n� we write

jLjnÿ1 � P�H0�X �n�;L�� � � � � � P�H0�X �n�;L�� �nÿ 1�-times

and jLjnÿ10 for the open subscheme de®ned by nÿ 1-tuples
D1; . . . ;Dnÿ1 of divisors such that

(i) C � D1 \ � � � \ Dnÿ1 is a reduced complete intersection curve in
X �n�,

(ii) C \ X<n � ;, and
(iii) Xreg \ C is non-singular and dense in C.

Note that by (ii), C is a reduced Cartier curve in X which is a local
complete intersection. By abuse of notation we will sometimes write
C 2 jLjnÿ1 instead of �D1; . . . ;Dnÿ1� 2 jLjnÿ1.

The normalization p : ~C ! C induces a surjection p� : Pic0�C� !
Pic0� ~C�. By [BLR], 9.2, the kernel of p� is the largest linear subgroup
H�C� of Pic�C�. One has
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dim�H�C�� � dim�Pic0�C�� ÿ dim�Pic0� ~C��
� dimk�H1�C;OC�� ÿ dimk�H1� ~C;O ~C��
� v� ~C;O ~C� ÿ v�C;OC� ÿ �# ~C ÿ#C�;�5:1�

where again #C and # ~C denote the numbers of connected compo-
nents of C and ~C, respectively.

Given a ¯at family of projective curves f : C! S over an irre-
ducible variety S with reduced geometric ®bres Cs, there exist a ®nite
covering S0 ! S and an open dense subscheme S00 � S0 such that the
normalization of C�S S00 is smooth over S00. Hence # ~Cs, and the
dimension of the linear part H�Cs� of Pic0�Cs�, are both constant on
the image of S00.

De®nition 5.3. For a reduced projective curve C we de®ne r�C� to be the
number of irreducible components of C, and l�C� to be the dimension of
the largest linear subgroup of Pic0�C�.

By [F], Satz 5.2, for a very ample invertible sheaf L the open
subscheme jLjnÿ10 is not empty. Let r�L� and l�L� denote the values
of r�C� and of l�C� for C 2 jLjnÿ10 in general position.

By the equality (5.1) one has:

v� ~C;O ~C� ÿ v�C;OC� � l�C� � v� ~C;O ~C� ÿ v�C;OC� ÿ r�C� � 1 :

�5:2�

Lemma 5.4. For a very ample invertible sheaf L and for a positive
integer N,

l�LN� � Nnÿ1 � �l�L� � r�L� ÿ 1� :

Proof. Given D�i�j 2 jLj, for i � 1; . . . ;N and j � 1; . . . ; nÿ 1, we
write

I � f1; . . . ;Ngnÿ1

C�i� � D�i1�1 \ � � � \ D�inÿ1�nÿ1 for i � �i1; . . . ; inÿ1� 2 I

and C �
[
i2I

C�i� �
\nÿ1
j�1
�D�1�j [ � � � [ D�N�j � :

Claim 5.5. There exists a choice of the divisors D�i�j 2 jLj such that
(a) C�i� 2 jLjnÿ10 , l�C�i�� � l�L� and r�C�i�� � r�L�
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(b) C�i� \ C�i
0� \ Xsing � ; for i 6� i0

(c) each point x 2 Csing \ Xreg lies on exactly two components C�i�

and C�i
0�. In this case, there exists one m with ij � i0j for all j 6� m.

Locally in x the surface

Y � D�i1�1 \ � � � \
d
D�im�m \ � � � \ D�inÿ1�nÿ1 \ Xreg

is nonsingular and contains C�i� and C�i
0� as two smooth divisors

intersecting transversally.

(d) C is a reduced complete intersection curve in jLN jnÿ1.
Proof. (d) follows from (a), (b) and (c). Since jLjnÿ10 is open and
dense in jLjnÿ1, (a) holds true for su�ciently general divisors.
Counting dimensions one ®nds that for i 6� i0 the intersection
C�i� \ C�i

0� is either empty or consists of ®nitely many points. The
latter can only happen, if all but one entry in i and i0 are the same,
and obviously one may assume that the intersection points all avoid
Xsing. Moreover

C�i� \ C�i
0� \ C�i

00� � ;

for pairwise di�erent i; i0 i00 2 I . Now (c) follows from the Bertini
theorem [F], Satz 5.2, saying that for su�ciently general divisors D�i�j

Y � D�i1�1 \ � � � \
d
D�im�m \ � � � \ D�inÿ1�nÿ1 \ Xreg

C�i� � Y \ D�im�m and C�i
0� � Y \ D�i

0
m�

m

are non-singular and that C�i� and C�i
0� meet tranversally on Y . (

Let AM�1 � jLN jnÿ1 be an a�ne open subspace containing the point
s0 which corresponds to the tuple fD�1�j [ � � � [ D�N�j gj�1;...;nÿ1, and let

PM be the projective space parametrizing lines in AM�1, passing
through s0. There is a line S 2 PM such that
(i) the total space C of the restriction

C ���!s X
f
?y
S ���!� jLN jnÿ1 :

of the universal family to S is non-singular in a neighbourhood of
each point x 2 Csing \ Xreg

(ii) the intersection of Xreg with the general ®bre of f : C! S is
non-singular.
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In fact, using the notation from 5.5 (c), we can choose for a
point x 2 Csing \ Xreg a line S connecting s0 with a point
�D01; . . . ;D0nÿ1� 2 AM�1, where

D0j � D�1�j [ � � � [ D�N�j for j 6� m ;

where D0m \ Yreg is non singular, and where x 62 D0m. By this choice, in a
neighbourhood of x the restriction of the universal family C to S is
just a ®bering of Y over S. Hence the condition (i) is valid for the
chosen point x.

However, for each point x 2 Csing \ Xreg, the condition (i) is an
open condition in PM , and hence for a general line S, (i) holds for all
points in Csing \ Xreg; clearly the second condition (ii) holds as well.
The family f : C! S has only ®nitely many non-reduced ®bres and
outside of them U � sÿ1�Xreg� contains only ®nitely many points,
which are singularities of the ®bres.

Replacing S by an open neighbourhood of s0, we may assume
thereby, that for s 6� s0 the ®bre Cs � fÿ1�s� is reduced, that Cs \ Xreg

is non-singular and dense in Cs and that l�Cs� � l�LN �. In particular
U is non-singular outside of the points Csing \ Xreg, and by condition
(i), U is non singular. Moreover, f jU : U ! S is semi-stable; hence
f jU is a local complete intersection morphism, smooth outside a ®nite
subset of U . Let L be a ®nite extension of the function ®eld k�S� such
that the normalization of C�S Spec �L� is smooth over L, and let S0

be the normalization of S in L. Consider

C0 ���!r C�S S0 ���!g0 C
f 0& ?y pr2

?y f

S0 ���!g0 S

where r denotes the normalization. Since U �S S0 ! S0 is a local
complete intersection morphism, smooth outside a ®nite subset of the
domain, U �S S0 is normal and r restricted to U 0 � rÿ1�U �S S0� is an
isomorphism. By construction the general ®bre of f 0 is smooth and C0

is normal. Since for all s0 2 S0 the ®bres C0s0 � f 0ÿ1�s0� of f 0 are re-
duced on the open dense subvariety U 0, they are reduced everywhere.
Note also that Cÿ U ! S is ®nite, and hence so is C0 ÿ U 0 ! S0.

Let s0; s00 2 S0 be points, with s0 � g�s00�, and with s � g�s0� in
general position. The inequality (5.2) implies that

l�LN � � l�Cs� � v�C0s0 ;OC0
s0
� ÿ v�Cs;OCs�

� v
ÿ
C0s0

0
;OC0

s0
0

�ÿ v�Cs0 ;OCs0
� :
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Since C0s0
0
\ U 0 is isomorphic to Cs0 \ U the curve C0s0

0
is ®nite over and

birational to C � Cs0 . Moreover, the ®bres C0s0
0
\ U 0 and C \ U have

the same number d of double points. Writing C0�i� for the preimage

of C�i� in C0s0
0
one obtains

v�C;OC� � d �
X
i2I

v�C�i�;OC�i� �;

v
ÿ
C0s0

0
;OC0

s0
0

�� d �
X
i2I

v�C0�i�;OC0�i� �

and l�LN � �
X
i2I

�v�C0�i�;OC0�i� � ÿ v�C�i�;OC�i� �� :

Finally, C0�i� is ®nite over and birational to C�i�, thus it is dominated
by the normalization of C�i�, and (5.2) impliesX

i2I

�v�C0�i�;OC0�i� � ÿ v�C�i�;OC�i� ��

�
X
i2I

�l�C�i�� � r�C�i�� ÿ 1�

� Nnÿ1 � �l�L� � r�L� ÿ 1� : (

Replacing L by its N -th power one obtains by lemma 5.4 ample
invertible sheaves on X �n� with many more linearly independent
sections than l�L�. For example, if X1; . . . ;Xr are the irreducible
components of X �n�, then

image �H0�X �n�;LN � ! H0�Xi;L
N jXi
�� � H0�Xi;L

N jXi
� ;

for su�ciently large N , and its dimension is bounded below by a non-
zero multiple of Nn, whereas by 5.4, l�LN � is bounded above by
�l�L� � r�L� ÿ 1� � Nnÿ1. One obtains:

Corollary 5.6. There exists a very ample sheaf L on X �n� with

dimk�image �H0�X �n�;L� ! H0�Xi;LjXi
��� � 2 � l�L� � r � 2 ;

for i � 1; . . . ; r.

Over a ®eld k of positive characteristic we will need a stronger
technical condition. Recall that PXreg

� Sr
i�1�Ui � Ui�, where

Ui � Xi \ Xreg are the irreducible components of Xreg.
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Assumption 5.7. Let Z � Sd�PXreg
� � Sd�PXreg

� � jLjnÿ10 be the inci-
dence variety of points

���x1; x01�; . . . ; �xd ; x0d��; ��xd�1; x0d�1�; . . . ; �x2d ; x02d��; �D1; . . . ;Dnÿ1��
2 Sd�PXreg

� � Sd�PXreg
� � jLjnÿ10

with x1; . . . ; x2d ; x01; . . . ; x02d 2 C � D1 \ � � � \ Dnÿ1. Then the projection

pr012 � pr12jZ : Z ��! Sd�PXreg
� � Sd�PXreg

�

is dominant.

Proposition 5.8. There exists a very ample sheaf L on X �n� which
satis®es the assumption 5.7, for all d � l�L�.
Proof. Let Ii be the ideal sheaf of

S
j 6�i Xj on X �n�. Then Ii is anni-

hilated by the ideal sheaf of Xi in X �n�. In particular, one can talk
on its cohomology on Xi, as being the same as its cohomology on
X �n�. Hence if F is a torsion-free coherent sheaf on X �n� and
IinF :� image�F
Ii !F� then

H0�Xi;IinF� � H0�X �n�;IinF�

and a
r

i�1
H0�Xi;IinF� � H0�X �n�;F� :

Claim 5.9. There exists a very ample invertible sheaf L on X �n� such
that

dimk�image�H0�Xi;L
IijXi
� ! H0�C;LjC��� � 4 � l�L� ; �5:3�

for i � 1; . . . ; r, and for all C 2 jLjnÿ10 .

Proof.Given a very ample invertible sheafL it su�ces to ®nd a lower
bound for the dimension of the image of the composite map

s : H0�Xi;L
N 
IijXi

� ��! H0�X �n�;LN � ��! H0�C;LN jC�

which is independent of C 2 jLN jnÿ10 and grows like Nn. If JC
denotes the ideal sheaf of C on X �n�, then

ker�s� � H0�Xi;Iin�LN 
JC�� � H0�X �n�;LN 
JC� :
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Hence it is su�cient to give an upper bound for
dim�H0�X �n�;LN 
JC�� by some polynomial in N of degree nÿ 1,
independent of C.

For j < n the dimension of Hj�X �n�;LÿN � is bounded by a poly-
nomial of degree nÿ 2. In fact, X �n� is a subscheme of
PM � P�H0�X �n�;L�� and by [Ha], III.7.1 and III.6.9 one has, for N
su�ciently large,

Hj�X �n�;LÿN � � ExtMÿj�OX �n� 
LÿN ;xPM �
� H0�PM ;ExtMÿj�OX �n� ;xPM 
 OPM �N���
� H0�PM ;ExtMÿj�OX �n� ;xPM � 
 OPM �N�� :

Since X is Cohen-Macaulay outside of a subscheme T of codimension
2, the support of ExtMÿj�OX �n� ;xPM � lies in T for M ÿ j > M ÿ n.

The curve C being a complete intersection of divisors in jLN j, a
resolution of the ideal sheaf JC on X �n� is given by the Koszul
complex

0!Lÿ�nÿ1�N �
n̂ÿ1

�nÿ1 LÿN
� �

! � � � !
2̂

�nÿ1LÿN
� �

! �nÿ1LÿN ! JC ! 0 :

Therefore dim�H0�X �n�;LN 
JC�� is bounded from above by

Xnÿ2
j�0

dimk Hj X �n�;LN 

ĵ�1

�nÿ1LÿN
� � ! 

�
Xnÿ2
j�0

dimk Hj X �n�;LÿjN
� �� � nÿ 1

j� 1

� �
:

(

Let L be a very ample invertible sheaf on X �n� which satis®es
the inequality (5.3) in 5.9. We ®x some curve C 2 jLjnÿ10 and some
natural number d � l�L�.

Each irreducible component of Sd�PXreg
� � Sd�PXreg

� is of the form

Sd � �Sd1�U1 � U1� � � � � � Sdr�Ur � Ur��
� �Sdr�1�U1 � U1� � � � � � Sd2r�Ur � Ur�� ;

for some tuple d � �d1; . . . ; d2r� of non-negative integers with
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d1 � � � � � dr � dr�1 � � � � � d2r � d :

Given such a tuple d, we claim that there are (pairwise distinct) points
x1; . . . ; x2d ; x01; . . . ; x02d , with xm; x0m 2 C \ Ui, for

Xiÿ1
j�1

dj < m �
Xi

j�1
dj and for

Xr�iÿ1

j�1
dj < m �

Xr�i

j�1
dj ;

such that the restriction map

H0�X �n�;L� ��! a
2d

i�1
kxi � kx0i�5:4�

is surjective. In fact, by the inequality (5.3) the dimension of the
image of

H0�Xi;L
IijXi
� ��! H0�C \ Xi;L
IijC\Xi

� ��! H0�C;LjC���
is at least 4 � l�L� � 4 � d � 2 � �di � dr�i� and for su�ciently general
points x1; . . . ; x2d ; x01; . . . ; x02d 2 C the composite

a
r

i�1
H0�Xi;L
IijXi

� � H0�X �n�;L� ��! a
2d

i�1
kxi � kx0i

is surjective.
By construction

w :� ���x1; x01�; . . . ; �xd ; x0d��; ��xd�1; x0d�1�; . . . ; �x2d ; x02d��� 2 Sd :

Let V denote the subspace of divisors D 2 jLj with
x1; . . . ; x2d ; x01; . . . ; x02d 2 D :

The ®bre pr0ÿ112 �w� of the morphism pr012 : Z ! Sd�PXreg
� � Sd�PXreg

� is
the intersection of V nÿ1 with jLjnÿ10 . In particular, since �w;C� 2 Z,
this intersection is non-empty.

If d � dim�jLj�, the surjectivity of the restriction map (5.4)
implies that dim�V � � dÿ 4 � d and dim�pr0ÿ112 �w�� � �nÿ 1��
�dÿ 4 � d�: The ®bres of pr03 : Z ! jLjnÿ10 are equidimensional of di-
mension 4 � d and hence Z is equidimensional of dimension
�nÿ 1� � d� 4 � d. Therefore the dimension of pr012�Z� \ Sd can not be
smaller than

�nÿ 1� � d� 4 � d ÿ �nÿ 1� � �dÿ 4 � d� � n � 4 � d � dim�Sd� : (
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6. The algebraic construction of An�X�

Let X be a projective variety of dimension n, de®ned over an alge-
braically closed ®eld k. As a ®rst step towards the construction of
An�X � we need to bound the dimension of the image of a regular
homomorphism

/ : CHn�X �deg 0 ��! G

to a smooth connected commutative algebraic group G.
By the theorem of Chevalley and Rosenlicht (theorems 1 and 2 in

[BLR], 9.2) there exists a unique smooth linear subgroup L of G such
that G=L � A is an abelian variety. In addition, L is canonically is-
omorphic to a product of a unipotent group and a torus. Let us write

0 ��! L ��! G ��!d A ��! 0

for the extension.

Lemma 6.1. There exists a unique smooth connected algebraic sub-
group H of G, with d�H� � A, such that every smooth connected
algebraic subgroup J of G with d�J� � A contains H. Moreover, the
quotient group G=H is linear.

Proof. Given a smooth algebraic subgroup J of G, one has the
commutative diagram of exact sequences

0 0 0?y ?y ?y
0 ��! L \ J ��! J ��! d�J� ��! 0?y ?y ?y
0 ��! L ��! G ��! A ��! 0?y ?y ?y
0 ��! L=�L \ J� ��! G=J ��! A=d�J� ��! 0?y ?y ?y

0 0 0

Since A=d�J� is an abelian variety and L=�L \ J� a linear algebraic
group, d�J� � A if and only if G=J is linear. Observe further, that
d�J� � A if and only if d�J 0� � A for the connected component J 0 of J
containing the identity.

Choose H to be any smooth connected algebraic subgroup of G
with d�H� � A and such that d�H 0� 6� A for all proper algebraic
subgroups H 0 of H . For J as in 6.1 consider the commutative diagram
of exact sequences
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0 ��! J \ H ��! G ��! G=�J \ H� ��! 0?y D
?y i

?y
0 ��! J � H ��! G� G ��! G=J � G=H ��! 0

where D is the diagonal embedding. Since J \ H � Dÿ1�J � H� the
morphism i is injective on closed points, and hence G=�J \ H� is a
linear algebraic group. By the choice of H one obtains J \ H � H . (

Recall that X has n-dimensional irreducible components
X1; . . . ;Xr, whose union is denoted X �n�, and Ui � Xreg \ Xi. Also X<n

is the union of the lower dimensional components of X .

Proposition 6.2. Let L be a very ample invertible sheaf on X �n� which
satis®es the assumption 5.7. Let g � dimk�H1�C;OC��, for C 2 jLjnÿ10 .

Let / : CHn�X �deg 0 ! G be a surjective regular homomorphism to a
smooth connected commutative algebraic group G. Then the induced
morphism (see 1.9)

p�ÿ� : Sg�m�l�L��PXreg
� ��! CHn�X �deg 0 ��!/ G

is dominant, for m > 0, and surjective, for m > 1. In particular the di-
mension of G is bounded by 2 � n � �g� l�L��.

Probably the bound for the dimension of G is far from being
optimal. We will indicate in 6.4 how to obtain dim�G� � g in char-
acteristic zero, under a weaker assumption on L.

Proof of 6.2. Let again L be the largest smooth linear algebraic
subgroup and d : G { A � G=L the projective quotient group. Recall
that jLjnÿ10 denotes the set of tuples �D1; . . . ;Dnÿ1� of divisors in the
linear system jLj for which C � D1 \ � � � \ Dnÿ1 is a reduced
complete intersection curve (in X �n�), C \ X<n � ;, and C \ Xreg

non-singular and dense in C.

Claim 6.3. There exists an open dense subscheme S � jLjnÿ10 such that

Pic0�C� ��!w G ��!d A

is surjective and such that the dimension of image�w : Pic0�C� ! G� is
constant, for C 2 S.

Proof. Returning to the notation introduced in 5.2 let S � jLjnÿ10 be
an open subvariety, and let
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C ���!r X
f
?y
S

denote the restriction of the universal complete intersection to S. The
smooth locus of f is Csm � rÿ1�Xreg� and Csm is dominant over Xreg.
Let S0 ! S be the ®nite morphism, and let W 0 � Sg�Csm �S S0=S0� be
the open subscheme considered in lemma 5.1, with irreducible ®bres
over S0. By 5.1 the morphism

#W 0 : W 0 ��! Pic�C=S� �S S0 � Pic�C�S S0=S0�
is an open embedding. On the other hand, one has a morphism of
schemes

h : W 0 ��! Sg�Csm �S S0=S0� ��! Sg�Xreg� ;

and the image of the connected scheme W 0 lies in some connected
component, say Sg � Sg1�U1� � � � � � Sgr�Ur�: Since
/ : CHn�X �deg 0 ! G is regular, the composite

h�ÿ� : W 0 �S0 W 0 ��! Sg � Sg ��!h G

is a morphism, where

h�x; x0� � /
Xg

i�1
c�xi� ÿ

Xg

i�1
c�x0i�

 !
:

The morphism h�ÿ� induces S0-morphisms

h�ÿ�S0 : W 0 �S0 W 0 ��! G� S0 and h�ÿ�S0 � d : W 0 �S0 W 0 ��! A� S0 :

Since W 0 �S0 W 0 is irreducible one can choose irreducible locally
closed subschemes WG and WA of the images

h�ÿ�S0 �W 0 �S0 W 0� and h�ÿ�S0 � d�W 0 �S0 W 0�
respectively, dense in the closure of the images. Choosing S0 and S
small enough, one may assume that S0 ! S is surjective and that WG

and WA are both equidimensional over S0. For C 2 S choose a point
s0 2 S0 mapping to C 2 S and let W 0

s0 denote the ®bre of W 0 over s0.
Then the image of W 0

s0 � W 0
s0 in Pic0�C� is dense and thereby

dim�w�Pic0�C��� and dim�d�w�Pic0�C���� � d 0 are both constant on S.
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Assume that d 0 < dim�A�. The closure of d�h�ÿ��W 0
C � W 0

C�� is the
image of Pic0�C�, hence d�h�ÿ��W 0

C � W 0
C�� lies in some abelian sub-

variety B of A of dimension d 0 < dim�A�. Since S0 and W 0 are con-
nected, and since an abelian variety A does not contain non-trivial
families of abelian subvarieties, B is independent of the curve C
chosen.

Csm being dominant over Xreg this implies that the image
d/�CHn�X �deg 0� lies in B, contradicting the assumptions made. (

In general, a commutative algebraic group G can contain non-
trivial families of subgroups and the argument used above does not
extend to G instead of A.

Let H � G be the smallest connected algebraic subgroup with
d�H� � A, as constructed in 6.1. By 6.3 and by the universal property
in 6.1, for C 2 S the image of w�Pic0�C�� contains H .

By 1.10 the image of Sg�PCreg
� in G is w�Pic0�C�� and hence H is

contained in the image of Sg�PXreg
�. In order to show that

p�ÿ� : Sg�l�L��PXreg
� ��! CHn�X �deg 0 ��!/ G

is dominant, it su�ces to verify that the image Y0 of the composite

s�ÿ� : Sl�PXreg
� ��! CHn�X �deg 0 ��!/ G ��! G=H

is dense, for some l � l�L�. Applying claim 6.3 to G=H instead
of G one ®nds a non-empty open subscheme S � jLjnÿ10 such
that the dimension d of w0�Pic0�C�� is constant on S, where
w0 : Pic0�C� ! G=H is the natural map (see 1.12). Since G=H is a
linear algebraic group, we must have d � l�L�, and choosing S small
enough, we may assume that

d � dim�w0�Pic0�C��� � l�C� � l�L�; for all C 2 S :�6:1�
Since Y0 generates the group G=H , it is dense in G=H if and only if its
closure Y is a group. By assumption the image of the incidence variety

Z ���!pr0
12 Sd�PXreg

� � Sd�PXreg
� ����!s�ÿ��s�ÿ�

Y � Y

de®ned in 5.7 contains some open dense subscheme T . By de®nition,
for each t 2 T there exist divisors D1; . . . ;Dnÿ1 with
C � D1 \ � � � \ Dnÿ1 2 S and with

t 2 image �Sd�PB� � Sd�PB� ����!#�ÿ��#�ÿ�
Y � Y �

646 H. Esnault et al.



for B � C \ Xreg and for the induced map #�ÿ� from PB to G=H .
By 1.10 w0�Pic0�C�� � #�ÿ��Sd�PB�� � Y . Since w0�Pic0�C�� is an
algebraic subgroup of G=H , the image of t under the morphism

diff : G=H � G=H ��! G=H with �g; g0�# gÿ g0

is contained in w0�Pic0�C��, hence in Y .
Thereby T is a subset of diffÿ1�Y �, and the same is true of its

closure Y � Y . One obtains that diff�Y � Y � � Y and Y is a subgroup
of G=H .

Since Y0 is dense in G=H , by lemma 1.10 (ii) the image of S2d�PXreg
�

is G=H . (

As indicated already, the proposition 6.2 can be improved in char-
acteristic zero.

Variant 6.4. Assume that char�k� � 0. LetL be a very ample invertible
sheaf on X �n� with

dimk�image�H0�X �n�;L� ! H0�Xi;LjXi
��� � 2 � l�L� � r � 2 ;

�6:2�

for i � 1; . . . ; r. Let G be a smooth connected commutative algebraic
group, and let / : CHn�X �deg 0 ! G be a surjective regular homo-
morphism. Then there exists an open dense subvariety S � jLjnÿ10 such
that for each C 2 S the induced homomorphism (see 1.12)

w : Pic0�C� ��! CHn�X �deg 0 ��!/ G

is surjective. In particular the dimension of G is bounded by
g � dimk H1�C;OC�.
Proof. The ®rst part of the proof is the same as the one for 6.2. In
particular we may assume claim 6.3 to hold true.

Let H � G be the smallest subgroup with d�H� � A, as constructed
in 6.1. By 6.3 and by the universal property in 6.1, for all C 2 S
the image of w�Pic0�C�� contains H . Hence w : Pic0�C� ��! G is
surjective if and only if

Pic0�C� ��!w G ��! G=H

is surjective. In order to prove 6.4 we may assume thereby that G is
linear and A � 0. By claim 6.3 we may assume that for all C 2 S the
dimension of image�w : Pic0�C� ! G� is the same.
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For C 2 S, let cB : B � C \ Xreg ! CHn�X � denote the natural
map and let CB be the image of the composite

#�ÿ� : PB ���!c�ÿ�B CHn�X �deg 0 ���!/ G :

For any subset M � G we will denote by G�M� the smallest algebraic
subgroup of G which contains M . If M contains a point of in®nite
order, then dim�G�M�� > 0. In characteristic zero the converse holds
true, as well. In fact, if dim�G�M�� > 0 then G�M� contains a sub-
group isomorphic either to Ga or to Gm. In characteristic zero, both
contain points of in®nite order.

Hence if the dimension of G�CB� � w�Pic0�C�� is larger than zero,
the constructible set CB contains a point a1 of in®nite order and
dim�G�a1�� > 0. Repeating this for G=G�a1; . . . ; am� instead of G, we
®nd recursively points a1; . . . ; ad 2 CB with G�CB� � G�a1; . . . ; ad�:

Let us choose points x1; . . . ; xd ; x01; . . . ; x0d 2 B with
aj � #�ÿ���xj; x0j��, and moreover, for each component Xi of X �n�,
choose a base point qi 2 B \ Xi.

Claim 6.5. There exists a closed suscheme Z � S such that the re-
striction

C0 � C�S Z ���!r0�rjC0 X �n� ���!� X
f 0�f jC0

?y
Z ���!� S ���!� jLjnÿ10

of the universal family satis®es:

(a) For each point z 2 Z the curve Cz � f 0ÿ1�z� contains the points

x1; . . . ; xd ; x01; . . . ; x0d ; q1; . . . ; qr :

(b) r0 : C0 ! X �n� is dominant.

Proof. For

Vi � �image�H0�X �n�;L� ! H0�Xi;LjXi
�� ÿ 0�=k� � j�LjXi

�j

consider the rational map ~pi : jLjnÿ1 ! V nÿ1
i . Since each C 2 S is a

complete intersection curve, the restriction pi : S ! V nÿ1
i of ~pi is

a morphism.
For x 2 Xi \ r�C� the condition ``x 2 Cs'' de®nes a multilinear

subspace Di
x of V nÿ1

i of codimension nÿ 1. Let Ii � f1; . . . ; dg denote
the set of all the m with xm; x0m 2 Xi. Then the codimension of
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Di � Di
qi
\
\
m2Ii

�Di
xm
\ Di

x0m
�

is at most �nÿ 1� � �2 �#Ii � 1�.
Let Ci ! Di be the intersection on Xi of the divisors in Di � V nÿ1

i .
Then the general ®bre of Ci ! Xi has dimension at least

dim�Di� � 1ÿ dim�X � � dim�V nÿ1
i � � 1ÿ nÿ codim�Di�

� dim�V nÿ1
i � � 1ÿ nÿ �nÿ 1� � �2 �#Ii � 1�

� �nÿ 1� � �2 � �l�L� ÿ#Ii� � r ÿ 1� :

Since some C 2 S contains all the points xj; x0j and qi, the intersection

Z � S \
\r
i�1

pÿ1i �Di�

is non-empty. For the restriction C0 of the universal curve C to Z the
dimension of the general ®bre of r0 : C0 ! X over Xi has dimension
larger than or equal to

�nÿ 1� � �2 � �l�L� ÿ#Ii� � r ÿ 1� ÿ
X
j6�i

�nÿ 1� � �2 �#Ij � 1�

� �nÿ 1� � 2 � �l�L� ÿ
Xr

j�1
#Ii� � �nÿ 1� � 2 � �l�L� ÿ d� :

By the inequality (6.1) the last expression is larger than or equal to 0
and r0 is dominant. (
Let G�Cz� denote the image of Pic0�Cz� in G. By the choice of Z
the intersection Bz � Cz \ Xreg is non-singular and the dimension of
G�Cz� � G�CBz� is the same as the dimension of G�CB� �G�a1; . . . ; ad�.

By 6.5 the points ai � /�r0�xi� ÿ r0�x0i�� are contained in CBz , hence

G�Cz� � G�CBz� � G�CB� � G�C�

for all z 2 Z.
As r0 is dominant, r0�C0� contains some V , open and dense in Xreg

(and hence in X �n�). For q 2 V \ Xi one ®nds some z 2 Z with q 2 Cz.
By 5.7 Cz contains the chosen base point qi and

/�c�qi� ÿ c�q�� 2 G�Cz� � G�C�:
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By 1.4 (i), the points c�qi� ÿ c�q� (for q 2 V ) generate CHn�X �deg 0.
Since / was assumed to be surjective, we obtain G � G�C�, as
claimed. (

Using proposition 6.2 or its variant 6.4 the construction of An�X �
proceeds now along the lines of Lang's construction in [La] of the
Albanese variety of a smooth projective variety.

Theorem 6.6. There exists a smooth connected commutative algebraic
group An�X � and a surjective regular homomorphism
u : CHn�X �deg 0 ! An�X � satisfying the following universal property:
For any smooth commutative algebraic group G and for any regular
homomorphism / : CHn�X �deg 0 ! G there exists a unique homo-
morphism h : An�X � ! G of algebraic groups with / � h � u.

Moreover, if k � K is an extension of algebraically closed ®elds,
then

An�X �k K� � An�X � �k K :

Proof. By lemma 1.15 it is su�cient to consider connected groups G,
and surjective regular homomorphisms /.

By 5.8 there exists a very ample invertible sheaf L which satis®es
the assumption 5.7 and we can apply 6.2. (As we have seen in 5.6 the
inequality (6.2) in 6.4 holds true for some L, and if char�k� � 0 we
can use the variant 6.4, as well.)

Let g � dimk�H1�C;OC��, for some curve C 2 jLjnÿ10 in general
position. Then for all regular homomorphisms / : CHn�X �deg 0 ! G
to smooth connected commutative algebraic groups G the induced
morphism

p�ÿ� : Sg�l�L��PXreg
� �����!c�ÿ�

g�l�L�
CHn�X �deg 0 ��!/ G

has a dense image in G. Hence for the product P of all the di�erent
connected components of Sg�l�L��PXreg

� the induced morphism
p0 : P! G is dominant and p0 induces a unique embedding of
function ®elds k�G� � k�P�.

If /m : CHn�X �deg 0 ! Gm, for m � 1; 2 are two surjective regular
homomorphisms to smooth connected commutative algebraic
groups, then

/3 : CHn�X �deg 0 ��! G1 � G2

is regular. Let G3 be the image of /3. Then /m factors through the
regular homomorphism /3 : CHn�X �deg 0 ! G3 and k�Gm� � k�G3� �
k�P�, for m � 1; 2.
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Hence among the smooth connected commutative algebraic
groups G with a regular surjective homomorphisms from
/ : CHn�X �deg 0 ! G, there is one, An�X �, for which the sub®eld
k�An�X �� is maximal in k�P� and An�X � dominates all the other G in a
unique way.

It remains to show that An�X � satis®es base-change for algebrai-
cally closed ®elds. Let us write ZK � Z �k K, for a variety Z de®ned
over k. We ®rst show:

Claim 6.7. Let K � k be an algebraically closed extension ®eld of k.
The cycle map X �ÿ�K : �PXreg

�K ! An�X �K factors through a surjective
homomorphism uK;k : An�XK� ! An�X �K of algebraic groups.

Proof. Let U � Xreg, and let �C0; i� be an admissible pair de®ned over
K, with B � iÿ1�UK�reg. Choose a rational function f 2 R�C0;XK�
such that

div f �
X

ai ÿ
X

bi

for p � �a1; b1; . . . ; am; bm� 2 Sm�PB��K�. Choose a smooth k-variety
S with k�S� � K, such that C0, B, p, ai, bi, f come by base-change
from k�S� to K from

C0 ! S; B! S; p : S ! Sm�PB=S�; ai;bi : S ! B; u 2 k�B��

with div u �P ai ÿ
P

bi. Since f 2 R�C0;XK�, we can replace S by a
dense open subscheme, so that we can arrange that for each s 2 S�k�,
if we specialize to C0s � C0 �S s, then p�s�maps to zero in Pic0�C0s�. As

Sm�PBs� ��! Sm�PU � � s ��! An�X � � s

factors through Pic0�C0s�, the composite morphism

S ��!p Sm�PB=S� ��! Sm�PU � � S ��! An�X � � S

maps all k-points of S to the zero section. Thus it is the zero section,
and therefore Sm�PU �K ! An�X �K factors through CHn�XK�, induc-
ing uK;k by lemma 1.12. (

Since dK :� dimAn�XK� is bounded by 2n�g� l�L�� (proposi-
tion 6.2), there is an algebraically closed ®eld K1 with dK1

� dL for all
L � K1 algebraically closed. For any ascending chain Ki � Ki�1 of
algebraically closed ®elds with Ki � K1 one has deg uKi;K1

�
deg uKi�1;K1

. Since the latter is bounded by the degree of the algebraic
closure of K1�An�XK1

�� in K1�PXreg
� one concludes that there is an
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algebraically closed ®eld E � K1 such that uE;L is an isomorphism for
all algebraically closed ®elds L � E.

We will make use of the following lemma.

Lemma 6.8. Let K be a ®eld, W , Y , Z be geometrically integral K-
varieties, such that there are K-morphisms a : W ! Y , b : W ! Z, such
that a has dense image. Then:

(i) there is at most one K-morphism f : Y ! Z such that b � f � a
(ii) suppose that for some extension ®eld L of K, there is an L-

morphism h : YL ! ZL such that bL � h � cL : WL ! ZL; then there is a
K-morphism f : Y ! Z as in (i), and we have h � fL.

Proof. Let C � W �K Z be the graph of b, and let �C � Y �K Z be the
closure of (a� 1Z��C�. The projection �C! Y has dense image. If
there is a K-morphism f : Y ! Z as in (i), then �C must be its graph,
and so there is at most one such morphism, which exists precisely
when �C! Y is an isomorphism. Clearly if this is an isomorphism
after base change to L, it is an isomorphism to begin with. (

There is a smooth k variety S, with k�S� � E, together with a
smooth commutative S-group scheme A! S with connected ®bres,
such that An�XE� �A�S Spec E. Choosing S small enough one also
has a natural surjective S-morphism uS;k : A! An�X � � S and a
natural morphism P� S !A which is ®brewise dominant for the
irreducible variety P constructed in the ®rst part of the proof.

Let F be an algebraic closure of the quotient ®eld of E 
k E,
p : k�S �k S� ,! F the natural inclusion, and let

p�i : k�S� ,! k�S �k S�; i � 1; 2

be the inclusions de®ned by the two projections pi : S �k S ! S. Set
qi � p � p�i , and for any S-scheme T , let q�i T be the F -scheme obtained
by the base change to F determined by qi.

The S-morphism P� S !A gives rise to the ®brewise dominant
morphism

a0i : q�i �P�k S� � PF ��! q�i A :

By the assumption on E the two F -varieties q�i A are isomorphic via

u0 � uF ;E1
� uÿ1F ;E2

: q�1A
n�XE� ��! q�2A

n�XE� :
where Ei � F are the images of the two embeddings
E ,! E 
k E ,! F , x 7! x
 1 and x 7! 1
 x. By construction, u0

satis®es a02 � u0 � a01.
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Hence by lemma 6.8, applied to the extension of ®elds
k�S �k S� ,! F , the isomorphism u0 comes from an isomorphism

u : �p�1A�k�S�kS� ��! �p�2A�k�S�kS� ;

Then u in fact extends uniquely to an isomorphism of groups schemes
(again denoted u)

u : �p�1A�U ��! �p�2A�U
over an open dense subset U � S �k S. Replacing S by some open
dense subscheme, we may assume that pi : U ! S is surjective,
for i � 1; 2. Further, if ai : P� U ! �p�i A�U , i � 1; 2 are the natural
®brewise dominant maps, then a2 � u � a1.

The uniqueness statement in lemma 6.8 (i) similarly implies that u
satis®es the ``cocycle condition''

u23 � u12 � u13 : p�1A ��! p�3A

on the ®bres over the generic point of S �k S �k S, and hence (by
continuity) over the open dense subset

pÿ112 �U� \ pÿ123 �U� \ pÿ113 �U� � S �k S �k S :

Here pj : S �k S �k S ! S are the 3 projections, and uij � p�iju, for the
3 projections pij : S �k S �k S ! S �k S.

Given two points si 2 S�k�, one ®nds a third one s 2 S�k� such that
�s1; s� 2 U�k� and �s; s2� 2 U�k�. The cocycle condition implies that
the induced composite isomorphism

hs1s2 : Ajs1 ���!uj�s1 ;s�
Ajs ���!uj�s;s2�

Ajs2
does not depend on the point s 2 S�k� chosen. Also u is compatible
with the surjective morphisms P� U ! p�i A.

We claim that for each closed point s 2 S�k�, the morphism
P� s!Ajs induces a regular homomorphism CHn�X �deg 0 !Ajs.
Let �C0; i� be an admissible pair on X , de®ned over k, with
B � iÿ1�U�reg. The morphism �PB�E ! An�XE� �AE, and the re-
sulting morphism Sg�PB�E !AE (with g :� dimPic0�C0�) induces a
homomorphism Pic0�C0�E !AE, since by the de®ning property of
An�XE�, we have a factorization through CHn�XE�deg 0. Since
Sg�PB�{ Pic0�C0�, lemma 6.8 gives a map Pic0�C0� �k k�S� !Ak�S�,
compatible with the maps from �PB�k�S�. This then induces a map
Pic0�C0� � S0 !AS0 for some open dense subscheme S0 � S.
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Choosing a k-point s1 2 S0�k�, we get that the map PB � s1 !Ajs1 is
compatible with a homomorphism Pic0�C0� !Ajs1 . The isomorp-
hism u is compatible with the morphisms PB � U ! p�i A. Hence, the
isomorphisms hss1 are compatible with the maps PB � PB � s!Ajs
and PB � PB � s1 !Ajs1 , for all s 2 S�k�. We deduce that for any
s 2 S�k�, the map PB � s!Ajs gives rise to a compatible morphism
Pic0�C0� �k s!Ajs. This implies that there is an induced regular
homomorphism CHn�X �deg 0 !Ajs for each s 2 S�k�.

Hence, one obtains morphisms vs : An�X � !Ajs, verifying
vt � hst � vs for all s; t 2 S�k�. Choosing now s 2 S�k�, we set
G �Ajs, and v � vs. The ®brewise dominant morphism P�k S !A
induces a dominant map from P�k s onto G, hence v is surjective.
Since the composite

us;k � v : An�X � ��! G ��! An�X �
is an isomorphism, v is an isomorphism. Thus uS;k : A! An�X � � S
is an isomorphism when restricted to each t 2 S�k�, and is hence
an isomorphism. By base change to E one ®nds that uE;k : An�XE� !
An�X �E is an isomorphism.

Now if K � k is any algebraically closed ®eld, we choose an
algebraically closed ®eld F with F � K � k and F � E � k, hence

uK;k 
 idF � uF ;K � uF ;k � uE;k 
 idF � uF ;E ;

and uK;k is an isomorphism as well. (

7. Finite dimensional Chow groups of zero cycles

The de®nition of ®nite dimensionality for the Chow group of 0-cycles
is a natural generalization of the de®nition in the non-singular (and
normal) case (see [M], [S]).

De®nition 7.1. CHn�X � is said to be ®nite dimensional if for some
m > 0, the map

cm : Sm�Xreg� ��! CHn�X �deg 0
(introduced in 1.9) is surjective.

One can see that this is also equivalent to the statement that for
some integer m0 > 0, depending only on X , any element of
CHn�X �deg 0 is represented by a 0-cycle

Pr
i�1 di, where for each i, the

cycle di is a di�erence of two e�ective 0-cycles of degree m0 supported
in Xi.
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In the proof of the next theorem we will use the notion of a regular
map f : Z ! CHn�X �deg 0 from a variety Z. This is a map of sets such
that

(i) the composition Z ! CHn�X �deg 0 ! An�X � is a morphism
(ii) there is a surjective morphism W ! Z such that

W ��! Z ��!f CHn�X �deg 0

factors as W ��!h Sm�Xreg� ��!cm CHn�X �deg 0; for some morphism h.

For example, let C0 be a reduced Cartier curve in X or, more gen-
erally, let �C0; i� be an admissible pair. Then the homomorphism
g : Pic0�C0� ! CHn�X �deg 0 constructed in lemma 1.8 is regular. In
fact, the ®rst condition holds true by 1.12 whereas the second
one follows from the dominance of Sg�C0reg� ! Pic0�C0�, for
g � dimk�H1�C0;OC0 ��.

Recall that k is called a universal domain, if its trancendence
degree over the prime ®eld is uncountable.

Theorem 7.2. Let X be a projective variety of dimension n over a uni-
versal domain k. Then CHn�X � is ®nite dimensional if and only if

u : CHn�X �deg 0 ��! An�X �

de®nes an isomorphism between CHn�X �deg 0 and (the closed points of)
An�X �.
Proof. Let us write U � Xreg. By lemma 1.10 (ii) the composite

Sm�U� ��! CHn�X �deg 0 ��! An�X �

is always surjective for m � 2 � dim�An�X ��. Hence, if CHn�X �deg 0 !
An�X � is an isomorphism, then CHn�X � is ®nite dimensional.

So the main thrust of the theorem is the converse, that
if CHn�X �deg 0 is ®nite dimensional, then CHn�X �deg 0 ! An�X � is an
isomorphism. We imitate Roitman's proof of this result in the
non-singular case, and the analogous argument for the normal case in
[S]; however there are extra re®nements needed here, particularly
in characteristic p > 0.

First, we note that by [LW], proposition 4.2, the ``graphs of
rational equivalence''
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Cr;s � Sr�U� �CHn�X �deg 0 Ss�U�

decompose as a countable union of locally closed subvarieties, for
each r; s. This immediately implies that if fj : Zj ! CHn�X �deg 0,
j � 1; 2, are regular maps, then

Z1 �CH n�X �deg 0 Z2 � f�z1; z2� 2 Z1 � Z2; f1�z1� � f2�z2�g

is a countable union of locally closed subvarieties of Z1 � Z2.
Now arguing as in [S], lemma (1.3), (where one uses the require-

ment that k be a universal domain), we ®rst see that if G is a smooth
connected commutative algebraic group, and f : G! CHn�X �deg 0 is
any regular map which is a group homomorphism, then there is a
well-de®ned connected component of the identity G0 � ker f , which
is a connected algebraic subgroup of G, and which has countable
index in ker f . Then the induced homomorphism

G=G0 ��! CHn�X �deg 0
has a countable kernel. Hence, for any such homomorphism
G! CHn�X �deg 0, we can de®ne the dimension of the image of G to be
the dimension of G=G0.

Next, notice that if G1 ! CHn�X �deg 0 and G2 ! CHn�X �deg 0 are
two regular homomorphisms from smooth connected commutative
algebraic groups Gi such that image G1 is properly contained in image
G2, then in fact

dim image G1 < dim image G2 :

Indeed, we may assume the maps Gi ! CHn�X �deg 0 have countable
kernel, so that we wish to assert that dimG1 < dimG2. Now
G3 � G1 �CH n�X �deg 0 G2 is a subgroup of G1 � G2 which is a countable
union of locally closed subvarieties, and hence has a connected
component of the identity which is a connected algebraic group, say
H . Then H ! Gi are homomorphisms of algebraic groups with
countable, hence ®nite kernels, such that H ! G1 is surjective, and the
image of H in G2 is a strictly smaller subgroup. Thus
dimG1 � dimH < dimG2.

Now suppose cm is surjective. We claim that for any homomorp-
hism

G ��! CHn�X �deg 0
as above, with countable kernel, we have dimG � dim Sm�U�: In-
deed,
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G�CHn�X �deg 0 Sm�U�

is a countable union of subvarieties of G� Sm�U� which projects onto
G, and maps to Sm�U� with countable ®bres. Hence some irreducible
component of this ®bre product dominates G under the projection,
and maps to Sm�U� with ®nite ®bres.

We now claim that we can ®nd a ®nite number of reduced com-
plete intersection curves C1; . . . ;Cs such that the induced homo-
morphism from �Pic0�Cj� to CHn�X �deg 0 is surjective. Indeed, given
a ®nite collection of such curves, if

P �a Pic0�Cj� ��! CHn�X �deg 0
is not surjective, we can ®nd a curve C of the same sort such that

image�Pic0�C� ��! CHn�X �deg 0�

is not contained in the image of P . Then the induced map

P � Pic0�C� ��! CHn�X �deg 0
has strictly larger dimensional image than that of P . Since the
dimension of the image is bounded above by dim Sm�U� � mn,
this process can be repeated at most a ®nite number of times.

So we may assume given a surjective regular homomorphism

f : A ��! CHn�X �deg 0
with countable kernel, where A is a connected smooth commutative
algebraic group, and for some Cartier curves C1; . . . ;Cs a surjective
homomorphism

a
s

j�1
Pic0�Cj� ��!�qj

A :�7:1�

Note that the composition h : A! CHn�X �deg 0 ! An�X � is then a
surjective homomorphism of algebraic groups.

We now distinguish between the case k � C, and that of a general
universal domain k.

Proof of 7.2 for k � C. We ®rst show that the surjective homo-
morphism h : A{An�X � is an isogeny. Clearly h induces an injective
homomorphism
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h� : X�An�X �� ��! X�A� :

We will use proposition 3.8 to show that h� : X�An�X �� ! X�A� is an
isomorphism. Since h� is injective, it su�ces to prove that
dimX�A� � dimX�An�X ��.

Consider the set C � U �CHn�X �deg 0 A. This is a countable union of
algebraic subvarieties, and maps surjectively to U under the projec-
tion. Recalling that U � [jUj, we can then ®nd irreducible varieties
Cj � C such that Cj dominates Uj under the projection C! U . Then
pj : Cj ! Uj has countable, and hence ®nite, ®bres. Let dj be the
degree of pj, and let Vj � Uj be a dense open subset such that
pj : pÿ1j �Vj� ! Vj is an eÂ tale covering of degree dj. Let c be the l.c.m.
of the dj, and let c � djcj. If q : C! A is the second projection, then
consider the morphism

l : V �
[

j

Vj ��! A;

l�x� � cj

X
y2pÿ1j �x�

q�y� for x 2 Vj :

One veri®es at once that the diagramS
j Vj � V �!l A??y ??yfS
j Uj � U �!c�c1 CHn�X �deg 0

�7:2�

commutes.
The image of l�V � in CHn�X �deg 0 generates CHn�X �deg 0 as a

group, since CHn�X �deg 0 is c-divisible, and any 0-cycle on X is ra-
tionally equivalent to a cycle supported on V . Hence the subgroup of
A generated by l�V � has countable index, and is also a countable
increasing union of constructible subsets, namely the images of
l�V �2m under the maps

rm : A2m ��! A; m � 1;

�a1; . . . ; a2m�# a1 � � � � � am ÿ am�1 ÿ � � � ÿ a2m :

By dimension considerations, one of the subsets rm�l�V �2m� must be
dense in A, and then r2m�l�V �4m� � A. Hence the induced map on 1-
forms

X�A� ��! H0�V 4m;X1
V 4m=C�
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is injective. Now the action of r2m on 1-forms is given by

r�2m�x� � �x; . . . ;x;ÿx;ÿx; � � � ;ÿx� :
This means that the map on 1-forms X�A� ! H0�V ;X1

V =C�, induced
by the morphism V ! l�V �,!A, is injective.

We claim that image X�A� � X�An�X ��, so that dimX�A� �
dimX�An�X ��. To see this, it su�ces by proposition 3.8 to show that
for any reduced local complete intersection Cartier curve C � X with
B � �Creg� \ V dense in C, the image of any element of X�A� in
H0�B;X1

B=C� lies in the image of H0�C;xC�. Fixing base points in each
component of B, we obtain a morphism # : Creg ! Pic0�C�. If Ci is
any component of Creg, then the two induced maps

Ci ÿ! Pic0�C� ÿ! CHn�X �deg 0;
Ci ,! U ��!c1 CHn�X �deg 0

agree up to translation by a ®xed element of CHn�X �deg 0.
Now consider the subgroup CC � Pic0�C� �CH n�X �deg 0 A. As before,

this is a countable union of subvarieties of Pic0�C� � A. Hence there
is a connected algebraic subgroup C0

C � CC such that CC=C0
C is a

countable group. Further, CC ! Pic0�C� is surjective with countable
®bres. Hence C0

C ! Pic0�C� is an isogeny. Restricting (7.2) one ob-
tains a commutative diagram

B �!l A??y ??yf

Creg �!cc1 CHn�X �deg 0
and hence a morphism B! C0

C such that

(i) for each component Ci of Creg, the composite

Ci \ B ��! C0
C ��! Pic0�C�

equals the restriction of the composite

Ci ��! Pic0�C� ��!c� Pic0�C� ;

up to a translation (here c� denotes multiplication by c)
(ii) Ci \ B! C0

C ! A agrees with l, up to a translation.
Hence, by (ii),
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image �X�A� ��!l� C�B;X1
C=C�� � image X�C0

C� ��! C�B;X1
C=C�

� �
while by (i),

image X�C0
C� � image X�Pic0�C�� � image C�C;xC� :

Since C was arbitrary, we have veri®ed the hypotheses of proposi-
tion 3.8. This completes the proof that the composite
h : A! CHn�X �deg 0 ! An�X � is an isogeny.

In particular, f : A{CHn�X �deg 0 has a ®nite kernel. Replacing A
by A=�ker f �, we may assume given a regular homomorphism
f : A! CHn�X �deg 0 which is an isomorphism of groups. Now
repeating the above arguments once more, we obtain (7.2) with
c � 1. By corollary 1.13, this means the group isomorphism
fÿ1 : CHn�X �deg 0 ! A is a regular homomorphism, which must
factor through u : CHn�X �deg 0 { An�X �. This forces u to be an
isomorphism of groups, as well. (

Remark 7.3. Over the ®eld of complex numbers the last part of the
proof of 7.2 is consistent with the Roitman theorem proved in [BiS].
In fact, if

A � CHn�X �deg 0 ��! An�X �

is surjective with ®nite kernel the generalization of Roitman's theo-
rem implies that the composite

A ��!� CHn�X �deg 0 ��! An�X � ��! J n�X �

is an isomorphism on torsion subgroups, so that
CHn�X �deg 0 ! An�X � is an injection on torsion subgroups. Hence the
isogeny A � CHn�X �deg 0 ! An�X � must be an isomorphism.

In the algebraic case we have to modify the arguments, in par-
ticular since the lower horizontal morphism in the diagram (7.2) need
not to be surjective in characteristic p > 0.

Proof of 7.2 for k a universal domain. Let us write B for the kernel of
h : A! An�X �, a closed subgroup scheme of A, not necessarily re-
duced. We may replace A by A=j, for any (zero dimensional) closed
subgroup scheme j of B such that j�k� � ker f .

The group B acts on U �An�X � A with quotient
U �An�X � An�X � � U . The kernel K of the map A�k� ! CHn�X �deg 0
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consists of countably many closed points, the induced action on
U �CHn�X �deg 0 A is free, and the induced map on the quotient

�U �CHn�X �deg 0 A�=K � U �CHn�X �deg 0 �A=K� ��! U

is a bijection on the closed points.
Let V � U be an open dense subscheme, and let Cj be a locally

closed irreducible subscheme of V �An�X � A, contained in
V �CHn�X �deg 0 A, and dominant over the component Vj � V \ Uj of V
under the ®rst projection. For V small enough, we may assume that
Cj ! Vj is ®nite. Let jj �K be the subgroup of elements g with
g�Cj� � Cj. Then jj is a ®nite group and Cj=jj ! Vj is an isomorp-
hism on the closed points. Replacing Cj by its image in
U �An�X � �A=jj� and A by A=jj we may assume that jj is trivial, and
thereby that Cj ! Vj is purely inseparable.

Repeating this construction for the di�erent components of U we
®nally reduce to the situation, where U has an open dense subscheme
V , and where V �CH n�X �deg 0 A has a closed subscheme C which is ®nite,
surjective and purely inseparable over V .

Assume that C! V is not an isomorphism, in particular, that the
characteristic of k is p > 0. The restriction of the group action to
B� C factors as

B� C ��!� �V �An�X � A� �V C ��!pr1 V �An�X � A

and the preimage S�C� of C � V �An�X � A is isomorphic to C�V C.
Thus S�C� is a subscheme of B� C, supported in the zero section
feg � C. Hence S�C� is contained in the m-th in®nitesimal neigh-
bourhood fegm � C of the zero section, for some m > 0.

The kernel j�m
0� of the m0-th geometric Frobenius F �m

0� : B! B�m
0� is

de®ned by the sheaf of ideals in OB, generated by the pm0-th powers of
the generators of the sheaf of ideals m de®ning feg � B. For some
m0 > 0 it is contained in mm and fegm is a subscheme of j�m

0�.
Dividing A by j�m

0�, we may assume that S�C� � C�V C is
isomorphic to C, and thereby that C is isomorphic to V .

Independent of the characteristic of k, we have thus reduced to the
situation where U has an open dense subscheme V , for which

pr1 : V �CHn�X �deg 0 A ��! V

has a section, such that by projecting to A we obtain a morphism
l : V ! A and (using the notation introduced in 1.9) a commutative
diagram
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PV �!l�ÿ� A
�
??y ??yf

PU �!c�ÿ� CHn�X �deg 0 :

�7:3�

Claim 7.4.There exists a surjective homomorphism/ : CHn�X �deg 0 ! A
with l�ÿ� � / � c�ÿ�jPV

. In particular, / is regular.

Proof. Let �C0; i� be an admissible pair with B � �iÿ1�V ��reg dense in
C0. By restriction (7.3) gives rise to a commutative diagram

PB �!l0�ÿ� A
�
??y ??yf

PB �!c�ÿ�B CHn�X �deg 0

�7:4�

where l0 � ljB. By lemma 1.12 the lower horizontal map in the dia-
gram (7.4) factors as

PB �!c�ÿ�B CHn�X �deg 0
& #�ÿ� g

x??
Pic0�C0� :

�7:5�

Let C0
C0 be the connected component of CC0 � Pic0�C0� �CHn�X �deg 0 A

containing the origin. CC0=C
0
C0 is a countable group and

C0
C0 ! Pic0�C0� is an isogeny. Since the diagrams (7.4) and (7.5) are

commutative, the image of

PB �������!�#�ÿ�;l0�ÿ��
Pic0�C0� � A

is contained in C0
C0 . This implies that C0

C0 ! Pic0�C0� must be an
isomorphism. In fact, by 1.11 there is an open connected subscheme
W of Sg�B� such that the morphism #W : W ! Pic0�C� is an open
embedding. On the other hand, #W factors through the isogeny
C0

C0 ! Pic0�C0�.
Hence the morphism l0�ÿ� in the diagram (7.4) is the composite

PB ���!#�ÿ�
Pic0�C0� � C0

C0 ��!pr2 A ;

and the condition (b) in lemma 1.12 holds true.
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Thereby the homomorphism / in 7.4 exists, and it remains to
show that / is surjective. Equivalently, it su�ces to show that the
image of / generates A as a group, which will follow if we show that
l�ÿ��PV � generates A. But we know that c�ÿ��PV � generates
CHn�X �deg 0, and so l�ÿ��PV � generates a subgroup of countable in-
dex in A. Since k is a universal domain, l�ÿ��PV � generates A. (

By claim 7.4 and by the universal property for An�X � the regular
homomorphism / : CHn�X �deg 0 ! A factors through a homomorp-
hism of algebraic groups v : An�X � ! A. Since / is surjective, the
induced morphism v is surjective as well. Further, the composite

CHn�X �deg 0 ��!/ A ��!f CHn�X �deg 0
is clearly the identity, since it is so on the image of PV , which is a set
of generators. By the universal property of u : CHn�X �deg 0 ! An�X �,
we deduce that the composite

An�X � ��!v A ��!h An�X �

is the identity. Hence v and h are inverse isomorphisms of algebraic
groups, and f : A! CHn�X �deg 0 and u : CHn�X �deg 0 ! An�X � are
both isomorphisms (of groups) as well. (
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