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Abstract

In this communication we report the existence of a dynamic “spin-
reversal” transition in an Ising system perturbed by a pulsed external
magnetic field. The transition is achieved by tuning the strength (hp)
and/or the duration (∆t) of the pulse which is applied in a direction
opposite to the existing order. We have studied this transition in the
kinetic Ising Model in two dimension using Monte Carlo technique,
and solved numerically the mean field equation of motion. The tran-
sition is essentially dynamic in nature and it takes the system from
one ordered equilibrium phase to another by means of the growth of
opposite spin domains (in the kinetic Ising case) induced during the
period when the pulsed field is applied.
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1 Introduction

The dynamic response of Ising systems under positive pulsed fields has re-

cently been studied extensively employing computer simulation. In partic-

ular, some interesting divergent growth of relaxation time and finite time

scaling behaviour was observed near the order-disorder transition point of

the Ising model for “positive pulses”, where the pulsed field in the ordered

phase is in the direction of order [1]. Here we report the computer simulation

study of the same system where the pulsed field is “negative”, i.e in oppo-

sition to the existing order having equilibrium magnetization m0, below the

order-disorder transition point. Due to the application of a negative pulse hp

in an ordered equilibrium phase, the down spin domains start growing as long

as the pulse is present. Depending on the number and size of these down spin

domains at the time of withdrawal of the pulse, either they further grow to

reach the other equivalent ordered phase with reversed magnetization (−m0)

or reduce to settle down in the original ordered phase with magnetization

(m0). The relaxation time τ taken by the system to reach either of these

equilibrium states depends on the strength (hp) and duration (∆t) of the

pulse, as well as on the temperature T .

It may be mentioned that a number of studies have been made (see for

example [2],[3]) on the growth of negative spin domains in a kinetic Ising

model when an ordered state is suddenly subjected to a negative field, where

the time variation of the field is step function like. The applicability of
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the classical theory of nucleation by Becker and Döring [4] has also been

investigated extensively here. However, our problem differs from these studies

because the applied field is withdrawn after a finite interval of time. The

minimum amplitude of the field required to trigger a spin reversal is non-

vanishing if ∆t is finite. As we go on to increase the pulse width, in the limit

∆t → ∞ we recover the results for a field of ‘step-function’ like nature (in

time) where even an infinitesimally small amplitude of the field is sufficient

to trigger the spin-reversal.

We have studied the “phase diagram” in the hp − ∆t plane for the spin-

reversal transition (from m0(T ) to −m0(T )) in a Monte Carlo simulation

using Glauber Dynamics [5] and also from the mean field equation of motion.

In the kinetic Ising case we have also studied the variation or growth of

the relaxation time τ as one approaches this phase boundary. We observe

clear divergence of the relaxation time as the phase boundary is approached,

indicating the spin-reversal transition to be a clear thermodynamic transition

with a divergent correlation length.

2 Model and Simulation

In the Monte Carlo study, we take an Ising system of size 200 × 200 on a

square lattice with nearest neighbour interaction without any disorder. The

Hamiltonian of the system is
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H = −J
∑

〈ij〉

SiSj − h(t)
∑

i

Si , (1)

where Si = ±1 represents the Ising spins at lattice site i and J denotes

the nearest neighbour interaction strength. The time dependent external

magnetic field h(t) is applied as a pulse for a short duration ∆t :

h(t) = −hp, for t0 < t < t0 + ∆t

= 0, otherwise. (2)

The pulsed field is applied after the original Ising system comes to an equilib-

rium ordered phase (corresponding to T < Tc, the order-disorder transition

temperature). The time t0 in (2) is thus much larger than the relaxation

time of the pure Ising system without any perturbation. The direction of the

pulsed field (−hp) is opposite to the existing order or average equilibrium

magnetization m0(T ) existing at times before t0.

Before the pulsed magnetic field is applied, the system is brought to

equilibrium which is characterized by temperature only. The system evolves

according to the Glauber single spin flip dynamics. One complete sweep

through the entire lattice is defined as one Monte Carlo step (MCS) or one

unit of time t. After the system reaches its equilibrium the pulse of strength

hp is applied and is withdrawn after a finite time interval ∆t. After that

the system is left to itself to come to equilibrium and is attracted or evolves
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towards either of the two equally likely equilibria (determined by the tem-

perature T ) having different order parameter values or magnetization. Un-

less the system is above the critical temperature of the unperturbed system

(Tc ≃ 2.27), majority of the spins will point to a particular direction. Sup-

pose, before the application of the pulsed field the magnetization of the sys-

tem is +m0(T ). Now either by tuning the pulse width ∆t or the pulse height

hp we can perturb the system in such a manner that after the withdrawal of

the pulse the system chooses to go over to the other equilibrium state, charac-

terized by the magnetization −m0(T ). We call it a “spin-reversal” transition

when the sign of equilibrium magnetization is flipped by the application of the

negative pulse. We have studied in our Monte Carlo calculations the phase

diagram for such spin-reversal transition in the hp −∆t plane at a fixed tem-

perature (T < Tc). We have also looked at the relaxation behaviour of the

dynamics of such systems (in particular the relaxation time τ for the average

magnetization) as one approaches the phase boundary. Typical number of

samples (Monte Carlo seeds) taken for averaging the data points is 10.

We have also solved numerically the mean field equation of motion

dm(t)

dt
= −m(t) + tanh

(

m(t) + h(t)

T

)

, (3)

where m(t) is the magnetization (per site) at time t and h(t) is given by (2).
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3 Results

It is quite obvious that all possible combinations of hp and ∆t cannot give

rise to the spin-reversal transition at a particular temperature. Fig. 1 shows

how the transition can be brought about by increasing ∆t for a fixed value

of hp at a constant temperature. Fig. 2 shows similar effect by increasing hp

while keeping ∆t and T constant.

At any particular temperature (T < Tc) there exists a combination of

hp and ∆t which just manages to induce the spin-reversal transition. This

hp −∆t curve is given by the phase diagram shown in Fig. 3. The inner side

or the axes side of the curves corresponds to the original phase, whereas one

gets ”spin-reversed” phase for all the combinations of hp and ∆t outside the

phase boundary. The limitation arising out of the discrete time simulations

force the value of ∆t to start from 1, i.e one MCS. With this kind of technique

for estimating the critical value of pulsed field strength hp(∆t), the estimate

of the phase boundary for ∆t < 1 is not possible. The phase boundaries tend

to touch the abscissa at large values of ∆t. This is well anticipated because

even with an infinitesimally small strength, a negative field will eventually

give rise to spin-reversal if applied for sufficiently long time.

An important observation can be made from the series of figures shown

in Fig. 4. In Figs. 4(a)-(c) the time series plots of m(t) are shown when hp

is increased (at fixed ∆t and T ) to reach the phase boundary from below. In

Figs. 4(d)-(f) the phase boundary is approached from above by decreasing
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hp at the same value of ∆t and T . In either case, it is clear that as one

approaches the phase boundary for a particular temperature and pulse width,

the (relaxation) time taken by the system to reach its final equilibrium state

increases.

This prompts us to define the relaxation time τ of the system as the

time (MCS) taken by it to reach the final equilibrium state from the time of

withdrawal of the pulse. In Fig. 5, we look for the variation of the quantity

τ with hp for a particular temperature and fixed pulse width. It is clearly

seen that τ seems to diverge as we approach the phase boundary from either

side for that particular temperature and pulse width. Similar growth of τ is

also observed while approaching the phase boundary by varying ∆t at fixed

T and hp. Such divergent growths of relaxation time clearly indicate the

thermodynamic nature of the spin-reversal transition (divergent correlation

length). It may be mentioned here that due to very large scatter (sometimes

by order of magnitude) in the values of τ for different Monte Carlo seeds

(otherwise thermodynamically identical samples) , log averaging turned out

to be a better choice than ordinary averaging of τ . The data for τ shown

in Fig. 5 are obtained using log-averages for τ , thereby keeping the relative

error less than O(10−2).

The mean-field phase diagram is shown in fig. 6. Since there is no fluc-

tuation, there exists a finite coercive field. The spin reversal does not occur

even for infinite pulse width (∆t → ∞), if the pulse height hp does not ex-
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ceed the coercive field. The coercive field hp(∞) decreases as (Tc − T )
3

2 with

increasing temperature in the mean field case, where Tc = 1 in (3). This is

because m0hp(∞) ∼ free energy F (m0) ∼ (T − Tc)m
2
o + O(m4

0) ∼ (T − Tc)
2.

The inset of Fig. 6 shows the variation of hp(∞) as a function of temper-

ature. Unlike the kinetic Ising case, the mean field phase diagrams can be

extended beyond ∆t = 1. However since the tanh function saturates to nega-

tive unity (for large hp), the spin reversal can not occur by further increasing

the magnitude of the negative field if it is not applied for sufficient time.

From (3) we can write dm = [−m + tanhβ(m− hp)]dt ≈ −(m0 + 1)dt. Now

∫∆t
0 dm ≈ −(m0 + 1)∆t should be sufficient to make the value of m decrease

from m0 to 0. At low temperatures (m0 ≃ 1) it requires ∆t ≃ 1 while for

higher temperatures spin reversal occurs for ∆t<
∼

1.

4 Discussions

Using Monte Carlo simulations for Ising system evolving under Glauber dy-

namics (with non-conserving order parameter), we have studied a new dy-

namic “spin-reversal” transition, where the system goes from one stable equi-

librium to another due to the application of a pulsed field (of finite duration)

opposite to the existing order of the system. We have determined the phase

diagram for such a transition in the pulse strength (hp)-pulse width (∆t)

plane for a fixed temperature T less than the order disorder transition tem-

perature Tc. We observe that the typical relaxation time τ tends to diverge as
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the phase boundary is approached, indicating a divergent correlation length

associated with such dynamic transition.

In the kinetic Ising Model, the transition is actually triggered by the even-

tual growth of the “negative” spin domains formed during the period when

the negative field was “on”. According to the classical nucleation theory,

number of droplets of size l is given by

nl = N exp(−ǫl/T )

where N is a normalization constant. Here the free energy for formation of

a droplet is given by

ǫl = 2hpl + σl
d−1

d

in d dimensions, where σ is proportional to the surface tension. From the

optimality of ǫl the estimated nucleation rate from Becker-Döring theory is

given by

I = I0exp(−ǫlc/T ); lc =

(

σ(d − 1)

2dhp

)d

(4)

where I0 is some constant depending on temperature. Equating the rate I

with the inverse pulse width ∆t one gets approximately hp ∼ 1/(ln∆t) in

d = 2 for the phase boundary. However, it can be checked from Fig. 3, this

is not the case even for high temperature phase boundaries. This is because

the spin-reversal does not necessarily have to take place during the presence

of the field, it may occur long after the withdrawal of the pulse. In fact, in

our case ǫlc is expected to have also a ∆t dependence . This can be clearly
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seen from Fig. 1, where the relaxation rate, after the withdrawal of the field,

is strongly dependent on the pulse width (∆t).

From the linearized limit of the mean field equation (3), one gets

m(t) =

(

m0 −
hp

1 − T

)

e(1−T )(t−t0)/T +
hp

1 − T
, (5)

for t > t0 and very close to t0, so that linearization of (3) is possible. Since

there is no fluctuation in the mean field limit, there cannot be any spin

reversal if the magnetization remains positive at the time of withdrawal of

the pulse. Demanding that the magnetization should at least be zero at

the time of withdrawal of the field for an eventual spin reversal, we find the

relation between hp and ∆t at the phase boundary :

∆t =
(

T

1 − T

)

ln

(

hp

hp + (T − 1)m0

)

. (6)

For temperatures close to Tc = 1, equation (6) can be approximated as

hp∆t ≃ m0T, (7)

which indeed compares fairly well with the mean field phase boundaries (cf.

Fig. 6) in the region long before saturation.

The detailed study of the nature of the domain growth in this case of

pulsed fields and their statistics are in the process, and shall be published

elsewhere.
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Figure Captions

Figure 1. Time series plots of the pulse (h(t)) and the magnetization (m(t))

for T = 1.0 and hp = 1.04: (a) ∆t = 10 (b) ∆t = 15 (c) ∆t = 28.

Figure 2. Time series plots of the pulse (h(t)) and the magnetization (m(t))

for T = 1.0 and ∆t = 10: (a) hp = 1.04 (b) hp = 1.17 (c) hp = 1.34.

Figure 3. Phase diagram (Monte Carlo) in the hp − ∆t plane for T = 0.1

(•), 0.5(∇), 1.0(2), 1.5(△), 2.0(∗). The typical errors present in the data

points are less than the symbol sizes.

Figure 4. Time series plots of the pulse (h(t)) and the magnetization (m(t))

for T = 1.5 and ∆t = 40: (a) hp = 0.40 (b) hp = 0.45 (c) hp = 0.47 (d)

hp = 0.55 (e) hp = 0.49 (f) hp = 0.48.

Figure 5. The behaviour of τ as the phase boundary is approached from

either side: (a) T = 0.50, ∆t = 10 (b) T = 1.00, ∆t = 2 (c) T = 2.00, ∆t =

10.

Figure 6. Phase diagram (mean field) in the hp −∆t plane for T = 0.1, 0.3,

0.5, 0.8, 0.9. Inset : Variation of hp(∞) with T.
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