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Abstract. We analyze the accretion of charged matter onto a rotating black hole immersed in
an aligned dipolar magnetic field. We specialize to motion in the equatorial plane and calculate
the ‘Keplerian’ angular momentum distribution, the marginally stable and marginally bound
orbits, and the efficiency of mass-to-energy conversion as functions of the angular momentum
of the black hole and of the product of the dipole moment and the charge of the infalling
matter. Although the detailed results are quite different from those previously obtained in the
case of an uniform magnetic field, the astrophysically relevant results are very similar; when
hydrodynamical accretion is considered, these effects of the magnetic field are always very
small. But for test particles the efficiency can be significantly increased for limited ranges of the
parameters.
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1. Introduction

Accretion onto supermassive black holes has now become the most widely accepted
basic model for the powerhouse of active galactic nuclei (for recent reviews see
Begelman et al 1984; Wiita 1985). Geometrically thin accretion disks have been
investigated for over a decade and are certainly present in catacylsmic variables and
other astronomical systems (e.g. Pringle 1981). But the realization that thick disks,
supported either by radiation (e.g. Paczynski and Wiita 1980; Jaroszynski et al (1980)
or by ion pressure (Rees et al 1982) have a geometry suitable for producing the jets that
are ubiquitous in quasars and radio galaxies has led to a great deal of interest in this
topic (e.g. Narayan et al 1983; Abramowicz et al 1984). The vast majority of work on
accretion has neglected magnetic fields.

Magnetic fields must, however, be presernit in the plasma aocreted by a black hole, and
the magnetic flux is likely to be concentrated as the material is compressed and sheared
before it is swallowed by the central object (e.g. Bisnovatyi-Kogan 1979). Several
models have incorporated magnetized thin accretion disks in dynamo mechanisms (e.g.
Lovelace 1976) or have used magnetic fields to tap the rotational energy of a black hole
(e.g. Blandford and Znajek 1977; Phinney 1983). Detailed general relativistic forma-
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lisms are available for analyzing electromagnetic fields in strongly curved spacetimes
(Macdonald and Thorne 1982, Thorne and Macdonald 1982), and fully relativistic
charged disks have also been examined (Prasanna and Chakraborty 1981). All of these
somewhat disparate theories are of interest and ought to be investigated further, but
each makes certain simplifying assumptions, and no realistic, self-consistent models
have yet emerged.

This paper does not actually contain such a realistic model; rather, it involves a
different approach to some aspects of the effects of magnetic fields on accretion that was
begun by Dadhich and Wiita (1982, hereafter pw) for Schwarzschild black holes and
continued by Wiita et al (1983, hereafter wvsi) for Kerr black holes. The key questions
investigated in these papers were how the presence of a uniform aligned magnetic field
changed both the location of the inner edges of accretion disks and the efficiency of
mass-to-energy conversion of the matter falling into the black hole. Standard thin
accretion disks are assumed to terminate at the last stable circular orbit, r,,(= 6m for a
Schwarzschild black hole; we use units where G = ¢ = 1). For such disks the efficiency is
given by the binding energy per unit mass at that point, b, (= 0-572in that case). As the
angular momentum, a, of the black hole increases, 7, — r. , the outer event horizon,
and b, increases, approaching ~ 0-42 as a/m — 1 (Thorne 1974). However, fluid rings
around black holes (e.g. Abramowicz et al 1978) or thick accretion disks (e.g. Lynden-
Bell 1978), can have inner edges that come closer to the event horizon; the matter can
approach the marginally bound orbit, r,,,( = 4m in the Schwarzschild metric), where the
binding energy vanishes. Thus thick accretion disks have lower mass-to-energy
conversion efficiencies than do thin disks, but they can radiate at above the Eddington
luminosity and can more easily accelerate and collimate jets (Paczynski and Wiita
1980).

The basic conclusions drawn from pw and wvsi were that realistic hydrodynamic
accretion disks could only be very slightly affected by the presence of uniform magnetic
fields, but that test particles could be very much affected, with conversion efficiencies
rising the most around slowly rotating black holes. One significant problem with these
previous papers was that an unorthodox definition of binding energy was necessary,
since the unphysical assumption of a uniform field extending to infinity implied that the
potential diverged at large distances. Of course in any realistic solution the field must
decrease rapidly enough to remove any singularity, and since most of the interesting
effects involve the regions quite close to the event horizons, wvsi argued that a proper
normalization should yield reasonable results.

In this paper we shall consider the case of a rotating black hole of mass m immersed in
a dipole-like magnetic field; in this case no unorthodox definitions or renormalizations
are necessary. It will be assumed that even the maximal field strength obeys the
condition | Bm| < 1, so that the mass-energy of the field is small compared to that of the
black hole. Physical constraints on the magnetic field strengths allowed in stable disks
guarantee this condition (see §3 and pw). Prasanna and Vishveshwara (1978; hereafter
pv) analyzed the trajectories of charged particles with fixed angular momenta in
equatorial orbits around Kerr black holes surrounded by both uniform and dipolar
magnetic fields. Just as wvsiused the effective potential formalism for uniform fields, we
shall use its dipole form to numerically solve for the ‘Keplerian’ angular momentum
distribution, r,,, I, and the efficiency at r,,; (b,). The necessary equations for the -
potential and the angular momentum distribution, which surprisingly do not turn out
to be much more complex than those for the uniform field case, are developed in §2.
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The results for 7., Fs and b, are presented in §3,a discussion of these results and a
comparison with previous work comprise §4.

2. Effective potential and angular momentum distribution

[n the usual Boyer-Lindquist coordinates the line element for the Kerr metric is given
by
ds? = —(1 —2mrE~')dt* —4mraZ "' sin? 0drd¢ + ZA~dr?

+Xd#*+FX~'sin?60d¢?, )
where £ = (r2+a*cos?0), A =(*+a*~2mr), and F = (r*+a*)*—Aa’sin*0.
Employing Teukolsky’s (1973) perturbation equations in the Newman-Penrose
formalism, the solution for a stationary axisymmetric electromagnetic field in the above
packground may be obtained (Chitre and Vishveshwara 1975; Petterson 1975). For a

dipole magnetic field, with dipole moment u parallel to the rotation axis of the black
hole, the non-vanishing components of the vector potential are (pv)

A, = —3auRZL?) H{[r(r — m)+ (@* — mr)cos® 0]
+Q) 'In[(r=m+0)/(r—m—=0)]—(r—mcos*6)}, (2a)
and '
A, = —3usin?0(4ZL2) " {(r —m)a? cos? 0 +r(r* +mr + 2a%)
—[r(r® - 2ma® + a*r) + Aa* cos* 6] (20) "
In[(r=m+0)/(r—m—0)]}, (2b)
where { = (m* —a?)!/2.

We note that this is a solution which is regular for large r but diverges on the horizon.
There exists an independent dipole solution whose behaviour is just the opposite to the
above. In a realistic problem the two are matched at the source such as a current loop
around the black hole (e.g. Chitre and Vishveshwara 1975; Dhurandhar and Dadhich
1984). In the present treatment we have chosen the first solution throughout the region
of interest for the sake of simplicity. This is tantamount to having the source closer to
the black hole than the least distance we may have to probe within the accretion disk.

If e is the charge and M the rest mass of a particle orbiting the black hole, the
canonical angular momentum and energy, which are given by

Uy+ed, =1, U,+ed, = —E, (3

are constants of the motion since the fields have tand ¢ Killing vectors. Here U’ denotes
the particle’s proper velocity and all quantities are normalized by dividing by M. In
terms of the dimensionless variables

p=r/m = s/m, =a/m,
L=1/m, T=t/m, 2; =A¢/m, (4)
the radial velocity for motion confined in the equatorial plane is given by

(U?)? = (dp/do)* = p~3{[p(p* +a?)+2a*J(E+ A.)?
—da(E+ANL—Ay)—(p—2L—A4,) —pA}. ()
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This specialization to the equatorial plane is reasonable since the minimum values for
r..» and r,,;, and thus the determinants of the efficiency of a disk, are in the plane where §
=n/2.

The effective potential for radial motion is obtained by solving for the turning points
of the orbit. pv show that setting U? = 0 yields

=.—A4.+K/R, (6)

where

K =2a(L—A,)+A'*[p*(L— 4,)* + pR]'?, (7a)

R = p? + pa® + 242, (7b)
and in these units

A=p*=2p+a (7¢)
In terms of the dimensionless variables the potentials become

A, = —2ca[(1—p YA, —2Bp" '], (8a)

A= —c{2B(l+p+222p ")~ [p* + (1 =2p"1)]A, ], (8b)

where

B=(—a®)? c=(3/8)287°, A =In[(p—1+B)/(p—1-P] (&)

and the important parameter characterizing the product of the charge of the external
matter and the dipole moment of the magnetic field is

A=ep/m’. : (8d)
Note that we can now write
K =2a(L—A,)+pA'>(L* = XL+ Y)'2, (9a)
with
X =24, and Y= AZ+R/p. (9b)

In this way the entire potential V is determined as a function of p for specified values of
the parameters a, 4 and L, as discussed in pv for the case of large 1 and L. We now seek
the angular momentum distribution which is characterized by a balance between
rotational, gravitational and electromagnetic forces, but which neglects radiation
losses. This distribution is the analog of that of circular Keplerian orbits in the
Newtonian case, and will agree very closely with the angular momentum at the inner
edge of an accretion disk. This function L ;(p; a, 4)is found by settingd V'/dp = 0. After
a large amount of algebra involving equations (6)-(9) we find

V'=dV/dp =T, +T,(L* = XL+ Y)'* +T, L
+T(L*=WL+Z)(L*-XL+Y) '3 (10)

where the coefficients of L are functions solely of p, as long as « and 4 are taken as
parameters. The explicit forms of these coefficients and auxiliary functions are found in
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(7b), (7c), (8¢c) and the following:

Q =3p?+a?, = —25,, Y=S}+R/p,

W= —25;-pS,, Z=5S3+R/2p)+Q/2+pS3Ss,

Sy = 2ac[(1 ~1/p)A, - 2B/p],

S, = (acp™?)[A, —2ppA™ (1 —?p 7)),

S5 = c[28(1+ p+20%p™ ") = Ay (p* +a? — 2%~ )],

Sa=2[2A7(p* —p+ap t —atp ) =By (p+a’pTH)],

T, = S+ 2eR™")S, — (2¢QR™?)S3,

T2 — P(P- I)R—IA—l/Z_pQAlllR—Z’
—2xQR7Z, T.=AY2R™\. (11
If we now set ¥’ = 0, we convert (10) into an explicit quartic equation for L, which
actually has the same form as for the uniform field case (wvsi, equation 12).

L*[(T, +T)* -T?]
+ L3 [T3X — 2T,Ty — 2Ty + T )T X + T W)]

+ L [(T X +T WP+ 2(T, + T YT, Y+ T, Z)

—(T3Y+T?-2T, T3 X)]
+L[TiX -2\ T, Y-2(T X + T, W)T,Y+T1,2)]
+[(T,Y+T,2)*-T}Y] =0 (12)

It turns out that the terms T;, T, and T, look the same as for the uniform field case,
but that T, is different, as are the explicit expressions for X, ¥, W, and Z. Thus we expect
that the same numerical techniques that yielded the desired results concerning the
marginally bound and marginally stable orbits when uniform fields were considered
will also suffice in this case. This is nearly true, but the much greater complexity
of the coefficients in the current situation meant that the numerical evaluations
were significantly more difficult to accomplish. Equation (12) must be solved
numerically and the smallest real positive root corresponding to each value of
p> p, (= 1+[1—a?]'’2 the event horizon) is chosen as Lk(p; a,4).

Once the Keplerian angular momentum distribution is found we can return to (9a)
and (8) to find the potential, ¥ (p; Lk(p)). Since we are interested in cases with small
values of r,, and r,, so as to provide high efficiency and narrow funnels, we only
consider co-rotating particles or disks, i.e., we always assume La > 0. We note that in
the limit of p — o,

Vo1-=2/p+at/p?—1. (13)

This means that we can define the binding energy in the standard fashion as just
b =1~ V¥, and it approaches 0 smoothly, unlike for uniform fields (wvs).

o3
I

3. Accretion efficiency

Within the limitations discussed above, we are interested in investigating solutions for a
two-parameter family. The black hole angular momentum parameter can range froma
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= 0 (Schwarzschild case) through a =1 (extreme Kerr case). Numerical difficulties
preclude solving (12) for those limiting cases, but we were able to obtain useful results
for 0-00001 < a < 099999999 which appear to be very close to those expected for the
bounding values.

It is more difficult to evaluate bounds on the parameter 4, which couples the charge
(per unit mass) of the accreted material to the dipole strength of the magnetic field. We
first examine the dipole moment; the conversion between the dimensionless variable
p/m?* and physical units for the dipole moment is

up = (G**M?c™?)(u/m?)
= 7-58 x 103 (M /M )*(u/m*)gauss cm>, (14

where M is the mass of the black hole in grams. A generous constraint on # is found
by demanding that the pressure due to the magnetic field does not exceed the maximal
sum of the gas and radiation pressures in a fluid disk. As discussed by pw, the thick disk
models of Wiita (1982) give us our best current estimates of the pressures and magnetic
fields; for large (> 10° M) black holes we must have

B <13x10® gauss or |Bm|<56x107'*(M/Mo). (15)
When combined with (14) this translates into bounds on the dipole moment

tp <41 x1023(M/My)? gausscm?,
or
|lu/m?| < 54 x 10712 (M/Mo). (16)

For self-consistency, these models demand M < 107 Mg, so a good limit is
|u/m?| < 1074 (17

Although higher mass black holes probably exist in active galactic nuclei (e.g. Wiita
1985), they would imply a slower increase in pressure, thus a small rise in the limit on .
Realistically, we expect magnetic field strengths a factor of 10 to 1000 below these limits
(wvsi).

While the values of e for test particles can be very large (for an isolated proton,

= 1-112 x 10'®), we certainly expect any bulk plasma that is being accreted to be
electrically neutral over large scales. But, as discussed in pw, we anticipate that a plasma
disk will be subject to forces that produce some charge separation in the disk’s
innermost regions. However, in geometrical units, this equivalent charge should be
quite small, |e| < 1. Multiplying e by u/m?, we conclude that while for charged test
particles 4 > 1 is possible, for any hydrodynamic accretion flow we expect 4 < 107*.

We proceeded to compute L, (p) and ¥ (p) for a large number of values of the
parameter pair, with 107? < & < 099999999 and 107 < 4 < 10°. For 4 < 1077 the
results appeared to be completely insensitive to 4, while for 4 > 10%, no interesting new
results were obtained, and the efficiency fell monotonically. The marginally bound orbit
is found as the first radius for which V' = 1 (i.e., b = 0) as V decreases while p increases
above p, . The marginally stable orbit is found as the one where dL . /dp = 0. Then the
maximal efficiency is evaluated as b(r,s) = b,,,. These three quantities are found
numerically by following the approach of pw and wvst.

But in the present circumstances things are more complicated. Since (12) is a quartic
equation, four roots are found, and, while only two are usually real and positive, for
many values of the variables, a third, and even fourth, seemingly valid solution was
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found. (For the uniform field case two roots were always complex and one was negative,
so there was never any question as to the valid solution.) A careful analysis did allow for
the discarding of the invalid roots, which typicaily required nearly radial orbits, with
L =~ 0, or else produced negative energy states with L <0 and b > 10.

Our results are summarized in tables 1-5 and figures 1-3. Each table corresponds to
a fixed « and the rows are defined by the values of 4 in the first column. The second
column gives r,,,, the third r,, the fourth L, = L(r,), and the final column, b, allin
dimensionless units. The only limiting cases that could be used to test our numerical
results involved testing models as A — 0 or as p — 0. As the field vanished, our values
for rns, Tmy and b, all nicely approached those computed by Thorne (1974) for
accretion onto Kerr black holes without electromagnetic fields. Special attention is paid
to o = 0:9978, since this is the canonical value achieved by a black hole “spun-up” by
accretion (e.g. Thorne 1974). However, it has been argued that larger values are possible
if thick accretion disks are involved (Abramowicz and Lasota 1980).

Figure 1 shows the effective potential in the equatorial plane as a function of radius
(in a log-linear plot) for six pairs of («, A). Figure 2 gives the Keplerian angular
momentum per mass for the same cases (on a log-log graph), with the minima
corresponding to r,, marked on the curves. In making comparisons between these
curves it is important to note that r, (@ = 0-5) = 1-866025, r, (0-:9978) = 1066296 and
r. (0:99999999) = 1-000141; for the tabulated a’s not represented on these figures,
r, (0-1) = 1:994987 and r, (0-9999) = 1-014142. The general trends illustrated by these
figures and abstracted from the tables include: for a fixed a, increasing 4 up to a point
causes r,,, r'ms and L, all to increase, while b, declines. These smooth variations occur
throughout the explored parameter space for a = 0-1 (save for r,,,, which does evince
the jump to lower values at one point), and correspond in general to cases where only
one minima in L ,(p) and in ¥(L,) are found outside the event horizon.

However, for all other examined values of &, a second valid solution to (12) minimizes
L, for a specific range of 4’s. These solutions show two clear minima in ¥ and L ,, with
values of r,,, quite close to r, . The extreme closeness when (a, 4) = (0-99999999, 0-001)
means that the curves for that case are hard to plot on the same scale as the other five

Table 1. Accretion parameters as functions of A for a = 0-1.

A Pmb Prms Lms bms
0-00001 37974 56877 33671 0-0606
0-0001 37974 56877 3-3672 0-0606
0-001 3-7981 56877 3-3683 0-0606
001 38043 5-6878 33716 0-0605
0-0315 38193 56879 33813 0-0601
01 3-8666 5-8210 34115 0-0591
0315 40121 60210 35019 0-0561
1-0 4-4500 68272 37529 0-0490
315 56425 9-0002 4-3401 0-0367

10-0 2:0241 14-248 54934 0-0230
315 2:3150 25:395 74317 00126
100-0 31500 50-368 10-492 0-0063
3150 4-8088 104-85 15090 0-0031

1000-0 7-8715 22474 21-980 0-0014
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Table 2. Accretion parameters as functions of 4 for a = 0-5.

0-00001 29142 42254 29029 00821
0-001 2:9150 42259 2-9035 00821
001 2:9222 42490 29093 00818
01 29930 4.3899 2:9652 00788
0316 3-1584 47111 3-0879 00728
10 3-6402 56100 3-4035 00601
1-35 3-8670 59746 3-5378 00556
1-37 1-8688 1-9750 1-9233 0-5403
1-40 1-8692 1-9846 1-8138 0-5388
1-60 1-8720 2:0445 1-2045 05142
1-80 1-8738 2:0973 0-7087 04729
2:00 1-8759 2:2271 1-6834 04603
230 1-8794 2-2864 1-8962 04307
2-:60 1-8834 2:3251 2:0647 0-4088
2:90 1-8879 2-3849 2:3109 0-3852
3-00 1-8895 76641 40398 00427
40 2:0611 8-5482 42793 00381
60 2:2190 10-219 4-6808 00319
10-0 2:5117 12-946 5-3041 00248
315 36742 24217 7-2884 00132
100-0 5-8586 49-155 10-373 0-0065
3150 9-7120 102-41 14-984 0-0031
1000-0 16638 219-51 21-881 00015
Table 3. Accretion parameters as functions of 4 for « = 0-9978.
0-00001 1-0961 12505 1-4001 03180
0.001 1-1023 1-2701 1-4204 03108
0-01 1-1501 1-3999 1-5353 02737
0-0251 12090 1-5358 1-6431 02439
00282 10752 1-0951 09013 05908
0-04 1-0778 1-1089 0-7660 0-6497
01 1-0873 1-1395 0-5050 0-7458
02 1-0977 1-1756 0-3450 07739
0-225 1-0998 1-1840 0-3178 07747
03 1-1054 1:2006 0-2472 07716
0631 11240 1-2645 00158 07175
0-708 11277 32923 2:6343 01012
1-0 1-1404 3-7963 2:8286 0-0880
224 1-8489 53373 3-3961 00612
50 2-3264 79268 4-1655 0-0407
100 2:9875 11-430 5-0448 00277
- 315 4-8763 22680 70972 00140
100-0 80623 46-853 10-218 0-0067
3150 13-548 98-619 14-847 0-0032
1000-0 23-358 216:00 21753 00015
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Table 4. Accretion parameters as functions of A for a = 0-9999.

4 Pmb Pms Lm blu
0-00001 1-0204 1-0801 1-2424 0-3813
0-0001 1-0229 1-0929 1-2558 03731
0-001 1-0405 1-1568 1-3211 0-3480
0-002 10537 1-1985 1-3594 0-3331
0-005 1-0658 1-2790 1-4284 0-3080
0-006 1-0683 1-2874 1-4449 0-3024
0-007 1-0200 1-0318 04525 0-7802
0-01 1-0211 1-:0374 03922 0-8086
0-02 1-0240 1-0485 0-3061 0-8477
0-0315 1-0263 10512 0-2569 0-8652
0-08 1-0320 1-0735 0-1650 08867
0-0925 1-:0331 10763 01512 0-8874
010 1-0337 1-0763 01444 0-8871
020 10396 1-0985 0-0685 08748
0315 1-0444 11179 0-0032 0-8496
0-50 1-0503 2:9068 2:4586 01157
1-0 1-0623 3-6686 2:8265 0-0881
25 1-9008 55343 3-4865 0-0581
60 2:4741 87537 4-3738 0-0369

100 29892 11-578 5:0436 0-0277
315 4-8810 22:628 7:0966 0-0140
1000 8-0707 47-223 10218 0-0067
3150 13-549 98-606 14-847 0-0032
1000-0 23-360 21597 21-754 00015

cases. Such solutions allow for smaller values of r,,, and L,,, but also for significantly
larger values of b,,. Single valid minima exist for (0-99999999, 1), but this case
illustrates a situation where deviations from smooth curves indicate the second solution
is having some effect.

Figure 3 shows the values for the efficiency for a thin accretion disk (or for test
particles) which were found as functions of 2 for all five tabulated values of a. These
valid solutions only intrude over very limited ranges of the magnetic strength; these
ranges decrease in absolute size (even if they grow in logarithmic length) as the angular
momentum of the black hole rises. An objection might be raised towards our taking the
inner solution with smaller r,,,, 7., and higher b,,, since it does not continuously join
onto the limiting solution for b,,, valid at both large and small A. However, as seen in
figure 1, the barrier usually presented by the intervening maximum is quite limited in
both height and extent. In some cases the intervening maximum in ¥ does not rise
above unity at all. Thus, in any environment where viscosity or other interactions that
could change the energy and angular momentum of the particles or fluid are present,
these barriers could be overcome, thus justifying the choice of the second smooth
solution and our claim for possible increased conversion efficiency.

The value of A for which the maximum binding energy is achieved also decreases as

rises, from 1-37 for a = 0-5 to 0-009 for a = 0-99999999. In general, this rise in efficiency
occurs only under conditions corresponding to charged test particles, and not to fluids.
Only for values of « extremely, and probably unrealistically, close to unity do values for
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Table 5. Accretion parameters as functions of A for a = 0-99999999.

'2' Pmb pms Lms bnu
0-000001 1-0011 10139 11706 04148
0-00000315 1-0019 1-:0200 1-1780 04112
0-00001 10034 10299 1-1889 0-4059
0-00002 1-0053 1-0380 11977 04017
0-0000315 1-0004 1-:0014 0-1351 09325
0-00006 1-0005 1-0015 0-0971 09515
0-0001 1-0006 1-0019 0-0879 09561
0-000315 1-0008 1-0025 0-0556 09721
0-001 1-:0010 1-0035 0-0375 09808
0-00315 1-0013 1-0050 0-0250 09860
0-008 1-0017 1-0069 0-0163 0-9879
0-009 1-0017 1-0075 0-0152 0-9880
0-0t 1-0018 1-0078 0-0143 0-9880
0-02 1-0022 1-0123 0-0100 0-9851
0-05 1-0027 10213 0-0073 09745
0-09 1-0031 1-0383 0-0008 0-9552
0095 10031 1-8561 1-8857 0-1910
010 1-0032 1-8984 1-8980 0-1887
0315 1-1761 2:4928 22624 01358
1-0 1-5758 3-8057 2:8255 0-0882
315 2-0228 6-1431 36934 0-0517

10-0 2-9886 10-964 50496 00274
315 4-8767 21-320 70640 0-0157
100-0 79726 38:680 10-169 0-0099
3150 13-773 87424 14-813 0-0034

4 that might correspond to hydromagnetic flow also give rise to the posstbility of
boosted accretion efficiency. To quantify the increases in the efficiency, we can define

Ab(@) = by, (x, 4)— b(, 0), 3b(x) = b, (a, 1)/b(a, 0). (18)

We find that Ab(0-1) = 0, 8b(0'1) = 1; Ab(0-5) = 6:58, 6b(0-5) = 0-458; Ab(0-9978)
=244, 6b(0:9978) = 0-457; Ab(0-9999) = 2-32, 0b(0-9999) = 0-505; and Ab(0-99999999)
= 2:34, while b(0-99999999) = 0-567. In all cases the binding energy smoothly declines
toward 0 at large p, matching the analytic result; as a matter of fact, by p = 315, the
values were all within a few percent of each other. Considering the trends noted above,
itis not absolutely impossible that at a larger A non-zero Ab’s for « = 0-1 could actually
exist, or that the large b,,, solution would have dominated down to very small 4 for
even greater than 0-99999999; however, neither of these possible outcomes would be of
practical importance, and investigating them would have required an unwarranted
large expenditure of computer time.

4. Conclusions

Our key result is that even the strongest plausible magnetic fields achievable in the
vicinity of a black hole cannot affect the orbits of ordinary plasma to the extent
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Figure 1. The effective potential vs distance for six choices of the parameter pair (a, A). The
different curves are labelled as follows: the solid curve, (0-5,0-1); the dotted curve,
(0-9978, 0-001); the double chain curve, (0-9978, 0-04); the single chain curve, (0-9978, 100); the
short dashed curve, (0:99999999, 0-001); the long dashed curve, (0.99999999, 1). On this scale
the short dashed curve is hard to read; for that case there is a minimum with V' = 0:020 at p
= 1-0036 and an intermediate maximum of ¥ = 1:13 at p = 1-030.

necessary to materially change the efficiency at which that plasma is converted into
energy as it is accreted. This also means that for an accreting plasma the decrease in r,,,
is never sufficient to imply significantly narrower funnels (e.g. Paczynski and Wiita
1980). In view of the work of pw and wvsi, this is not at all surprising, but because the
dipolar field configuration assumed in this paper is more physically likely than the
uniform field assumed in that earlier work, we regard this confirmation as significant. It
should be stressed that although the field configuration we have used is not a self-
consistently locally generated one, the basic structure, with the field strength falling off
with distance from the horizon should better mimic a full self-<consistent configuration.
For charged test particles, our results agree in a general sense with those found
earlier, but they are quantitatively very different. While we also find that for some values
of a there are ranges of 4 where the accretion efficiency is noticeably increased, here it is
because a second minimum appears in the Keplerian angular momentum curve. When
* present, this effect depends rather weakly on a, with Ab = 0-5 for all a > 05, but we
found no effect for & = 0-1. This is directly opposite to what was found by wvsi: when
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uniform fields were assumed, the increase of efficiency (in both absolute and relative
rerms) decreased monotonically with . We attribute this to the unphysical nature of the
assumption of a constant magnetic field pervading all space. That assumption also
produced configurations corresponding to rather narrow rings of material yielding the
highest efficiencies. This is because the constant field eventually repelled particles,
creating negative binding energies at large 4 (unless « = 0). But a dipole field falls off
fast enough so as to allow smoothly vanishing binding energies at large 4, fulfilling the
expectation of wvsl.

While we are quite confident in the negative results concerning hydrodynamic
accretion, we ought to stress some of the simplifications that have entered into our
calculations. We have specialized to the equatorial plane and have assumed a magnetic
dipole moment aligned with the black hole’s rotation axis. Other orientations could
conceiveably, but not probably, alter the results in a major way. It would also be much
more difficult to compute other such configurations, and we do not consider this task
worthwhile.

Although the assumption of a dipole field configuration is clearly a simplification, the
limits imposed in (17) were based on a maximum field strength, so our results should
not vary in any important way if more complicated fields were to be considered. The
analysis of locally generated self-consistent fields would be the best way of approaching
this question, as these computations implicitly rely on the existence of a current source
near the horizon; however, as stated above, we are confident that the inwardly growing
fields analysed here would be rather typical of realistic self-generated fields, and are
thus a good limiting case worthy of some attention. As opposed to the uniform fields
examined in previous work, the dipole field has a satisfying limit at large distance, and
does not require an unorthodox defintion of binding energy. The most serious omission
in the current work, at least with regard to test particles, is our neglect of the radiation
emitted by the infalling material. This might be worth further exploration as a question
of principle, but should not be important for actual accretion disks.

Of course, many different accretion scenarios exist in which magnetism plays a
dominating role (e.g. Lovelace 1976; Blandford and Znajek 1977; Blandford and Payne
1982; Rees et al 1982; Phinney 1983). Those effects, which can yield extremely high
efficiencies in other ways, such as by extracting the rotational energy of the black hole,
have not been considered here at all. Nonetheless, we have demonstrated that many
straightforward effects of magnetism on accretion are negligible.
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