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Abstract. In this article, we first consider briefly the basic properties of
the non-rotating Schwarzschild black hole and the rotating Kerr black
hole Rotational effects are then described in static and stationary
spacetimes with arial symmetry by studying inertial forces, gyroscopic
precession and gravi-electromagnetism. The results are applied to the
black hole spacetimes.

Key words. Black holes—rotation—inertial forces—gyroscopic pre-
cession — gravi-electromagnetism.

1. Introduction

In the last three decades, there has emerged a phenomenal amount of research on
black holes. This includes studies on their geometrical structure, their physical
aspects and phenomena occurring in their strong gravitational fields. These studies
were initially confined to the simpler case of the nonrotating Schwarzschild black
hole and later on extended to the more complex case of the rotating Kerr black hole.
The effect of rotation inherent to the Kerr spacetime manifests itself in almost all
physical phenomena, sometimes in a profound manner. For instance, it is rotation that
is responsible for the existence of the ergosphere in the Kerr geometry and the
consequent possibility of energy extraction via the Penrose process. The subject of
black holes and rotation is quite vast. Here we shall review only a few ideas with
emphasis on the work my coworkers and I have done over the years. First we shall
very briefly compare and contrast some of the basic attributes of the Schwarzschild
and Kerr spacetimes. We shall then discuss the notion of ‘rest frames’ in the two
geometrics which is quite important in studying physical phenomena. In recent years,
there has been considerable interest in the general relativistic analogues of inertial
forces and their possible reversal in the strong gravitational fields of black holes and
ultra compact objects. At the same time there are two other phenomena apparently
related to the inertial forces, namely gyroscopic precession and gravito-electro-
magnetism. We shall demonstrate and discuss how these three aspects of black hole
spacetimes can be related to one another in a covariant and elegant manner utilizing
the Killing vector fields. The formalism will be presented at a very general level in
the context of arbitrary static and stationary spacetimes with obvious application to
the Schwarzschild and Kerr metrics as specific examples.

As has been mentioned already, the above topics are but a small part of an
extensive field. They suffice, however, to illustrate the important role played by
rotation in black hole physics.
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2. Basic properties
In this section we give a very brief account of some of the basic properties of the
Schwarzschild and Kerr black holes. These aspects are well known and are given here

for the sake of completeness.

2.1 Line elements

Schwarzschild:
5 2m\ _ , 2m\ ! 5 4 IR
ds"=(1——)dr — [l —— ] dr" —r°(df" + sin“ 6d¢") (1)
r r
where m = MG /c°; M =Mass; ¢ = G =1.
Kerr:
2 2 5
ds? = (1= 22 ) ar + 28 Gin? 0dr do
P X
, 2ma’ . E
— @+ mf,l " sin? ) sin? 0dg? — = dr? — ¥ d6? )
P A
where m = Mass, J = ma = Angular Momentum, Y = P +a*cos? 0, A=m>—
2mr+a’

2.2 Spacetime symmetries

Both the Schwarzschild and the Kerr spacetimes admit a globally timelike Killing
vector field & The Schwarzschild metric is spherically symmetric with three
rotational Killing vector fields.

a a d d ad d
Lyi=y——z7—, Ly=z——x—, L.=n=x——-y- 3
TV fay T Tar T ey Yok ©)
satisfying the usual commutation relations [L,, L,] = —L. etc. while £ and # commute,
[&.n]=0

Here the coordinates (x, y, z) are related to (, @, ¢ ) by the flat space formulae connect-
ing the Cartesian coordinates to polar coordinates. Furthermore & # = 0, i.e go; = O,
signifying the absence of rotation. In the case of the stationary, axially symmetric
Kerr spacetime only L; = 7 exists in addition to the timelike Killing vector &”. They
satisfy the commutation relation [&xn] = 0, but . 7= g3 # 0, because of the
inherent rotation.

2.3 Source

The Schwarzschild spacetime can represent the gravitational field exterior to different
spherically symmetric sources. These include the static, collapsing or expanding, and
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oscillating spherical sources. And of course, the Schwarzschild spacetime without a
material source of finite extension corresponds to the nonrotating, spherical black
hole. In contrast, no realistic source has been matched on to the Kerr spacetime.
Because of the unusual multipole structure of the Kerr spacetime involving infinite
sequence of multipole moments m, ma® , ma’,.. it has been conjectured that no
material source exists as the interior for the Kerr metric. This fact has not been proved
but seems to be true. Neverthless, the Kerr spacetime corresponds to the rotating,
stationary black hole with axial symmetry.

2.4 Black hole structure

As is well known, the Schwarzschild black hole is located at » = 2m. The global timelike
Killing vector becomes null on this surface defining the static limit. Furthermore, the
normal to this surace is also null. Consequently, the light cone is tangential to this surface
which therefore acts as a one-way membrane. Or equivalently it is the event horizon. In
other words, the surface » =2m is both the static limit and the event-horizon.

This is no longer true in the case of the Kerr spacetime, an important effect of
rotation. The stationary limit, namely the surface on which the global timelike Killing
vector becomes null, is given by » = m + (m* — a* cos’ 6) "* provided & < m. On the
other hand the null event horizon happens to be the surface r = m + (m* — a*) "2
The region between the two surfaces is the ergosphere which makes unusual
phenomena like the Penrose process and super-radiance possible at the cost of the
rotational energy of the Kerr black hole.

2.5 Uniqueness and stability

The Schwarzschild and the Kerr black holes represent uniquely the time independent,
asymptotically flat, uncharged black holes without and with rotation respectively.
Stability of the Schwarzschild black hole has been established completely. The Kerr
black hole has been shown to be stable against all normal modes. However, the
completeness of the radial modes has not been proved though it may be reasonable to
assume that this is true.

3. The global rest frame

Within the framework of special theory of relativity, or equivalently in the flat space-
time, the global rest frame of an inertial observer plays a fundamentally important
role. The general relativistic analogue of such a frame of reference in stationary,
axisyrnmetric spacetimes is likewise important in studying physical phenomena in a
meaningful way. In the case of black holes, the difference between the spacetimes of
the nonrotating Schwarzschild black hole and the rotating Kerr black hole shows up
clearly in defining these frames.

The rest frame in flat spacetime is adapted to the inertial observer following a
worldline along time ¢ This is the direction of the timelike Killing vector & The four
velocity of the observers at different spatial points are orthogonal to the hyperspace
¢t = constant. The four velocity is given by
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W= U g =15 e = (€6 @

and
=8 and & =t, (5)

in Cartesian coordinates. Therefore ¢ is the synchronous time for the rest observers.
The worldlines or the four velocities of the rest observers constitute an irrotational
congruence. If we define the vorticity of this congruence or that of the vector field

&' by

—_—

T
f = —= et o) = €, ©

g

then

Wi =0. (7

Also u” is a geodesic.

The concept of the global rest frame is directly extended to a static spacetime like
the Schwarzschild. The four velocity u” defined as in equation (4), is hypersurface
orthogonal since,

& = goota = (gb‘fb)t‘a- 3

Once again ¢ is the common synchronous time for the rest observers. Obviously, the
vorticity
we = 0= 8_2?’1"{:..?" (9)

and the four velocities form an irrotational congruence. The rest observer's four
velocity, however, is no longer geodetic.

Let us now consider the Kerr spacetime. The timelike Killing vector field is no
longer irrotational and hence the Killing observers following & no longer define the
global rest frame. Nevertheless, consider the vector field

a __ ca (‘fbﬂb]_ a (10)
S
We notice,
XNa =0 (11)

so that ¢ is the projection of & orthogonal to #”. Furthermore, it is easy to show that
the vorticity of the y* - congruence
w; =0. (12)

This was first noticed by Bardeen (1970), who called the frames adopted to y* as
locally nonrotating frames (LNRF). It was recognized that the physical phenomena
in the Kerr spacetime could be studied in a significant manner when referred to
LNREF. The observers with four velocity

1
u' = (x"x0) X" (13)
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are in fact the ‘rest’ observers and the frames adapted to them form the global rest
frame since y, is in fact hypersurface orthogonal:
v — |eb (ﬁbﬂb)]

As before ¢ is the synchronous time for these observers. The apparently paradoxical
situation is that in order to be ‘rest’ observers, those following y* will have to be
revolving round the black hole! Properties of the global rest frames were studied in
detail and generalized to arbitrary stationary, axisymmetric spacetimes by Greene,
Schucking & Vishveshwara (1975).

They showed that if the Killing fields & and 7" satisfied orthogonal transitivity,
as in the Kerr spacetime, y” became null on the event horizon similar to & in the
Schwarzschild spacetime. Furthermore, ¢ = constant can be shown to be maximal
surfaces.

Physical phenomena can be studied meaningfully in the global rest frames, especially
since extended systems can be defined only on spatial surfaces of simultaneity like
¢ = constant.

4, Rotational effects

There are three important approaches related to the study of rotational effects in time-
independent, axially symmetric spactimes such as those of black holes. These are
gravi-electromagnetism, gyroscopic precession and the general relativistic analogues
of inertial forces. They manifest themselves especially when considering particle
trajectories. They can be studied elegantly when the trajectories follow Killing vector
fields as in the case of stationary worldlines or circular orbits. Moreover, the three
approaches can be synthesised in a very nice way for such trajectories. We shall present
below the formalism in the general case of the stationary, axisymmetric spacetimes
and specialize to black holes. These considerations are based on the paper by Nayak &
Vishveshwara (1998).

Recently, the two general relativistic phenomena, namely gyroscopic precession and
inertial forces have been studied in detail. Iyer & Vishveshwara (1993) have given a
comprehensive treatment of gyroscopic precession in axially symmetric stationary
spacetimes making use of the eclegant Frenet-Serret (FS) formalism. This forms the
basis for a covariant description of gyroscopic precession. At the same time, a general
formalism defining inertial forces in general relativity has been presented by
Abramowicz, Nurowski & Wex (1993). The motivation for this work stemmed from
the earlier interest in centrifugal force and its reversal. Such reversal in the Schwarzs-
child spacetime at the circular photon orbit was first discussed by Abramowicz and
Prasanna (1990) and later in the case of the Ernst spacetime by Prasanna (1991).
Abramowicz (1990) showed that centrifugal force reversed at the photon orbit in all
static spacetimes. He argued, on qualitative grounds, that gyroscopic precession should
also reverse at the photon orbit. Taking the Ernst spacetime as a specific example of
static spacetimes Nayak & Vishveshwara (1997) have shown that, in fact, both
centrifugal force and gyroscopic precession reverse at the photon orbits. A similar
study by Nayak & Vishveshwara (1996) in the Kerr-Newman spacetime indicates that
the situation in the case of stationary spacetimes is much more complicated than in
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the case of static spacetimes. Neither centrifugal force nor gyroscopic precession
reverses at the photon orbit.

The above studies raise some interesting questions. Is gyroscopic precession directly
related to centrifugal force in all static spacetimes? If so, do they both necessarily
reverse at the photon orbit? In the case of stationary spacetimes is it possible to make a
covariant connection between the gyroscopic precession on the one hand and the
inertial forces on the other, not necessarily just the centrifugal force? Does such a
connecting formula reveal the individual non-reversal of gyroscopic precession and
centrifugal force at the photon orbit? We shall consider these and related questions.
We shall then take up gravi-electromagnetism and show how this is related to
gyroscopic precession and inertial forces. The case of black holes becomes a specific
example of this broad-based formalism.

4.1 Gyroscopic precession

4.1.1 Frenet-Serret description of gyroscopic precession

The Frenet-Serret (FS) formalism offers a covariant method of treating gyroscopic
precession. It turns out to be quite a convenient and elegant description of the pheno-
menon when the worldlines along which the gyroscopes are transported follow
spacetime symmetry directions or Killing vector fields. In fact, in most cases of
interest orbits corresponding to such worldlines are considered for simplicity. In the
FS formalism the worldlines are characterized in an invariant geometric manner by
defining along the curve three parameters k the curvature and the two torsions z; and 7,
and an orthonormal tetrad. As we shall see, the torsions 7; and 1, are directly related to
gyroscopic precession. All the above quantities can be expressed in terms of the Killing
vectors and their derivatives. These considerations apply to a single trajectory in any
specific example. However, additional geometric insight may be gained by identifying
the trajectory as a member of one or more congruences generated by combining
different Killing vectors. For this purpose the FS formalism is generalized to what may
be termed as quasi-Killing trajectories. For the sake of completeness we summarize
below relevant formulae taken from Iyer & Vishveshwara (1993).

Let us consider a spacetime that admits a timelike Killing vector ¢ and a set of
spacelike Killing vector #4 (4 = 1,2,..m).Then a quasi-Killing vector may be
defined as

=&+ w:_m,,}.&}___ (15)

where (A) is summed over. The Lie derivative of the functions w,, with respect to y*
is assumed to vanish,

£Kw(m =0. (16)
We adopt the convention that Latin indices a,b,... = 0 — 3 and Greek indices o
p,...= 1-3 and the metric signature is (+, — — —). Geometrized units with

¢ = G =1 are chosen. A congruence of quasi-Killing trajectories is generated by the
integral curves of y“. As a special case we obtain a Killing congruence when w,, are
constants.
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Assuming x” to be timelike, we may define the four velocity of a particle following
x'by

e =u' =", (17)
so that
i = Xa)(a-. w,axﬂ = 0 (18)
and
% 19
where e?ﬂ} = "'[0} b"( ‘be’ro (19)
Fab = e&’(éa:b + W(A}T,?m}a._b). (20)

The derivative of w, drops out of the equation. The Killing equation and the equation
Corbrc= abcdé satisfied by any Killing vector lead to

Fap= —Fps and Fg=0. 21

Now, the FS equations in general are given by

(o) = Kef)y,
P a 3
€(1) = ke + Ti€(3)
é‘&) T1€(}) + M€l
a _ a
€3 = TT2€): (22)

As mentioned earlier k,7; and 7, are respectively the curvature, and the first and
second torsions while eg) form an orthonormal tetrad. The six quantities describe the
worldline completely. In the case of the quasi-Killing trajectories one can show that

K ,7,and 1, are constants and that each of e ¢ ( satisfies a Lorentz like equation:

i)

k=1 =17=0, (23)
ca b
€ = F“”e - (24)
Further, k, 71, 7» and e, can be expressed in terms of €f) and Fab =FSF? .. Fap

2o a
k= Fabe{o)"m )

o
5 2 Fﬁ?}e{l]) (0)
Tl =K — '2'_ .
K
6 ,a b 2 242
2 Faeloio)  (k* = )
: k2Tt e " (25)
1
a . 1 b
€ = p €0)
a 2¢ay b
€2 — K éb!e(t)]*

a 2 2\ (26)
ey = [F1 +(rf — & }Fg]eﬁ”.
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The above equations were first derived by Honig, Schiicking & Vishveshwara (1974)
to describe charged particle motion in a homogeneous electromagnetic field. Inter-
estingly, they are identical to those that arise in the case of quasi-Killing trajectories.
Next let us consider an inertial frame of tetrad ( eg), / («)) which undergoes Fermi-
Walker (FW) transport along the worldline. The triad f, may be physically realized
by a set of three mutually orthogonal gyroscopes. Then, the angular velocity of the FS
triad € with respect to the FW triad @ is given by Iyer & Vishveshwara (1993)

Wis = T2e()), + Tie). 27

Or the gyroscopes precess with respect to the FS frame at a rate given by Q(g) = —a¥s.
In case of the Killing congruence wrs is identical to the vorticity of the congruence.

4.1.2 Axially symmetric stationary spacetimes

An axially symmetric stationary metric admits a timelike Killing vector &* and a
spacelike Killing vector 7 with closed circular orbits around the axis of symmetry.
Assuming orthogonal transitivity, in coordinates (x’ = ¢, x* = ¢) adapted to & and 7"
respectively the metric takes on its canonical form

ds® = goo d* + 2803 dr do + g33 dd* + g1y dr? + gop d6? (28)

with g, functions of x’= r and x* =@ only. The quasi-Killing vector field
x* =&+ wn (29
generates closed circular orbits around the symmetry axis with constant angular
speed w along each orbit. The FS parameters and the tetrad can be determined either
by the direct substitution of 3 or by transforming to a rotating coordinate frame as

discussed by Iyer & Vishveshwara (1993). They can be written in terms of the Killing
vectors and their derivatives as follows.

2 g ab (30)
K™= —g§ duap,
2 ab . 312 (31)
Tl = [g addbi k]
: [s“”"“ J ? (32)
T = |—F——= NaTpdcldy| ,
- v —8
1
e?ﬂ} = ﬁ(]roso'- w),
1
el = e (0,8" a1, g%a»,0),
1
el,, = ———(B.0,0,-C),
o= Jay=a, %09
33)
a g[1g22 (
In the above, ey = ——— (0, —as,a;,0).

< () -4 (-
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i —é
a‘_zA?

B,
ba“‘%s

A = (£€,) + 2w(1°&) + W (1°1a),

B = (1&) + w(nna),

C = (§%) + w(n&a),
Aa = (86) , + 20(1°8) , + P (") ;3 a= 1,2,
By = (1°6a) p + w(n'na) 5 b =1,2,

Az = (€°€) (Pmp) — (n°&)’

where n® is the unit vector along &=&— &) /ef) 1, and 77 is the unit vector
along the rotational killing vector 7. We may note that all the above equations can
be specialized to a static spacetime by setting &'77,=0 and ¢ = &

The above expressions when specialized to the equatiorial planes of black hole
spacetimes are as follows. We have 7: = 0 so that gyroscopic precession is given by
7, alone.

(34)

Kerr:
| [i,’f _ (mzfew (1 - 2—“))w 3 .uagsrzfae)uz]z
P=—- - ’ — (35)
= r2 M (aw)?] 2 ’
2 aw
[l — (2 + a?)u? - ——r——]
Schwarzschild:

(1-2_ ru?)’ (36)

4.2 Inertial forces
4.2.1 General formalism

As has been mentioned earlier, in a recent paper Abramowicz et al. (1993) have
formulated the general relativistic analogues of inertial forces in an arbitrary space-
time. The particle four velocity u“ is decomposed as

Ut = y(n® + vr?). (37)

In the above, n” is a globally hypersurface orthogonal timelike unit vector, 7 is the
unit vector orthogonal to it along which the spatial three velocity v of the particle is
aligned and v is the normalization factor that makes u“u, = 1.

Then the forces acting on the particle are written down as:

Gravitational force Gy = ¢ ,
Centrifugal force Zi = "’(’YTJ)Z’FJVU("?:_:;,
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Euler force  E, = —V7,

Coriolis-Lense-Thirring force ¢, = v%vX;, (38)
where

V= (ve“’";)‘_,-u‘;,

Xk

"‘.(Tk:i = Tiik)s
dx = —n'ng ;. (39)

Here7 is the unit vector along 7 in the conformal space orthogonal to n’' with the
metric

;?;A- =€ 2""’(3;,& — ning). (40)
One can show that the covariant derivatives in the two spaces are related by
f’V}ﬁ = va,"?]- — T';T,g-v,'(.b — de). (41)

We shall now apply this formalism to axially symmetric stationary Spacetimes.

4.2.2 Inertial forces in axially symmetric stationary spacetimes

As has been shown by Greene, Schiicking & Vishveshwara (1975), axially symmetric
stationary spacetimes with orthogonal transitivity admit a globally hypersurface
orthogonal timelike vector field

¢ =&+ won’, (42)

where the fundamental angular speed of the irrotational congruence is

wo = —(Ea)/ (1'm)- “43)

The unit vector along (“ is identified with n. Further, if u° follows a quasi Killing
circular trajectory, then 7 is along the rotational Killing vector #4 In this case it is
easy to show that V = 0 and hence the Euler force does not exist.

More specifically,

u® = eV (& +uwn’) = e¥x* = y(n + vr%). (44)
Then we have
nu —¢ GJ(:(I‘
,r(! — e—(l,”(i}
¥ = gl.-"+¢">
(45)

o+
v e (.J.r'l(_ ; I(])\
where

Q= % ln(CHCu)-. @ = % ]“(—T.’u'fiu).- Y= % ln(XuXﬂ)- (46)

From the above relations, we can write down the inertial forces from their definitions
as follows.
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Gravitational force
Gk = ¢, ks
Centrifugal force

% 162(¢J+r,-">){;}2 (Wa’f}a) ,
2 Cbe k

i+ - Eana
G, = eV “Jw( ,
le“'i’b &
Where @ = (w — wp).

On the equatorial plane of the Kerr spacetime they reduce to

(r—M){(r* + &®)r + 2Ma*} — 2 {r’ — Ma?}

Coriolis-Lense-Thirring force

== 0,1,0,0),
G AP + @) + 2Ma2) ©,1,0,9)
_2aW (M ,
Ci = G {rza +3M}(0,],0,0),
W2
Z.k :7(03211010)1
where
A=rr+a>—2Mr,
A=1-(r+d) —@(] - wa)?,
2M
Gy = (* +d%) + —a,
2Ma
W=ar- (P + a®)r + 2Ma*’
21 = ﬁ [(r— M]{(rz +a®)r’ + 2Mra2} - 2A{r3 — Maz}].

4.2.3 Specialization to static spacetimes

113

(47)

(43)

(49)

(50)

(1)

(52)

(53)

In a static spacetime the global timelike Killing vector ¢&* itself is hypersurface

orthogonal. The unit vector n* is now aligned along &
n® = e %€,

Then we have the inertial forces as follows:

Gravitational force

G.k — qb.lh
where ¢=%1In (§°€"),

(34)

(55)
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Centrifugal force

2 i
_ _Y 2u+ta) { ("? Th‘)J
ZLy=——c¢ In[ — , 56
2 Eigi) ) . (56)
Coriolis-Lense-Thirring force is identically zero,
In the specific example of the Schwarschild spacetime we have:
2M\ ™' M
Gk = (l -"‘T) r—2(0=1,0.0), (58)
(r —3M)

Zi = (0,1,0,0). (59)

(=2 —27) (=2

4.3 Covariant connections

In the preceding section we have derived expressions for 7; and 7, which give gyros-
copic precession rate in terms of the Killing vectors. Similarly, inertial forces in an
arbitrary axisymmetric stationary spacetime have also been written down in terms of
the Killing vectors. All these quantities have been defined in a completely covariant
manner. We shall now proceed to establish covariant connections between gyroscopic
precession, i.e. the FS torsions 7; and 7,, on the one hand and the inertial forces on
the other. First, we shall consider the simpler case of static Spacetimes.

4.3.1 Static spacetimes

We have derived in equation (31) and (32), the FS torsions 7; and 7, for a stationary
spacetime. As has been mentioned earlier, for a static spacetime &7,= 0 and {* =¢"
in the above equations as well as in the expressions for inertial forces. With this
specialization; centrifugal force can be written from equation (56) as

—(¢p—a

Zy=e Jwidp. (60)

Substituting equation (60) in equations (31) and (32) we arrive at the relations

B 2 (61)
le = ;E[szb] '
and
32 [ gabed 2
B=2 [EH— n{,n,aczd} , ©)
w8
where
'6 _ e((ﬁfﬂ) . (63)
: K

The equations above relate gyroscopic precession directly to the centrifugal force
The two torsions7; and7, , equivalent to the two components of precession, are
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respectively proportional to the scalar and cross products of acceleration and the
centrifugal force. We shall discuss the consequences of these relations later on.

4.3.2 Stationary spacetimes

From equation (34) we have

= (gagaJ + 2“"’(”“&:) + w? (Tfiﬂa).-
B = (n'€) + w(nn.).

We decompose the angular speed o with reference to the fundamental angular speed

of the irrortational congruence ay=— (&' 1,)/ (7°n,),
W= w+ wp. (64)

Then we have

A = ("G + &1,

— 8 (65)
Similarly, we get B =0
Ag = (¢ G) o + 26Ca + (1) 4
B, = Ca+&(n"mb) 4 (66)
where
Ca = (E"M) o + wo(n'm) 4 (67)
or equivalently
Ca =~ (€M) w0 - (68)
From equations (34), (65) and (66) we can show
2lle—(¢-+n}£) . )
do =~ T (G)Ca + B G) (1m0) o= (P 1p) (6764 ) = P (17 7)Co)-
(69)
Further, it is easy to see that C, is directly proportional to C,,
C,=—e2o1C, (70)

where C, is the Coriolis-Lense-Thirring force. Then equation (69) takes on the form
where Z, is the centrifugal force.

é’(d& o) ]|
d, = {z ——[l—i—ch'e e m]Ca} (71)

WK
where Z, is the centrifugal force.
Substituting this in equation (31) for 73 we get the relation,

2

u —6; (8" aa(Zy + BiCa))’, (72)
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where

(¢p—a)
3 _ e (a4

K
] (73)

Again, from equation (32), we obtain the expression

-

, }32 Eahc‘d ] “
2= \/__—gnuTbac(Zd ”!'{lcd)} : (74)
These relations are more complicated than those we have derived in the static case
Nevertheless, they closely resemble the latter with the centrifugal force replaced by
the combination of centrifugal and Coriolis forces (Z, + S,C,). The static case
formulae are obtained from those of stationary case by setting the Coriolis force to
Zero.

A formula for gyroscopic precession in the case of circular orbits in axially
symmetric stationary spacetimes was derived by Abramowicz, Nurowski & Wex (1995)
within a different framework. We note that gyroscopics precession does not involve the
gravitational force. In case of geodetic orbits, total force is zero but not the centrifugal
and Coriolis force individually. Therefore gyroscopic precession is also nonzero even

for geodetic orbits.

4.4 Reversal of gyroscopic precession and inertial forces
The condition for the reversal of gyroscopic precession is given by
Wes = Tie(y) + 1€}y = 0. (75)

Since ) and efyyare linearly independent vector fields at each point, this condition
is the same as requiring

TN =T = 0. (76)

In the case of static spacetimes, 7; ans7, are directly related to the centrifugal force
Zy. Therefore gyroscopic precession and centrifugal force reverse simultaneously. It
can be shown that this happens at a photon orbit as borne out by the Schwarschild
spacetime. In the case of stationary spacetimes there is no such correlations. This is
true in the case of the Kerr spacetime.

5. Gravi-electric and Gravi-magnetic fields

Gravi-electric and gravi-magnetic fields are closely related to the idea of inertial
forces. These fields with respect to observers following the integral curves of n” can be
defined as follows.
Gravi-electric field:

E* = Fobp,, (77)
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Gravi-magnetic field:

H® = Fp, (78)
where F is the dual of F*,

% (\/—_g)_leamﬂd. (79)

In the above, as before, Fo= e"(€ w.sron.5)The equation of motion is

f;-ab

L]‘a = Fﬂbub. (80)

Projecting onto the space orthogonal to n” with A, = g. — 1., and decomposing u,
as given in (44), we get

Uig = Y[Fach® + (v(Foet* — naFg,cnb-r")] (81)

where 7 is the normalization factor. This equation can be written in the form

Uiq = Y[Facn® + U\/-_gsab(‘dnb‘r"H"‘] (32)
or
Ui, ="E+vxH]. (83)
We can therefore define
Gravi-electric force:
(84)

fGEa = ‘?'Fac‘ncs

Gravi-magnetic force:

fota = YU/ —8Eabeat® T HY = Y0(FpeT¢ — naFpen®7°). (85)

5.1 Relations among gravi-electric, gravi-magnetic and inertial forces

5.1.1 Static case

We have defined the gravi-electric field E« by
yEa = yF ach®

If we substitutefor F s = e ¢&,., +m,.,), We get

foka = VEq = YFoen® = —&4*9G,. (86)

So,

E,= _e(t-"+¢JGa_ 87)

Here Ga is the gravitational force. Similarly we have for the gravi-magnetic field

fGHa = f}/?}(Fm 7€ — nunthN'T(.)'
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The second term in this equation is identically zero because the Killing vector field &*
and 7 commute and we get

- b_epyd
fGHﬁ = YU\ —E8Eabcat T H s
= Y0F T,

s Ie?.(?.'J-I-ﬁ)sz“ _ Za] (88)

The above relation clearly shows the connection between the gravi-magnetic force on
the one hand and the gravitational and centrifugal forces on the other.

5.1.2 Stationary case

In the stationary case, n” is given by equation (45). As before we decompose
W= W+, where , is given by (43). Then a straightforward computation gives
the expression for the gravi-electric field.

E, = -G, + e, (89)
and the gravi-electric force,

fGE.a = 'YE(: = 762[1.":+G]Ga + Cy. (90)

This shows the relation of gravi-electric field or force to both gravitational and centri-
fugal forces. In the stationary case also we have

91
ngn’Fp,7¢ = 0. oy
Then it follows
fota = v/ =g€ahean T°H’,
= yUFo.7°,
& ot
= |5+ GG - 2| ©2)

Hence gravi-magnetic force is related to all the three inertial forces—gravitational,
centrifugal and Coriolis.

5.2 Gravi-electric and Gravi-magnetic fields with respect to comoving frame

In the previous section we have defined gravi-electric and gravi-magnetic fields with
respect to the irrotational congruence. Similarly these fields can be defined with
respect to the four velocity u” of the particle as follows.

Gravi-electric field:

Ed = Fy,, 93)
Gravi-magnetic field:

H = F"up. (94)
Where F** is dual to F** as before. The equation of motion takes the form

a’ = E°. 95)
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Precession frequency can be written simply as

W’ = H®. (96)

Following Honig, Schiicking & Vishveshwara (1974), Frenet-Serret parameters #,7
and 7, can be expressed in terms of gravi-electric and gravi-magnetic fields.

k= |E| (97)
where
|E| = \/ —E°E,, (98)
P
= :E|| , 99)
where
P* =eE, Huy =E x H, (100)
|| = \/—PeP, (101)
and
H°E,
n=-"gt (102)
Frenet-Serret tetrad components can also be expressed in terms of
Ea
ey = B’
. P
€ —
(2) 1P|’ (103)
Ry
Eiqy = ——=.
G) P'E,

In reference (Honig, Schiicking & Vishveshwara 1974), these expressions had been
derived for charged particle motion in a constant electromagnetic field. We have now
demonstrated the exact analogues in the case of gravi-electric and gravi-magnetic
fields. The one-to-one correspondence is indeed remarkable.

All this can be translated easily to the specific example of black holes since the
required expressions have been given already.

6. Conclusion

The geometric structure and the physical phenomena associated with black holes offer
a striking example of the general relativistic effects engendered by strong gravitational
fields. Furthermore, rotation plays a pivotal role in distinguishing the properties of
the Kerr black hole from those of the Schwarzschild black hole. In comparing and
contrasting their properties and the consequent effects, the Killing fields admitted by
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the two spacetimes provide an elegant, simple and yet a powerful basis for detailed
analysis. This is utilized in defining fundamental concepts and formalisms as in the
definition of the global rest frame. Again, the Killing symmetries provide a covariant
method for treating gravi-electromagnetism, gyroscopic precession and inertial forces.
They are interrelated and can be synthesized in an appealing manner. There are many
other topics in black hole physics that carry the stamp of rotation: radiation,
thermodynamics, Mach’s principle, astrophysical applications such as accretion and so
on. All this is way beyond the scope of the present article.

References

Abramowicz, M. A., Nurowski, P., Wex, N. 1995, Class Quantum. Grav., 12, 1467.
Abramowicz, M.A., Nurowski,P., Wex,N.1993, Class Quantum. Grav., 10, L183.
Abramowicz, M. A., Prasanna, A. R. 1990, Mon. Not. R. Astr. Soc, 245, 720.
Abramowicz, M. A. 1990, Mon. Not. R. Astr. Soc, 245, 733.

Bardeen, J. M.1970, Astrophys. J, 162, 71

Greene, R. D., Schucking, E. L., Vishveshwara, C. V. 1975, J. Math. Phys., 16, 153
Honig, E., Schucking, E. L., Vishveshwara, C. V. 1974, J. Math. Phys., 15, 774
Iyer, B. R., Vishveshwara, C V. 1993, Phys. Rev., D48, 5706.

Prasanna, A. R. 1991, Phys. Rev., D43, 1418

Rajesh Nayak, K., Vishveshwara, C. V. 1998, GRG, 30, 593

Rajesh Nayak, K., Vishveshwara, C. V. 1997, GRG, 29, 291

Rajesh Nayak, K., Vishveshwara, C. V. 1996, Class Quantum. Grav., 13, 1173.



