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Abstract

To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral

organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA

libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles

undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones

from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal

that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other

species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code

for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules.

They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally,

during rice plant development. New rice cDNAs requiring specific mention are those with similarity to COP1, a regulator of

photomorphogenesis in Arabidopsis; sequence-speci®c DNA binding plant proteins like AP2-domain-containing factors;

genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators

of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.

[Kushalappa K. M., Mattoo A. K. and Vijayraghavan U. 2000 A spectrum of genes expressed during early stages of rice panicle and flower

development. J. Genet. 79, 25±32]

Introduction

Plants have become important targets for genetic manipula-

tion and provide good models to study biological processes

that control development. Analysis of these processes at a

molecular level requires isolation and characterization of

key regulatory genes, including genes that are differentially

expressed. Current approaches for isolating plant genes

include chromosome walking and gene tagging, methods

that have been particularly successful in isolating plant

genes where likely functions are revealed by their mutant

phenotypes. Rapid progress in technologies related to

genome biology has occurred in the recent past. These

methodologies include characterization of anonymous

cDNA clones expressed in varying degrees both during

normal development and in disease state. Analysis of the

human genome spearheaded many of these technologies and

demonstrated that even partial sequencing of randomly

chosen cDNAs can provide a large amount of information

concerning the genetic makeup of an organism and can

provide sequence-tagged markers for the genome mapping

and analysis. Large-scale random cDNA and=or genome

sequencing of Oryza sativa, Zea mays, Brassica napus and

Arabidopsis thaliana have provided sequences of an expand-

ing collection of plant genes (Uchimiya et al. 1992; Keith

et al. 1993; Park et al. 1993; Sasaki et al. 1994; Cooke et al.

1996; Lin et al. 1999). Among these studies, the analysis of

all expressed sequences from at least two plant genomes,

Arabidopsis and Oryza sativa (rice), are large-scale inter-

national efforts. The choice of these two plants arises from

their being model representatives for laboratory plant

systems and ®eld crops respectively, whose genomes are

Keywords. cDNA clones; rice panicles; floral development; rice.

# Indian Academy of Sciences

�For correspondence. E-mail: uvr@mcbl.iisc.ernet.in.

Journal of Genetics, Vol. 79, No. 2, August 2000 25



also amenable to global sequence analysis. For a fraction of

the rice and Arabidopsis genes, a probable function has been

assigned on the basis of sequence similarity to previously

studied genes from other systems. Apart from sequence

similarity, function can be hypothesized from RNA and

protein synthesis patterns and can be further tested through

phenotypic analysis of plants with gain-of-function or loss-

of-function alleles. These latter molecular-genetic tools are

available for both these plant species.

Genes expressed in a developmental-stage-specific and=or

tissue-specific manner are of interest for various reasons.

One compelling reason is the likelihood of identifying

regulators of a pathway or identifying genes that in turn are

regulated by such molecules. In addition to specific expres-

sion patterns, these molecules can lend themselves for use

as markers to study development; also their regulatory

elements can provide ways to achieve directed expression of

foreign genes. Such cDNAs are also adaptable for DNA-chip

technology for use in transcript monitoring in functional

genomic studies. In rice, panicle and flower development is

under environmental and genetic control; development of

a mature flower from the stage of panicle initiation occurs

in a step-wise manner over a four to five week period

(Hoshikawa 1989). Most of our current knowledge on initia-

tion and morphogenesis of flowers is derived from analysis

of dicot model plants (Weigel and Meyerowitz 1995).

Understanding these phenomena in rice, a member of the

grass family, will provide clues on the evolution of a morpho-

logically diverse form, where the branched inflorescence

and derived floral structure are unique characteristics.

In an attempt to identify rice genes expressed during

early stages of panicle development or during floral organ

specification we have constructed cDNA libraries from rice

panicles at two developmental stages. Panicles elaborating

branches with newly specified flower primordia or panicles

with flowers undergoing organogenesis were taken for

analysis. This study should thus add to the wealth of

emerging plant expressed sequence tags (ESTs) from the

Arabidopsis and rice sequencing projects. Here we present

partial sequence analysis of some random cDNA clones

from these panicle libraries. For a few genes a putative

function could be predicted on the basis of sequence

similarity to other known genes in the databases. We have

studied the genomic organization by Southern analysis and

have probed expression patterns by Northern analysis of

RNAs from various tissues for a few representative genes.

Together these rice cDNAs provide start points for a reverse-

genetics approach to studying gene function.

Materials and methods

Construction of cDNA libraries and nucleotide sequence

analysis: Two independently constructed rice panicle cDNA

libraries were the source of clones used in the study. These

libraries were constructed from mRNA isolated from young

panicles (Oryza sativa L., cv IR 64) at two different stages

of development. Early panicles of length 0.5 cm to 1 cm are

at the stage of ¯oral meristem speci®cation, while the

branch primordia are well de®ned. Panicles of length 2 to

3 cm are termed late, wherein ¯oral organogenesis is under

way. Panicles were dissected away from the tightly rolled

leaf sheath and were quickly frozen in liquid nitrogen

before total RNA isolation (Crawford et al. 1986). Poly(A)�

RNA was puri®ed using Qiagen oligo-dT column. Five�g

of poly(A)� RNA served as a template for cDNA synthesis.

cDNA was primed using an XhoI oligo(dT)-linker primer

provided by the kit and manufacturer's instructions were

followed henceforth (Stratagene, USA). The cDNAs were

size selected to be greater than 400 bp and then cloned unidi-

rectionally into the EcoRI and XhoI sites of phage vector

Uni-ZAP. The primary library in each case contained four to

®ve million plaque-forming units. A portion of this unam-

pli®ed primary library was used for picking up random

plaques. The cDNAs in the plasmid (pBluescript-SK) were

excised from each phage isolate according to the supplier's

protocol. Sequence analysis of the double-stranded plasmid

DNA was performed with an automated sequencer (Applied

Biosystems, USA) using the dideoxy cycle sequencing

protocol and the T3 primer that ¯anks the 50 end of the

cDNAs. The 50 end was partially sequenced (� 700 bp of

sequence obtained in each case) for all cDNAs isolated.

DNA sequence analysis and database comparisons were

done against GenBank entries, ®rst at amino acid level with

the BLASTX subroutine and at the nucleotide level by the

BLASTN subroutine (Altschul et al. 1997). Additionally,

searches were made against the rice EST collections at

www.tigr.org=tdb=ogi (TIGR, The Institute for Genome

Research, Rockville, USA) using the routine WU-BLAST.

RNA isolation and Northern blot analysis: In general total

RNA was isolated from one gram each of the following

tissues: root, shoot, leaf sheath, early panicles (less than

1 cm) and late panicles (1 to 3 cm), lemma=palea and

stamen=carpel according to Crawford et al. 1986. Roots and

shoots were obtained from 15-to-20-day-old young seedlings

and other tissues mentioned above were from adult ®eld-

grown plants. For assessing induction by abiotic stress,

seedlings 15 to 20 days post-germination were treated with

0.1 M NaCl for 14 h by submergence of their roots. Follow-

ing this treatment roots and shoots were harvested separa-

tely and RNA isolated. Total RNA yield in all cases was

quanti®ed and 30�g of total RNA was denatured in forma-

mide-containing buffer and then electrophoresed on denatur-

ing 1.2% formaldehyde agarose gels. The RNA samples

were blotted onto Hybond membranes (Amersham, UK)

and then UV cross-linked. After prehybridization in Church

buffer (0.5 M NaPO4 pH 7.4, 1 mM EDTA and 7% SDS) for

3 h at 65�C (Church and Gilbert 1984), the blots were

hybridized in the same solution with the speci®ed probe

added at a concentration of a million cpm per ml. All

probes were generated by random primer labelling reactions
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of gel-puri®ed cDNA inserts from the speci®ed plasmid

with [�-32P]dATP or [�-32P]dCTP (3000 Ci=mM) (Amer-

sham). Post-hybridization membranes were washed twice in

2� SSC, 0.1% SDS at room temperature and then twice in

1� SSC at 65�C for 10 min (Sambrook et al. 1989). The

blots were then subjected to autoradiography. The blots were

subsequently probed with a rice cDNA encoding a ribosomal

protein to normalize for mRNA loaded.

Plant genomic DNA isolation and Southern blot analysis: DNA

was isolated from young leaves of rice (Oryza sativa L., cv IR

64) by CTAB method (Rogers and Bendich 1988). Five �g of

the genomic DNA was digested with the indicated restriction

enzymes in recommended buffer. The digested DNA was

electrophoresed on a 0.7% agarose gel and then blotted onto

Hybond nylon membranes. The radiolabelled probes were

prepared and hybridizations were carried out as outlined

above. The blots were washed with 0.5� SSC at 65�C.

Results and discussion

Construction of rice panicle libraries representing two develop-
mental stages

Rice flowers are generated on a branched inflorescence

termed the panicle. The mature panicle bears eight to 10

flowering nodes on the main stem axis called the rachis.

Each node bears a rachis branch, which in turn bears at its

basal nodes secondary rachis branches and more terminally

five or six pedicellate spikelets. The secondary branches

themselves have two to four pedicellate spikelets. The

development=morphogenesis of the mature panicle thus

requires, first, specification of a defined number of primary

rachis branch primordia, then of secondary rachis branch

primordia, followed by specification of splikelet=floral

primordia, and still later of the floral organ primordia. To

explore changing patterns of gene expression that occur

during early panicle morphogenesis we constructed two

different stage-specific cDNA libraries. Scanning electron

microscope based characterization of these stages has been

reported previously (Hoshikawa 1989; Kushalappa et al.

1996). The earliest developmental stage taken for analysis

was of panicles of length less than 1 cm, wherein the rachis

branch primordia and ¯oral primordia are being speci®ed.

The second stage was panicles at later developmental stage

(length 1 to 3 cm), where glumes, lemma and palea have

already been speci®ed on individual ¯oral primordia, and

the development of the stamens and carpels is initiated.

These libraries were arbitrarily termed early panicle cDNA

library and late panicle cDNA library respectively, and they

have been used to de®ne genes expressed in the developing

in¯orescence. To optimize and facilitate the characterization

of the expressed genes the cDNAs were size selected and

cloned directionally in the commercially available vector �
Uni-ZAP. We anticipate that size selection of cDNAs

together with directional cloning of full-length or near-

full-length inserts would aid in the identi®cation of similari-

ties to known genes and in the subsequent authentication of

these homologies.

Our libraries, we expect, are representative since we

obtained a primary unamplified titre of approximately 4 to 6

million plaque forming units (pfu). For a faithful depiction

of the expressed genes that is reflective of their relative

expression levels, random cDNAs were taken from the

unamplified library itself. In addition the libraries were

tested for the presence of cDNAs for a gene known to be

expressed at early stages of floral meristem specification.

OsMADS1 is a putative rice transcription factor with the

DNA-binding sequence motif termed the MADS box.

Previous characterization of the gene has shown that this

gene is transcriptionally regulated with the earliest appear-

ance of its mRNA being coincident with the appearance of

morphologically discernible ¯oral primordia (Chung et al.

1994; Vijayraghavan 1996). We screened the late panicle

ampli®ed library for OsMADS1 cDNAs by high-stringency

hybridization using a cloned gene-speci®c partial cDNA.

From these analyses we estimate the abundance of this

cDNA in the late ampli®ed library as being one in

30,000 pfu (our unpublished data). These data thus provide

assurance of the developmental stage speci®city of these

libraries and indicate that they are likely to contain other

genes that are similarly regulated. Such early-stage-speci®c

libraries from rice panicles are as yet unreported. The rice

database currently has EST sequences from panicles that

represent later stages of development, i.e. the stages of ¯oral

differentiation, ripening and grain maturation. Thus, sequ-

ences and cDNAs from our libraries should complement the

information available through international EST sequencing

programs.

Characterization of cDNA clones

cDNA inserts (released after EcoRI and XhoI digests)

present in 20 randomly selected cDNAs were sized and

found to be in the size range of 700 to1500 bp. Fifty clones

from the early-panicle cDNA library (panicles of 0.5 cm to

1 cm in length) and a slightly smaller number of clones from

the late-panicle cDNA library (panicles of 1 cm to 3 cm in

length) were subjected to the single-run partial sequencing

using an automated ABI system. Since the cDNAs were

cloned directionally and the 50 untranslated regions of many

plant genes are relatively short, the clones were all

sequenced from the 50 end to maximize the likelihood of

®nding gene sequences. We categorized many genes based

on sequence similarities to current entries in GenBank and

EST databases. For these homology searches all sequences

obtained from the 50 end of the cDNAs were automatically

translated in all reading frames and compared with the

protein sequence database in GenBank using the subroutine

BLASTX, and further compared at the nucleotide level

using BLASTN. BLASTN analysis showed identi-

ties=similarities to randomly sequenced cDNAs from other
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Table 1. Catalogue and identities of some genes expressed in developing rice panicles.

Clone GenBank Accession NCBI Hits to rice ESTs at
number of rice cDNAs BLAST TIGR (WU-BLASTN

score Putative functional identification scores)

Structural proteins

ERD9 AF074728 Uroporphyrinogen decarboxylase precursor TC17200 (712)
ERD56 AF074737 369 Acetyl CoA dehydrogenase
ERD59 AF074739 396 Pyruvate dehydrogenase S2039-1A (838)
ERD62 AF074742 540 Protein disulphide isomerase precursor R0110-1A (1104)
ERD76 AF074754 590 Ascorbate peroxidase S3683-1A (1331)
LRD5 AF074772 728 Ion channel protein (36 kDa porin II) TC21145 (2522)
LRD14 AF074780 980 Ubiquitin gene C73073 (809)
LRD21 AF074787 476 Sorghum aldehyde dehydrogenase AU029563 (363)
LRD22 AF074788 120 Theronyl tRNA synthetase ligase
LRD23 AF074789 399 Proteosome subunit C27723 (648)
LRD24 AF074790 510 Permease C0087-A (735)
LRD28 AF074793 Aldehyde dehydrogenase TC22754 (2044)
LRD29 AF074794 198 Ubiquitin conjugating enzyme TC26955 (1989)
LRD31 AF074795 300 Ubiquitin conjugating enzyme C26526 (964)
LRD32 AF074796 309 Ubiquitin conjugating enzyme TC26955 (1967)
LRD36 AF074798 506 Permease TC29466 (4004)
LRD42 AF074803 186 Mitochondrial membrane-associated protein
LRD45 AF074805 140 Glucoride precursor C91824 (935)
LRD46 AF074806 100 Membrane-associated protein
LRD49 AF074808 391 Glycine-rich protein

Protein kinases=phosphatases

ERD53 AF074734 396 LRR proteins S10770 (1324)
ERD90 AF073306 181 Protein kinase S14172-A (620)
ERD77 AF074755 Putative receptor kinase NP001765 (222)
LRD12 AF074779 Putative GTP-binding protein TC21339 (2976)
LRD9 AF074776 Type 2 phosphatidic acid phosphatase D47079 (1119)

Transcription factors=regulatory factors

ERD2 AF074725 77 CUC=NAM protein C10012A (211)
ERD6 AF073305 395 COP1 protein TC22849 (735)
ERD57 AF074738 144 Maize DNA-binding protein TC26129 (3135)
ERD67 AF074747 Rice putative AP2-domain-containing protein TC16635 (435)
ERD69 AF074749 Rice putative AP2-domain-containing protein TC16635 (435)
ERD74 AF074752 229 AP2-domain-containing protein SS298 (406)
ERD79 AF074757 211 Glycine-rich RNA-binding protein C2839 (970)
ERD91 AF074767 210 Glycine-rich RNA-binding protein S15624 (900)
LRD7 AF074774 197 Pollen-specific protein
LRD15 AF074781 100 CCAAT-binding factor TC23518 (735)
LRD16 AF074782 CCAAT-binding factor AF074781 (2297)
LRD17 AF074783 135 CUC=NAM protein C27594 (492)
LRD18 AF074784 130 CUC=NAM protein C28512 (1198)
LRD3 AF074801 72 Polycomb-like nuclear protein

Inducible proteins

ERD4 AF074727 155 Stress-inducible protein S1571A (641)
ERD63 AF074744 211 Salt-inducible protein
ERD80 AF074758 750 Salt-stress-inducible protein S2603 (1954)
ERD89 AF074766 125 Sorghum pathogen-induced 1 (PT1)
LRD2 AF074769 70 Early jasmonate-inducible gene
LRD3 AF074770 185 Zn-inducible protein S15878 (600)
LRD8 AF074775 313 Zn-inducible protein AA752898 (712)
LRD38 AF074800 72 Jasmonate-inducible gene
LRD41 AF074802 700 Salt-stress-inducible protein C25168 (1759)

Miscellaneous

ERD52 AF074733 396 60S Ribosomal protein L27A TC21974 (1829)
ERD55 AF074736 Mei-2-like protein TC21552 (2228)
ERD64 AF074744 446 40S Ribosomal protein C756A (892)
ERD65 AF074745 242 Retrotransposon

(continued)
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organisms. In both searches BLAST scores greater than 70

were taken to indicate sequence similarity. Alternatively, a

WU-Blast score greater than 250 obtained against any rice

EST was taken as signi®cant. A summary of the sequence

analysis is provided in table 1. The GenBank Accession

numbers of the rice cDNAs are given. A putative functional

assignment is also shown for those cDNAs that bear

similarities to known genes in other species or in rice itself.

Of the 80 sequences submitted to GenBank, about 68%

showed similarity to known genes, while 32% represented

potentially unknown=uncharacterized cDNAs. Despite the

fact that these cDNAs were identi®ed from a small set of

random clones, they might comprise unique sequences since

they are isolated from panicles at early stages of develop-

ment. Not surprisingly, we ®nd rather diverse types of

genes expressed. The group of cDNAs with homologies to

structural genes from other systems constitutes approxi-

mately 24% and perhaps represents housekeeping genes,

expected to be present in any cell type. Similarly a number

of genes were identi®ed to possibly be involved in cell±cell

signalling on the basis of their homologies to plant protein

kinases=phosphatases and leucine-rich-repeat (LRR)-

domain-containing proteins that are known to have diverse

functions in signal transduction pathways. The best-

characterized LRR-motif-containing protein from rice is

Xa21 with a clearly demonstrated function in rice blight

resistance (Song et al. 1995). It is attractive to speculate that

the LRR protein (ERD53) identi®ed in our cDNA screen

plays a role in signalling that controls cell proliferation,

possibly like the product of the Arabidopsis CLV1 gene, a

LRR receptor kinase involved in regulating cell prolifera-

tion through cell±cell communication (Clark et al. 1997).

The expression of ERD53, as is already known for CLV1, is

not panicle or in¯orescence speci®c (see ®gure 2). There-

fore, a hit with a previously known EST from a different

rice cDNA library is not unexpected. Protein kinases are in

general well documented to participate in signalling path-

ways for cell proliferation, and their representation in this

library is not surprising since panicles at early stages of

development are largely proliferating tissues.

Other cDNAs displayed similarities to regulatory genes

or putative transcription factors. In a few cases the identified

homologues are known to play a specific role in floral

development. For instance cDNAs (ERD2, LRD17 and 18)

with homology to CUC genes of Arabidopsis (Aida et al.

1997) or the NAM gene of petunia (Souer et al. 1996) were

identi®ed at both stages of development studied here. CUC,

NAM, and the very recently identi®ed homologue in

Arabidopsis, NAP, play developmental roles in establish-

ment of the shoot apical meristem and ¯oral development

(Sablowski and Meyerowitz 1998). The suggested plant-

speci®c function is positional de®nition of cells in develop-

ing meristems and organ primordia. While proteins contain-

ing NAC domain de®ne a gene family, their tissue-speci®c

and development-speci®c regions of synthesis are likely to

give clues on their function. The rice cDNA ERD74 is

Table 1. (continued)

ERD87 AF074764 70 Glutaredoxin TC26114 (405)
ERD86 AF074763 175 dnaJ domain heat shock protein TC25259 (4264)
LRD4 AF074771 420 40S Ribosomal protein TC22516 (2247)

Novel

ERD3 AF074726 289 Uncharacterized wheat EST
ERD10 AF074729 <70 Unknown
ERD13 AF074730 186 Uncharacterized maize EST
ERD16 AF074731 <70 Unknown
ERD60 AF074740 <70 Unknown
ERD61 AF074741 198 Uncharacterized rice EST
ERD66 AF074746 452 Uncharacterized maize EST
ERD68 AF074748 <70 Unknown
ERD75 AF074753 Uncharacterized rice EST D43228 (1094)
ERD78 AF074756 <70 Unknown S0325 (563)
ERD85 AF074762 89 Uncharacterized rice EST D15565 (480)
ERD51 AF074732 Uncharacterized rice EST D48842 (1183)
ERD54 AF074735 Uncharacterized rice EST TC16318 (720)
ERD82 AF074760 <72 Unknown
ERD88 AF074765 206 Uncharacterized rice EST TC20920 (1776)
LRD6 AF074773 Uncharacterized rice EST TC24226 (2927)
LRD10 AF074777 Uncharacterized rice EST TC28173 (2644)
LRD11 AF074778 Uncharacterized rice EST TC24226 (1447)
LRD19 AF074785 Uncharacterized rice EST AW155020 (216)
LRD20 AF074786 Uncharacterized rice EST TC17242 (3457)
LRD25 AF074791 Uncharacterized rice EST TC19535 (3507)
LRD26 AF074792 Uncharacterized rice EST AU73592 (483)
LRD37 AF074799 Uncharacterized rice EST TC17040 (3988)
LRD43 AF074804 Uncharacterized rice EST TC17040 (4093)
LRD48 AF074807 Uncharacterized rice EST TC19535 (3567)
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a member of a different gene family, with the sequence-

speci®c DNA-binding motif found in transcription factors

responding to ethylene. A few members of this rather large

gene family are known to play a role in ¯ower development.

The AP2 and ANT genes of Arabidopsis belong to this group

and they contribute to ¯oral meristem and organ identity

or ovule development, respectively (Jofuku et al. 1994;

Klucher et al. 1996). ERD74 has considerable homology to

the ANT gene. In addition, putative DNA-binding (ERD57)

and RNA-binding proteins (ERD79) are identi®ed in this

collection of cDNA sequences and in some instances their

homologues in other plant systems are suggested to be

tissue speci®c. We have also identi®ed a cDNA with homo-

logy to Arabidopsis COP1, which encodes a regulator of

photomorphogenesis unique in containing both Zn�-®nger

DNA-binding motif and WD-40 repeat motifs that mediate

protein±protein interactions (Deng et al. 1992). Yet other

clones exhibited signi®cant similarity to genes whose

expression is situation speci®c, such as salt stress

(ERD80) or abiotic stress (ERD4). Their representation in

the library possibly re¯ects their basal level of expression in

uninduced tissues. The last rice cDNA in this collection that

requires speci®c mention is the one with similarity to the

polycomb group of proteins, the prototype being the

POLYCOMB gene of Drosophila melanogaster. Genes

homologous to POLYCOMB function as chromatin reorga-

nizers and transcriptional repressors of homeotic genes.

Genes with analogous functions that are similar to

POLYCOMB are known in Arabidopsis (Goodrich et al.

1997).

Genome organization and expression analysis of the database-
matched random cDNA clones

A functional analysis of these cDNAs is necessary to provide

information on their roles in vivo. As a beginning towards

this analysis a few cDNAs were chosen for genomic charac-

terization by Southern analysis as well as for their RNA

expression analysis by Northern blots. Genes that were

predicted by sequence homology to belong to gene families

were found to be so by Southern analysis. For example, the

gene for ERD74 Ð a potential transcription factor with

EREB (ethylene response element binding) motif Ð is a

member of a rice gene family comprising at least six or

seven closely related members (®gure 1B), which were

detected even under highest stringency of hybridization.

Similarly, the LRR-repeat-containing factor encoded in the

cDNA ERD53 is a member of a gene family (®gure 1C). Yet

other cDNAs like the COP1 homologue (ERD6) appear to

be single copy in the rice genome (®gure 1A). A functional

analysis for single-copy genes can begin with the generation

and analysis of loss-of-function mutants and studies on the

effects of their ectopic expression. For those cDNAs that

belong to gene families functional analysis is not so

straightforward. In these latter cases, knowing their tissue-

speci®c and cell-type-speci®c expression pattern may

provide insights into their function. We therefore carried

out Northern blot analysis using speci®c cDNA probes and

total RNA from different parts of the adult plant, i.e. leaves,

leaf sheaths that enclose panicles, panicles at early and late

stages of development, ¯oral=spikelet outer nonreproduc-

tive whorls and ¯oral reproductive whorls. In addition,

young roots and shoots were taken from seedlings. mRNA

integrity and quantitation of the amount loaded was

determined by probing the same RNA samples for a known

rice gene encoding a ribosomal protein. These analyses

showed that some cDNAs are expressed at varying levels in

different aerial tissues of adult plants. The putative LRR-

domain-containing factor in ERD53 and the DNA-binding

protein in ERD57 are not expressed or are expressed at very

low levels in roots and shoots of young seedlings. They are

expressed poorly, if at all, in the ¯oral=spikelet organs

lemma, palea, stamens and carpels (®gure 2). They are

however expressed at varying levels in young leaf sheaths

and in the developing panicle rachis and branches (®gure 2).

Contrastingly, the transcripts from ERD74 with homology

to AP2 and ANT genes of Arabidopsis are expressed almost

constitutively and this is similar to the previously known

constitutive RNA expression of AP2 (Jofuku et al. 1994). It

is surmised that the ¯ower-speci®c phenotypes of ap2

mutants are brought about through post-transcriptional

regulation of AP2. ERD80, as predicted by its sequence

homology, is induced by abiotic salt stress (®gure 3). This

cDNA is expressed at very low constitutive levels in

Figure 1. Genomic organization of three randomly selected
cDNAs. Southern blot analysis of IR64 genomic DNA digested
with EcoRI, PstI or HindIII (abbreviated as E, P or H above the
respective lanes) was taken for probing. The DNA digests in panel
A were probed with the cDNA ERD6, those in panel B with the
cDNA ERD74, and those in panel C with the cDNA ERD53. The
migration positions of the marker DNA fragments from a � HindIII
digest are shown to the extreme left.
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seedling tissues as well as adult plant tissues. In seedlings

that have been subjected to salt stress the transcripts are

induced several fold. In yet other cDNAs where the

sequence analysis suggests homology to tissue-speci®c

factors of other plant systems, the expression pattern of

the rice cDNA is not differentially regulated in tissues tested

so far. For example, LRD7 is a cDNA with signi®cant homo-

logy to a suggested pollen-speci®c factor. Our data show

that it is expressed in rice stamens but it is also expressed at

high levels in branching panicles, leaves and leaf sheaths

(®gure 2). For some other cDNAs the RNA levels were

undetectable (data not shown).

Thus we have isolated a battery of rice genes that encode

products with sequence homology to structural proteins,

signalling molecules, transcription factors, and regulators of

gene expression, and yet others that encode currently un-

known factors. The characterization of their functions

would give clues on their precise in vivo roles. This is

feasible through the analysis of transgenic rice plants that

express these cDNAs either constitutively or express anti-

sense versions of these cDNAs to downregulate endogenous

gene expression. In addition, analysis of clones that are

apparently unique might lead to elucidation of new

functions for new classes of proteins. These studies are a

source for developmentally regulated promoters useful in

tissue-targeted expression of desirable foreign genes. Like-

wise, these cDNAs offer potential molecules for future

microarray analysis in genomic studies. In addition, once

mapped on the rice genome these clones could serve as start

points for studies of homologous genes in other cereal

genomes.
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