FT99AVNRAS, Z69C ~947B

Mon. Not. R. Astron. Soc. 269, 947-952 (1994)

The quasi-linear evolution of the density field in models of gravitational

instability

F.Bernardeau,'* T.P. Singh,? B. Banerjee? and S. M. Chitre?

! Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto M5S 1A7, Ontario, Canada
2 Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Accepted 1994 March 18. Received 1994 March 18; in original form 1993 November 30

ABSTRACT

Two quasi-linear approximations, the frozen-flow approximation (FFA) and the
frozen-potential approximation (FPA), have been proposed recently for studying the
evolution of a collisionless, self-gravitating fluid. In FFA it is assumed that the velocity
field remains unchanged from its value obtained from the linear theory, whereas in
FPA the same approximation is made for the gravitational potential. In this paper, we
compare these and the older Zel’dovich approximation by calculating the evolution of
the density in perturbation theory. In particular, we compute the skewness, including
the smoothing effects, and the kurtosis for FFA, FPA and the Zel’dovich approxi-
mation, and compare their relative accuracy.

Key words: galaxies: clustering — cosmology: theory - large-scale structure of

Universe.

1 INTRODUCTION

Large-scale structures observed today are believed to have
developed from small density fluctuations generated in the
early Universe. The growth of these fluctuations has been
studied by regarding the system to be a collisionless, self-
gravitating fluid. When the amplitudes of the fluctuations are
small, perturbation theory can be used to study the evolution
of the system. In particular, the growth rate of the rms fluctu-
ations can be described by the linearized equations of fluid
motion. When the fluctuations eventually become non-linear,
however, the perturbation theory is no longer accurate, and
N-body simulations have been widely used to overcome this
difficulty. The understanding of the physical processes that
take place in such a self-gravitating fluid necessitates, how-
ever, the use of analytical models and approximations that
can be more easily studied.

The best-known model for describing the mildly non-
linear evolution is that of Zel’dovich (1970) (see also Shan-
darin & Zel'dovich 1989). In this approximation the motion
of each particle is determined by its initial Lagrangian dis-
placement. Presentation of this approximation has been

made by Moutarde et al. (1991), Bouchet et al. (1992) and

Buchert (1992) in the frame of a Lagrangian description. The
evolution of the density field can be studied in this approxi-
mation until the formation of caustics, when this approach
breaks down. Recently, two new approximations have been
proposed, with the aim of improving upon the Zel'dovich
approximation — (1) the frozen-flow approximation (FFA)

* Address after 1/10/94: Service de Physique Théorique, CE
Saclay, 91191, Gif-sur-Yvette, France.

(Matarrese et al. 1992), and (2) the frozen-potential approxi-
mation (FPA) (Brainerd, Scherrer & Villumsen 1993; Bagla
& Padmanabhan 1994). In FFA the velocity flows are
‘frozen’ to their local initial linear values, and at any time the
velocity of each particle is the one associated to the point at
which it lies. The evolution of the density is then treated
exactly. In the second approximation, FPA, the gravitational
potential is ‘frozen’ at its linear value. That is, the Eulerian
potential is kept constant, and the particles obey the standard
Eulerian equations of motion in this potential.

All the three approximations mentioned above are natur-
ally consistent with the linear theory. However, beyond the
linear order the density evolution is different in each case. To
compare them we calculate, assuming Gaussian initial condi-
tions, the third- and fourth-order moments of density by
means of perturbation theory. We then compare the results
obtained for each of these approximations with those
obtained from perturbation theory using the exact dynamics.

In Section 2, we recall the basic equations of motion and
the calculations of the third and fourth moments of density
(Peebles 1980; Fry 1984; Grinstein & Wise 1987; Bouchet et
al. 1992; Bernardeau 1993) for the exact dynamics, as well
as for the Zel'dovich approximation. These computations are
repeated for FFA and FPA in Sections 3 and 4, respectively.
Throughout we assume an =1, spatially flat universe, so
that the scale factor evolves as a(¢) = ay(t/t,)*".

2 BASIC EQUATIONS

The evolution of a collisionless, self-gravitating fluid in an
expanding Robertson-Walker universe is described by the
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following equations in the Newtonian limit (Peebles 1980):

5+%V-[(1+6)v]=0, (1)

ﬁ+év+1[v-V] =—1V¢, (2)
a a a

V24 =4nGp,a?o. (3)

Here 6 =[p(x, £) — py(#)]/p,(?) is the enhancement of the true
density o(x, #) over the mean density p,(?), v is the proper
peculiar velocity, relative to the Hubble flow, and ¢(x, 7) is
the peculiar gravitational potential.

From these equations it follows that the density contrast
0(x, t) evolves according to the equation

a

=4J|:G,ob62+%V,-é-V,¢+%V,~V,[(1 +0)v'Y]. (4)

In the linear theory, all the terms on the right-hand side of (4)
are dropped, and 6=06")(x, ) has the solution 6)(x, f)=
A(x) D(2), with D(¢) < a(r) < £/ (growing mode) for Q =1.

It is convenient to define the potential A(x, ¢) through the
relation ¢=4nGp,aA, so that V2A= §. The peculiar velo-
city vV in the linear theory is

D
o= =2Vl (5)
where
1 , 6(x') ¢(l)
AVx)=-—|d& = .
(x) 4nJ o |lx—x'| 4nGpya’ (©)

The solution for ¢ in perturbation theory is obtained via the
perturbation expansion,

6= o", A=Y A", (7)
n=1 n=1

with respect to the initial Gaussian fluctuations, so that 6"
satisfies the equation (Fry 1984)

ey, 20 ¢
5<n)+7‘1 8" = 4G, o™

n-1
=2 |4nGp,06"6" M +4nGp,V,64V,A" P
k=1

1 i —=k)j 1 = -m)i_(n—k)j
+= VoW = 5 v v gtk miynhi (g)
a m=1
The derivation of the behaviour of the first cumulants of
the density distribution at large scale can be done assuming

Gaussian initial conditions. It can be shown that, in general
(Goroff et al. 1986; Bernardeau 1992),

(7). =S,(6%)r7", (9)

where S, is a coefficient that depends weakly on the cosmo-
logical parameters. Moreover, when the smoothing effects

are neglected, these coefficients are independent of the shape
of the power spectrum. Bernardeau (1992) gives a method to
derive the whole series of the coefficients for the exact
dynamics, but we consider here only the first two coeffi-
cients, S; and S,.

Let us first recall the principle of the calculation of S, and
S, for the exact dynamics. The derivation of the skewness of
the distribution function requires the calculation of the
density contrast at second order, 82\ It is obtained by setting
n=2 in equation (8):

5(2)4_%:} 89— 4 Gpyo?

1 o
=4nGp,[6"? +Vi6(')V,~A")]+—2 V,»V,«[v‘”'v“)’].
a

The solution for the growing mode is

62 =36112+ 6'VAT +3A02. (10)
Using this solution, it is straightforward to calculate the
skewness S;=(6°)/(6?%)?, which to the lowest order is
3(0122))/(612)2=34/7 (Peebles 1980).

The calculation of the fourth cumulant involves the
knowledge of the density field at the third order in pertur-
bative calculation. It can be shown that the coefficient S, can
be written (Fry 1984; Bernardeau 1992) as S, =12R,+4R,,
where

R,=4{5125(2)2)/( §1)2)3 (11)
and
Rb=<6“)36(3)>/<(5“)2>3. (12)

The value of R, can be easily obtained from equation (10);
thus R,=(34/21)>=2.62. The third-order term of the den-
sity contrast, 6!¥, can be calculated more easily in Fourier
space, by first defining

5(k)=%/ J'd3x6(x) e (13)

and similar transforms for v and A. Equation (8) for n=3
then gives a solution for §'¥, which can be used to show that
R,=682/189=3.61, and that S,=45.88 (see Fry 1984;
Bernardeau 1992).

These results, however, concern the behaviour of the
cumulants at a given point. When the field is filtered at a
given scale, the values of S; and S, have to be changed. We
recall here the results obtained for a top-hat window function
(Bernardeau 1993; Juszkiewicz, Bouchet & Colombi 1993).
They read:

34
S;=—+mp (14)
7
and
60712 62 7 , 2
=———+—y+t-yit+t= 15
4 1323 371 3}’1 37’2, (15)
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where y, and ¥, are the first two logarithmic derivatives of
the variance with scale,

_dlog(62>
""" qlogR (16)
_d’log(é?)
= dlogR (17)

The derivation of these smoothing effects is based on geo-
metrical properties of the top-hat window function given by
Bernardeau (1993).

For the Zel'dovich approximation, the behaviour of the
cumulants at large scale is similar to the one encountered in
the real dynamics, but the coefficients S, are slightly changed
due to the approximation that is made (Grinstein & Wise
1987). Recently, Bernardeau (1993) has derived the expres-
sion of the coefficients S; and S, when a top-hat filter is
applied to the density field:

Stl=4+y, (18)
272 50 7 2
SZd=""C4 Ty =yl y,.
4 9 3 Y1 3 Y1 3 Y2 (19)

This quantitative change of the large-scale cumulants is
general for any approximative dynamics starting with Gaus-
sian initial conditions. The coefficients S, then turn out to be
a good tool to test the various approximations with each
other by comparing the values of these coefficients. In the
next sections, we will generalize the results obtained for the
Zel'dovich approximation to the frozen-flow and the frozen-
potential approximations.

3 THE FROZEN-FLOW APPROXIMATION

The frozen-flow approximation (FFA), which was proposed
by Matarrese et al. (1992), is best defined using slightly dif-
ferent variables from those in equations (1)—(3). Usmg the
scale factor a as the time variable, define the comoving pecu-
liar velocity u=dx/da=v/ad, n=1+3, yp=(3t}/2a3)4,
where a(t) = a,(t/t,)*". Equations (1)-(3) then reduce to

d

Sl yv-u=0, (20)
da

du 3 3

—+—u=——-YV 21
da 2a" 2a v (21)
Viy=9d/a, (22)

where d/da=0/da +u-V.

FFA is defined by assuming that the velocity field u is
steady: Ou/0a=0; that is, stream lines are frozen to their
initial shape. The frozen value of u would then be the con-
stant value it has in the linear theory:

uppa(X) = =V n(x). (23)

[This, of course, implies that v =wv,y=2'"), as given by equa-
tion (5).] The ugp, of equation (23) is a solution of the Euler
equation (21), provided v is approximated to be

YeralX, £) =Yun— g (VWLIN)Z' (24)
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In the notation of equations (1)-(3), FFA corresponds to

V=0, Prra= ¢“) ( )[V¢(1
=¢l pra [VA ]

=¢"+ ¢‘2’. (25)
The form of ¢!? implies that it is second-order in pertur-
bation, but it is not the same as the second-order potential in
true non-linear evolution. To study the density evolution in
FFA, we first note that equations (1)-(3) give

6+—6—l2

(1+9) V2¢+% Vd-V¢+% V.V [(1+6)viv].
(26)

Here we substitute for v as v, and for ¢ as @egs . Next, we
implement the perturbation expansion of equation (7) to get
the following equation for 6

2a
a

5(2) 6(2 V2¢(2)

1 1 .
=4nGp, 0" = Vé“)-V¢(”+? vV (27)

This equation has the solution
O =3012+58WAN), (28)

which should be compared with the 6% for the true evolu-
tion, in equation (10). From here, it is straightforward to
carry through the calculation of skewness as in Peebles
(1980, section 18), since the only change in the solution 6%
is that in the coefficients. The result is S§F4= 3, as compared
to the true value of 34/7. The smoothing effects on S, can be
easily calculated, and the final result for a top-hat window
function reads:

"1

SEFA=3+7
27

(29)

To obtain S, in FFA, we first find R, from equation (11) by
substituting the solution 6{3, . This gives, upon angle averag-
ing, as in Fry (1984), R,=1.0. From (26), the equation for
6% in FFA reads:

5‘3)+27d6(3) L 1629240+ 60y 242

+ V6P v+ V81 V42
a

+ L Vv 600, (30)
a

Before doing the Fourier transform, we note that

Vg = —%ﬁ Gpya*(VA"-V) VA", (31)
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22 _ 8¢ 2 A1 4 AUAD )
Vigh= =% Goya®{al}8!) + AL (32)
Using the transform (13) and its inverse,

|4
(2m)’

o(x)= Jd3k5( k) e (33)

the Fourier transform of a product can be written as a con-
volution (Fry 1984):

FT{F,(x) " Fp(x)}

1 [dh dky
_VNJ @2n)  (2x) [Vao(z" k”F (Key) -+ Fy(key)
=FxeoxFy, 4)

When applied to equation (30) for 63, , this gives

Sy 24 89 =4xGp, [5<2>* 5(1)_§
a

(35)

The solution can be written down in analogy with equation
(46) of Fry (1984), so we do not put it down explicitly, except
to note that now 53:1% of equation (28) should be used. Using
this 6'¥ and carrying out angular averaging as in Fry’s paper,
we obtain R, = 1, and hence

SFFA= 16, (36)

The derivation of the smoothing effects for S, is slightly more
complicated and will not be given.

4 THE FROZEN-POTENTIAL
APPROXIMATION

The frozen-potential approximation (FPA) was proposed by
Brainerd et al. (1993) and by Bagla & Padmanabhan (1994).
FPA is defined by keeping the potential ¢ constant at its
value ¢''(x) in the linear theory, so that ¢(*) and higher terms
in the perturbation expansion of ¢ are set to zero. However,
unlike in FFA, v is not approximated, but is to be obtained
from the Euler equation (2) with ¢(x, £)=¢!)x). Thus equa-
tion (26) for the evolution of density, when written for the
case of FPA, becomes

c 2 1 s 1 "
+55 8= (1+06)V2gV+ 5 V6V
S+ 8="3(1+8)Vigl+— ¢

+;1—2 VV(1+8)viv]. (37)

Using the perturbation expansion (7), the equation for 62 is
found to be

3(2)+27¢1 5‘2)=4npr6“)2+%Vé(”'v¢(')

1 P
t VA7 AT (38)
The solution is
57=2 w24 L p0alyd A2 (39)
2 10 5 v

as contrasted to the true 6% in equation (10), and 63, in
equation (28). Once again, the skewness is easy to work out,
following Peebles (1980), and the result is S§P4=17/5. The
derivation of the smoothing effects gives

17 7
SiA=—r— . 40
3 5 10 Y1 ( )

The calculation of the kurtosis of the dens1ty fleld can be
done as usual. Substitution of this expression for 6 in (11)
and application of angle averaging as before gives R,=
(17/15)*=1.28. The equation for 6!*) in FPA is

s 24 5(3)=4npr6“)6(2’+;1§ Vot + L, vy,
a a

X [§VpWipli 4 pViy(2 4 iy, (41)

as contrasted to the equation (30) for 63, . Here 6@ is the
FPA solution, equation (39), and the solution for v'? can be
found from the continuity equation to be

v, = =3, VA, — M), (42)

Equatlon (41) is a special case of the equation for the true
0%, and has been obtained simply by setting ¢P=0. It is
thus easier to handle than the equation for 6{%, . Carrying
out the Fourier transform and angular averaging precisely as
in Fry (1984), we obtain Ry =457/315=1.45, and hence

SEPA=2122. (43)

5 CONCLUSIONS

In Table 1, we display the leading-order mean values of
the third and fourth moments for the true and approximate
evolution. For the third moment, the smoothing correc-
tions for a top-hat window function are included (n+3 =
—dlog(6%)/dlogR).

Table 1. Third and fourth moments of density.

Third moment, S3 Fourth moment, S

True evolution 4.86 — (n +3) 45.88
Zel'dovich 4.00 — (n + 3) 30.22
Frozen potential 3.40 - 0.7 (n +3) 21.22
Frozen flow 3.00 - 0.5 (n +3) 16.00
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At this stage it is useful to compare the second-order solu-
tion for the density field in various approximations. For the
Zel'dovich case, the second-order solution is given by
(Bouchet et al. 1991)

1
0%=2 0"+ 6N+ ALY (44)

A

N =

while the second-order solutions for FFA and FPA are given
by equations (28) and (39), respectively. It should be noted
that the same terms appear in the three approximations, but
the coefficients are, of course, different. The coefficients in
the Zel'dovich case are the closest to the true density evolu-
tion, followed by FPA and then FFA, and this feature is
clearly reflected in the respective values for the skewness. It
is instructive to enquire why these approximations under-
estimate such a quantity. The skewness may be seen as a
measure of the ability of the system to create more rare over-
dense spots compared to underdense spots. Early non-
linearities tend to increase the growth rate of the positive
fluctuations and decrease that of the negative fluctuations.
The skewness is sensitive to this asymmetry. On the other
hand, the kurtosis measures the ability of the system to create
rare spots of any kind. This view finds support in the relation
between the spherical collapse dynamics and the values of
the skewness and the kurtosis (see Bernardeau 1992, 1993).
As can be seen from the work of Matarrese et al. (1992), the
FFA is less accurate than the Zel'dovich approximation (and
the real dynamics) for the spherical collapse: the acceleration
is too weak to concentrate the matter efficiently. That leads
directly to a smaller skewness, which is again borne out by
the result on the kurtosis.

When the smoothing effects are taken into account, how-
ever, results for the skewness seem to attenuate these effects.
Taking the results at face value, we could summarize them by
saying that, in the regime in which perturbation theory is
valid, the unsmoothed Zel’dovich approximation performs
better than FFA and FPA. However, smoothing improves
both FFA and FPA; in the circumstance when the spectral
index n is greater than —1, both FFA and FPA perform
better than the Zel'dovich approximation. For the particular
case n= —1, the Zel'dovich approximation, FFA and FPA
all give the same result, S;=2 (instead of the exact value
S;=2.86). Actually, the smoothing corrections are sensitive
to the tidal effects in the density field, as they arise from the
term 6!YA'}), and only the Zel'dovich approximation gives
the right coefficient for this term. The other two approxi-
mations underestimate the tidal effects, with FFA even failing
to give a term containing a quadrupole contribution (in
AWAWY). This is a major consideration for a practical use of
these approximations. The disruption of objects, for
instance, is expected to be less accurate in FFA or FPA than
in the real dynamics.

How do our results compare with those from simulations
using N-body, and those based on FFA and FPA? (For simu-
lations, see Matarrese et al. 1992; Brainerd et al. 1993;
Melott et al. 1994; Bagla & Padmanabhan 1994). FFA
and FPA were developed to improve upon the Zel'dovich
approximation at about the time of shell-crossing and
thereafter. FFA was proposed to improve the Zel'dovich
approximation by avoiding shell-crossing, while FPA
attempts to improve upon FFA and the Zel'dovich approxi-
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mation, by keeping only the potential linear, but evolving
both density and velocity exactly (with the allowance for shell-
crossing). A visual comparison of N-body numerical results
with simulations based on the Zel'dovich approximation,
FFA and FPA suggests that FPA does better than FFA, and
they both do better than the Zel'dovich approximation, by
preventing the thickening of pancakes. This is supported by
some, though not all, statistical tests. In particular, Brainerd
et al. (1993) report that, in a cross-correlation test, the
Zeldovich approximation, in fact, does better than FPA,
while Melott et al. (1994) report that FFA does poorly in
cross-correlation with N-body. The smoothing, however,
improves FFA and FPA in comparison with the Zel’dovich
approximation. Our analysis of the accuracy of FFA and FPA
is naturally incomplete, since we use perturbation theory,
which is evidently valid only when the density fluctuations
are small. In particular, the S; and S, parameters are given in
the low o limit. For the exact dynamics, numerical simula-
tions indicate that these parameters seem to be nearly o-
independent in the quasi-linear regime (Bernardeau &
Kofman 1994). This gives a strong motivation for such
calculations. However, for the Zel'dovich approximation
the S, and S, parameters are shown to have a strong
o-dependence even in the quasi-linear regime (Bernardeau
& Kofman). This result can be derived from the density
probability distribution function given by Kofman et al.
(1994). Our theoretical results for the approximate dynamics
then do not necessarily contradict the numerical measure-
ments of the skewness or the kurtosis, since they are
made for quite high values of o. In any case, our results sug-
gest that FFA and FPA are only partially successful in their
aim, and the quasi-linear regime is rather poorly described
by these approximations. Thus, while the simulations and
our analytical results are two different ways of testing various
approximations, both the means indicate the need for a more
careful comparison, before FFA and FPA can be usefully
adopted as improvements over the Zel'dovich approxima-
tion. These approximations might, of course, be interesting
for analytical studies, but one should generally exercise
caution in their use.

Recently, Munshi & Starobinsky (1994) have also carried
out a comparison of Zel’dovich approximation with FFA and
FPA in perturbation theory, and have arrived at results simi-
lar to ours.
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