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A generalized Schridinger formalism as a Hilbert space
representation of a generalized Liouville equation
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Abstract. A generalized Schridinger formalism has been presented which is obtained as a Hilbert
space representation of a Liouville equation generalized to include the action as a dynamical
variable, in addition to the positions and the momenta. This formalism applied to a classical
mechanical system had been shown to yield a similar set of Schrodinger like equations for
the classical dynamical system of charged particles in a magnetic field. The novel quantum-like
predictions for this classical mechanical system have been experimentally demonstrated and the
results are presented.
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1. Introduction

Quantum mechanics has, since its advent, revealed itself to be as enigmatic as it is novel.
While it is a more general theory, supposed to be containing classical mechanics as a
limit, it is not just a generalization of the latter, but represents a fundamentally distinct
theory and indeed a paradigm shift from the conceptual framework of classical
mechanics.

Attempts have continued since the inception of QM to forge a conceptual unity and
continuity between the two theories through a possible unifying covering formalism. The
present author has been concerned with the development of such a formalism for a
number of years. Clearly, the most distinctive feature of quantum mechanics is the
probability amplitude nature of its description and the interference effects resulting
therefrom.

While there is obviously a genetic relationship between classical and quantum
mechanics, there exist differences in their mathematical form and content which
makes them appear so distinct from each other. Classical mechanics, for example,
admits the whole continuum of initial values and the resulting dynamical states as
‘allowed states’, which are propagated as allowed states by the equation of motion.
Quantum mechanics, by contrast, being a boundary value theory, permits, for a bounded
system, only a discrete set of states of motion determined by the boundary conditions.
Quantum mechanical states are thus determined by a set of global constraints (boundary
conditions), while there are no such constraints for a classical mechanical system: A
classical particle is not affected by a distant boundary, and represents only a local
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evolution. One may, therefore, ask the question whether classical and quantum
mechanics may be regarded as two different manifestations of the same underlying
dynamics, described by the two different mathematical representations: global vs.
local.

There are two crucial facts about QM that need to be recalled. One, that it bears a
close relationship with the Hamilton-Jacobi formalism of classical mechanics. The
second one is that it is a probabilistic theory and ought to have its origin in a probabilistic
framework. In classical statistical mechanics, the probability arises, from a lack of
knowledge about the initial data. While the orthodox (Copenhagen) point of view ordains
that quantum mechanics is intrinsically probabilistic, it has also been argued that the
probability may be considered to arise because of a lack of knowledge about certain
‘hidden variables’ which when specified could make an event deterministic. We shall
make two stipulations. One, that the probability in QM has the same origin as in classical
statistical mechanics. Second, that the quantum events can be described by a classical
Liouville equation, but in a suitably generalized form. To see the manner in which it is
generalized we consider here in § 2 the Hamilton-Jacobi formalism via the theory of first
order partial differential equation. In § 3, we give the generalized Liouville equation and
in §4 a generalized Schrodinger theory is obtained as a Hilbert space representation of the
former. It will be seen that this formalism covers both classical and quantum mechanics
suitably,

A fascinating consequence of this formalism, namely, obtaining Schrodinger theory
as a Hilbert space representation of the classical (generalized) equation, is that this
may be applied to a suitably defined classical mechanical system as well. This
means that the particular classical mechanical system would be predicted to exhibit
properties characteristic of a probability amplitude description. This would appear
to be quite heretical. The interesting fact, however, is that such a classical mechanical
system had indeed been identified by the present author more than two decades ago
and a set of Schrodinger-like equations were obtained then (through a heuristic
derivation) [1]. Later they were derived as a Hilbert space representation of the
Liouville equation for the system [2]. Its quantum-like observable consequences
have indeed been observed over the years. Some of these observed effects will be
presented in §4. In some sense these results are more fascinating than the derivation of
the quantum mechanic Schridinger equation, because they are something entirely
new and unexpected and, in fact, cannot be understood in the framework of the
standard classical mechanical paradigm. If the latter is indeed the case, as it seems to
be, then we have an entirely new physics in the classical mechanical domain of
parameters: What it means is that the standard classical mechanical paradigm need to
be supplemented by constraints delimiting the allowed values of the initial conditions,
It may be emphasized here that the predictions and subsequent observations of a set
of entirely new phenomena which cannot be understood even post-facto in terms of
the standard classical mechanical paradigm in whose domain they fall, do testify to
the physical significance and reality of the Schrodinger-like description which led
to these predictions. This may also serve as a validation of the procedure for obtain-

ing the quantum mechanic Schrédinger formalism on a Hilbert Space representation

of a generalized Liouville equation which has been presented here and elsewhere
earlier [3,4].
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2. The Hamilton—Jacobi formalism and a generalized Liouville equation in an
extended phase space

The standard manner of arriving at the Hamilton-Jacobi formalism given in most
standard text books on classical mechanics is via the canonical transformation. A
generating function S which makes the new canonically transformed Hamiltonian vanish
is essentially the Hamilton principal function and the defining equation for the new
Hamiltonian is the Hamilton-Jacobi equation.

Following Courant and Hilbert [5] (for example) we introduce the Hamilton-Jacobi
equation as a first order partial differential equation, whose characteristics are the
Hamilton equation of motion. Thus, consider a partial differential equation of the form

F(Xl)X%XNvt,S;PlaP% vee >pN)pt)
=D +H(X1:X21'- -aXNat;p]aPQa" ‘1PN) = Oa

(1)

where

oS 08

pi= c’)_X,-’ Pt = ot
and where to correspond to the H-J equation, F has been taken to be independent of S,
and the dependence on p; to be linear.
With the above first order partial differential equation F =0, one associates the
following system of ordinary differential equations for the (2N +1) functions
(Xi,p; = 0S/0X;, §) of a parameter T,

& _OF _OH dt_OF _

_—_——= _—= = 2’
dr ~ Op; Op;' dr Op, ' (22)
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where L is the Lagrangian. This system is referred to as the system of ‘characteristic
differential equations’ belonging to the partial differential equation (1). Using the
equation dt/dr = 1, the two sets of these equations (2a) and (2b) will be recognized as
the Hamilton equations with H as the Hamiltonian function, while (2c) gives the time rate
of change of the action S as the Lagrangian on the right. The partial differential equation
(the H-J equation) and characteristic equations are thus equivalent to each other. It is this
equivalence which was exploited by Jacobi to formulate his theory.

There is an advantage in the above manner of introduction of the H-J equation. It leads
naturally to a complete set of characteristic equations: In addition to the standard
Hamilton equations (2a) and (2b) one also finds eq. (2c), as one of the characteristic
equations. This provides a basis for augmenting the phase space of a dynamical system,
and writing down a generalized Liouville equation. As we shall see later, a Hilbert space
representation of this generalized Liouville equation yields a generalized Schrédinger
theory.
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The set of ‘characteristic differential equations’ (2a,b,c) for the quantities (X;, p;, )

define trajectories in the space of the (2N +1) variables. One can then construct a’

(2N + 1) dimensional phase space corresponding to these variables and a probability
(phase) function f(X;,p;,S) defined over this phase space. (Usually one defines a phase
space of the 2N variables (X; p;). But we include here also the variable S to correspond to
the (2N +1) characteristic equations (2a,b,c).} The ‘equation of comtinuity’ for
F(Xi,p;,S) can then be written down as

. a .
%ntzia%(&f%r;%(ﬁff)-l-gg(sf)=0- ®)

Using the expressions (2a) and (2b) for X; and p; and the fact that S=Lis independent of
S, so that S/0S = 0, eq. (3) becomes

of 0H of OH of of
= — ——+L =0 4

BITZBPE BX[-I-ZaXl 8pi+ s ( )
This is a generalization of the classical Liouville equation, in the extended phase space of
(X, pi, S) resulting in the inclusion of the last term, Ldf/8S. This, as usual, describes the
conservation of the probability measure along the characteristics described by (2a,b,c).
The underlying dynamics is, of course, the classical Hamiltonian flow. Since all the
‘flow’ components (0H/0p;, ~6H [0X;,L) are independent of S, an integration with
respect to § yields the standard classical Liouville equation

of OHOf OHOf

q,ong i, .

ot Bpi BX, 5Xi Bpi

with

f=/de. (6)

2.1 Classical analogue of the state of motion in quantum mechanics

Dirac, as the readers would already know, was quite occupied with the question of the
nature of relationship between classical and quantum mechanics, and with the question of
classical analogues of quantum objects. In his 1933 paper [6], for example, he very
beautifully elucidated the role of classical Lagrangian in quantum mechanics, which later
culminated into the path integral formulation at the hands of Feynman [7). Another
important remark, made by Dirac [8] was in relation to the significance of the Hamilton
principal function as a solution of the Hamilton-Jacobi equation. A principal function,
satisfying the Hamilton-Jacobi equation, defines a ‘family’ [11]. “The family does not
have any significance from the point of view of Newtonian mechanics; but it is a family
which corresponds to one state of motion in the quantum theory, so presumably the
family has some deep significance in nature, not yet properly understood” (quoted from
Dirac [8]).
Coming to the generalized Liouville equation (4) the Liouville density function f can
be any function of X;,p; and S, which solves (4). In my earlier papers, however, f was
chosen to be a §-function in all the initial momenta including the global integrals of
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motion. This was done to make the distribution f correspond closely to a quantum state
where the momenta (in terms of which the distribution is a §-function) represent integrals
of motion with respect to which the state is prepared. I was not aware of Dirac’s remarks
then, but it turns out that such a distribution represents what Dirac has called a ‘family’,
defined by a principal function, and which according to him corresponds to one state of
motion in the quantum theory.

In accordance with the above considerations, f is regarded as a function of the initial
momenta values o, rather than of the current momenta p;. Equation (4) is then trans-
formed accordingly (from the current momenta p; to the initial momenta o). This yields

L L ™)
ot 0X; nod
where now f = f (X;, ®, t; o;) and w; is not to be regarded as independent of the X;, but as
a function of the X; and the oy, while the o; appear as parameters in the argument of 7.
Here, we have also introduced a constant 7 of the dimensions of action to non-
dimensionalize the action S, so that

S = nd (8)

or to measure S in units of 7). ® is then a dimensionless quantity which may be termed as
‘action-phase’. The meaning of f is then also analogous to the meaning of probability in
quantum mechanics: f gives the probability of finding the system at X; at time ¢ with a
given value of S, if it had initially the momenta a;.

2.2 A Hilbert-space representation

Equation (7) with the definition (8) and the underlying characteristic equations (2a,b,c), it
may be recalled, are essentially the equations representing classical dynamics, though the
Liouville equation has been generalized to include a term corresponding to the action
variable §. It may be recalled that eq. (5) for #, the action averaged distribution is
essentially the classical Liouville equation. One seeks a Hilbert space representation of
eq. (7) and writes accordingly: '

f=v ©)
where 1) is a real quantity (one could let 4 be complex and write f = 1*, but there is no

loss of generality if 1 is taken to be real). Next a finite time representation of eq. (7) is
written as

t
F(X:, @, 1 0) =f[Xi —/ i (X3 (t"), o) dt”
t/

i3
@—%/ L(X,-(t”),vi(t”)),dt”,t’,ai}. (10)
F4 '

Using (9) and taking the square root of (10), choosing the position sign at all space-time
points:

t t
w(Xi,@,t;a,-)=1/)<X,-—/ v,-(t”)dt”,@—%/ Ldt”,t’,ai>. (11)
¥ t
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1 shall not repeat the procedure given elsewhere [3, 4] which yields, starting from (11), a
generalized set of Schrodinger equations
in0¥(m) (A

2
1 2 =
—;I-—BT—._——<;) —?‘;V \I/(n)-{—V‘I’(I’L), h= 1‘72,37--- (12}

with the total probability density
G(X, )=y V(m)¥(n). (13)

It is, however, pertinent to point out some crucial steps, which represent a point of
departure from classical mechanics and which lead to the above set of Schrodinger
equations.

The first is clearly the generalization of the Liouville equation to include the action S
as a variable. However, as the action-averaged Liouville equation (5) (which is the
standard classical Liouville equation) shows, the classical mechanics is clearly contained
in (4).

The second step is the eq. (9) writing f =4 seeking a Hilbert space representation of
eq. (7). While it may be an unusual proposition to seek a Hilbert space representation of
(7), clearly this by itself could not make it depart in its content fro;n that of classical
mechanics, for one could in principle solve for ¢ and reconstruct f=1? and action-
average it to obtain the classical distribution f.

The third step is the assumption of 1) being periodic in @ = S/n with the.period 2. It
is this assumption (where n is identified with %) which enable v to be Fourier-
decomposed as a series (rather than an integral) and the subsequent procedure to be
followed leading up to the derivation of the Schrodinger equations which are second
order in space. One should follow the derivation closely to see how the second order
operator V2 arises. It is clear that this operator could not have arisen if the action § were
not included as a variable.

The important consequence of this structure (second order differential operator) is that
the functions ¥(n) of eq. (12) should be specified through appropriate boundary condi-
tions. This amounts, apart from other consequences, to delimiting the allowed values of
certain integrals of motion to a discrete set — that is, to ‘quantization’.

It ought to be pointed out that this particular derivation yields a generalized formalism
in the form of an infinite set of Schridinger equations [12] with (fi/n), n=1,2,3...in
the place of /i and a correspondingly generalized probability connection (13). Some of the
direct observable consequences of these additional modes n=2,3,... have been
discussed in ref. [4]. They have not been so far identified nor has there been any attempt
made to check their existence experimentally.

3. A classical mechanical system with the Schrodinger-like description

There is nothing special in the procedure given above (where we obtained the
Schridinger-like description as a Hilbert space representation of the Liouville equation)
which could not be applied to any suitable classical mechanical system. As pointed
out above perhaps the most important step where the quantization really came in was
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the assumption of periodicity of 1) with respect to (= S/k) with the period 27. What
is, of course, required for the classical mechanical system is the justification of
periodicity with respect to the action phase and the identification of an appropriate
unit of action (analogous to /) belonging to the system in terms of which to define the
latter. ‘

Such a classical mechanical system was identified by the present author more than
two decades back [1]. The dynamical system of charged particles in a magnetic field
is such a system. The action in the system which can serve as a unit is the gyroaction
p=1m? /Q, where v, is the component of velocity perpendicular to the magnetic
field at the point of injection and ) = eB/mc is the gyro-frequency also at the
point of injection, so that y is essentially an initial value which is an exact constant of
motion.

The Liouville equation for the system is given by

of of of
8t+v % Qa¢-0, (14)
where ¢ is the gyro-phase.

Transforming the equation to momenta initial values: the total energy E, the canonical
angular momentum Py, and the gyro-action K, as well as transforming ¢ to the action
phase

(D—l/zl 2dtl+¢
“u 2 ™Y

t
= % / d¢ (%mvﬁ - pﬂ) (13)
0

= SA/,uv

where S, is the time integral of the adiabatic Lagrangian 1, = (%mvﬁ — u(2), one
obtains

of of Lo
5;+U||3—X”-+N55—-0. (16)

This equation has a structure similar to that of eq. (7) except that y takes the place of n
(later identified as 7). A Hilbert space representation of this equation which can be sought
without any prejudice to QM, yields in a similar manner, the following set of
Schrédinger-like equations:

i 0U(n) __ (u/m) i)

n Ot 2m BXﬁ

+ () ¥(n),n=1,2,3,... (17)

again with the total probability density

G(Xy,1) =Y ¥ (n)¥(n). (18)
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The periodicity of 9 = +/f with respect to ® which is crucial for obtaining the
Schrodinger-like equation (17) is guaranteed through the periodicity with respect to ¢
(the gyro-phase) which is an additive part of @ as per eq. (15).

It may be mentioned that (u(2) which appears in the place of ‘potential’ is in fact the
adiabatic potential which describes the effective parallel motion along the magnetic field
through the equation of motion (in the adiabatic approximation)

d
m-é%tl: ~VN(/,LQ). (19)

4. Quantum-like consequences for the classical mechanical system

Even though the above mentioned dynamical system of charged particles in a magnetic
field is a classical mechanical one with macroscopic dimension, the above amplitude
description governed by the Schrodinger-like equations (18) entails that this system
exhibits quantum-like properties for the ensemble of trajectories (the coherent set of
trajectories, 4 la Synge [9] or a “family’ 4 la Dirac [8]), for which these equations are
obtained. Whether this is indeed the case can be ascertained only through appropriate
experimentation. Two kinds of predictions were identified for experimental verification.

4.1 Existence of multiplicity of residence times in an adiabatic trap

One relates to the residence times of charged particles trapped in an adiabatic potential
well as described by the adiabatic equation of motion (19). Charged particles can be
confined in a well of the potential 1€, if the total energy E of the particle is E < (),
But the trapping is not for ever, because the equation of motion (19) which describes this
trapping is only an approximate equation. Particles so trapped have indeed been found
experimentally to have leaked out of the trap, with characteristic residence times. No
satisfactory theory for the determination of these residence life-times existed when these
experimental results were reported during 1968-1969. The Schrodinger-like equations
(17) along with (18), which were first given by the author in 1971 as a possible
description of the leakage of particles, afforded the possibility of determining the life
times through a quantum-tunneling like process. Leaving aside for the moment the
question of the interpretation of the amplitude functions ¥(n) vis-a-vis the quantum
mechanics Schrédinger wave functions, what is different here from the standard quantum
formalism is that we have here not one but a set of equations for the ¥(n) with
n=1,2,3.... This, as already pointed out, is also true of the generalized Schrodinger
formalism for quantum mechanics as contained in the set of equations (12) and (13).
Correspondingly, one predicts here the existence of a multiplicity of residence times as
determined by the equations corresponding ton = 1,2,3 ..., for the injection of particles
with the same energy and the pitch angle. It should, perhaps, be pointed out that no
predictions of this kind were available based on the standard approach.

Such multiplicity of residence times were indeed found experimentally in a series of
experiments carried out at the Physical Research Laboratory [10a,b,c]. Upto three
distinct times were identified, and were found to correspond to the modes n =1,2,3 in
their dependence on the magnetic field strength for a given energy E and the pitch angle
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of injection §. The experimental identification of these modes n = 1,2,3 through the
existence of the corresponding residence times then constitutes a validation of the
Schrédinger-like description. It may also be mentioned that so far no way has been found
in terms of the standard approach to the problem to describe these multiplicities of
residence times.

4.2 Existence of discrete allowed and forbidden states in the macro-domain

The other kind of prediction refers to the wave-like manifestations of the charged particle
dynamics in the macro domain, that is the dimensions of tens of centimeters. Such
manifestations follow from the wave nature of the Schrddinger-like equations, which
include the existence of interference effects and consequent discrete allowed and
forbidden energy states in the classical domain of parameters. Astonishing as it may seem
such non-Planckian discrete energy states mave indeed been observed in recent
experiments, as will be described below.

These observations appear to be in manifest violation of the Lorentz equation of
motion — initial value paradigm since the latter permits all the continuum of initial values
and hence energies. As a matter of fact, the observations demonstrate in conformity with
the predictions of the theory, a kind of wave-like nonlocality whereby the relative
separation between the discrete states depends on the distance between the electron
source — the electron gun, and the detector. Such a distance dependence is quite
characteristic of the quantum behaviour, but is completely inexplicable in terms of the
standard paradigm, whereby the entire continuum of initial values are allowed values and
which takes no cognizance of the distant boundaries.

It seems therefore, that an electron moving in a magnetic field exhibits a wave-like
behaviour even in macroscopic dimensions very much like the wave nature of electron in
micro-dimensions (de Broglie wave). Such a behaviour follows from the set of
Schrodinger-like equations obtained for the system.

What is then the resolution of the apparent paradox? The Lorentz equation is certainly
not wrong. But the experiments, on the other hand, cannot be explained in terms of the
standard paradigm, but appear to conform to the Schrodinger-like description.

The resolution of the parodox appears to consist in the realization that the standard
paradigm of classical mechanics represents a purely ‘local’ evolution. That is, the
trajectory evolution at a given time ¢ is determined entirely by the value of the field of
force at the position of the particle at that time, that is ‘locally’. The Schridinger-like
equation on the other hand, seems to provide a global description of the same dynamics.
Such a global description takes cognizance of the distant boundaries. As a consequence
certain energy values (as initial conditions) are found to be disallowed, as deduced from
the theory and verified experimentally. The allowed values on the other hand, could well
propagate according to the Lorentz equation of motion. If this point of view is taken ’
there need not be any violation of the Lorentz equation, but only of the paradigm that all
the continuum of initial values are the allowed values in the classical mechanical
formalism.

It may not be possible for reasons of space to present here the derivation of the formula
giving the discrete allowed states in terms of a ‘quantum number’. If we consider only the
function ¥(1) for n= 1, corresponding to an electron beam from an electron gun
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propagating along a magnetic field, then it has been shown (Varma [11]) that the
probability density of finding the electrons on a grounded detector after propagating a
distance D along the field is given by

T = Z %EJF Z 2R(K, k) sin [QTD— + ¢], (20)
k k

Y
where v is the ‘parallel’” velocity
vy = 2(E — uf)/m]' 2. (21)

We see that this expression has an oscillating term (the second term) (over the mean first
term) which oscillates with the magnetic field B, with the energy E, and the distance
traversed D individually with the other parameters remaining constant. The oscillating
term is a consequence of the interference effects. The minima in the expression of ¥*¥
are interpreted as ‘forbidden states’ of the charged particles in a magnetic field. The
energies of the ‘forbidden states’ are given by

;= im(QD /20 + ¢y/207, (22)

where j denotes the ‘quantum number’ labelling the forbidden energy states E; with ¢;
being the phase shift.

As is clear from the expression (22) for the ‘forbidden energies’, they are seen to be
determined, very astonishingly, by the distance D over which the electrons travel from the
gun to the detector. This is quite astonishing from the point of view of the standard
paradigm of classical mechanics. For, the dependence on D signifies a kind of wave-like
nonlocality while classical mechanics is known to be a local theory. The predictions
contained in this relation were subjected to experimental scrutiny at the Physical

Research Laboratoy. We describe below an experiment reported earlier [12(a, b)] to check
these predictions.

5. The experiment and its results

An electron beam of very low intensity (< 0.1pA) is injected from an electron gun
along a magnetic field ( ~200-300 gauss) in an SS vacuum chamber of 27cm dia-
meter evacuated to ~ 5.107 torr, and is received at a detector (Faraday cup) at a
distance (L ~20cm) away from the gun. The injection is almost parallel to the field.
The Faraday cup detector consists of a grounded collector plate of ~ 25cm diameter,
lem behind a grid which can be biased to any required potential. The electron
current from the beam can be measured by the detector (current received by the plate) ‘
for various negative grid potentials from zero to —®,,,, where Prnax > E/le|, E being
the electron beam energy. Since according to classical mechanics, the whole continuum
of energy states are allowed states, the plate current is expected to exhibit a
monotonically increasing response as the negative grid potential is swept from —®y,,,
to zero.

The actual experimentally observed response is quite and astonishingly different from
the expected one (a la the standard classical mechanical paradigm) and is shown in
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Figure 1. Plate current (a) and grid current (b) as functions of the retarding

potential. B = 170G, L = 30cm and E = 600¢eV.
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Figure 2. Plate current (a) and anode current (b) as functions of the retarding
potential B= 177G, L = 19cm and E = 600eV.

figure 1. The upper curve (a) is the plate current and quite clearly exhibits a series of
sharply defined dips. The lower curve (b) is the grid current for the same set of
parameters and also exhibits a series of dips which are found to be exactly correlated with
the plate current dips. From the point of view of classical mechanics, these dips are quite
unexpected and astonishing as they signify the existence of ‘forbidden states” which have
no place in the formalism of classical mechanics.

To further check that these are indeed the forbidden states, both the plate current and
the anode current were measured simultaneously as the grid potential is swept. (It should
be explained that the anode which is grounded, is a part of the electron gun and which
accelerates the electrons emanating from a negatively biased hot cathode placed about
one cm away from it.) Thus the electrons encounter the anode much before (~ 20 ¢cm) on
the way to grid-plate assembly. Figure 2 shows both the simultaneously recorded plate
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Figure 3. Plate current as a function of the retarding potential for different values of
B and L (as shown in the plots) and E = 650 eV.

Table 1. The energies E; and the j values for plots in figure 3(a, b,c).

Peaks Energy E; (eV) i+ o2

Plot 3a Plot 3b Plot 3¢ Plot 3a Plot 3b Plot 3¢
N(}) 417 453 438 414-0.15 31+0.32 36 +0.56
N+3 357 377 373 44 +0.48 344 0.36 3940.62
N+6 313 317 323 474045 374047 424 0.57
N+9 277 272 283 504050 40 +0.46 454047
N+12 247 237 250 534048 4340.35 48 4-0.41

and anode currents, the upper curve being the plate and the lower one being the anode
current, The two curves are clearly anti-correlated, showing that electrons that did not (or
could not) pass through the system in a certain energy state (forbidden state) have found
their way to the anode, confirming in a sense the interpretation of the ‘dips’ in the plate
current as forbidden states.

The experiment was repeated with different distances between the gun and the detector
and magnetic fields. The plots so obtained are shown in figure 3. We see that the positions
of the dips change both with the distance L and the magnetic field B. A little reflection
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shows that the dependence on the distance L is most enigmatic because it signifies a kind
of wave-like nonlocality.

One may now finally examine whether the dips so observed can be described
by the relation (23). To do so, we read the positions of the dips (in energy) from the plots
and using these values on the left of eq. (23) with the magnetic field and distance D
inserted on the right, we calculate the quantity (j + ¢/2n) for every third dip counted from
an (arbitrary) arrowed peak in three respective plots of figure 3. The results are shown in
table 1. (It should be pointed out that D = 3L was used in the calculation for reasons to
be explained elsewhere.) The whole number in the value of (j 4+ ¢/2m) so obtained is
identified with the ‘quantum number’ characterizing the dip and the fraction with (¢/27).
It is clearly seen that the j values do differ by 3 corresponding to the fact that every third
dip was chosen. Since the different curves correspond to different B and L values, the
dependence on B and, in particular, on the distance L, is well borne out by the
experimental results.

In summary, it is important to highlight the following facts that we have demonstrated:

a) The discrete forbidden states of motion do exist in the domain of parameters where
one would use classical equation of motion to determine the motion.

b) The energies of these ‘forbidden states’ are well represented by the relation (5) which
is obviously nonquantal as there is no Planck quantum A appearing in it.

¢) The forbidden states E; form a hydrogen-like sequence for which ‘quantum numbers’ j
and the phases can be identified as in table 1.

d) The forbidden states E; and the associated quantum numbers j depend on the distance
between the gun and the detector. This is a manifesiation of wave-like behaviour
which is not known to be a characteristic of the standard initial value paradigm of
classical mechanics.

Based on the above described experimental results, one may now conclude that
the electrons moving in a magnetic field do appear to exhibit a wave-like behaviour
in macroscopic dimension which is known to be a domain of operation of classical
dynamics and which, therefore, admits a continuum of energy states. The existence of
discrete forbidden states as described above appears o be in contradiction with the latter.

6. Implication of these results

To summarize, it has been predicted theoretically and demonstrated experimentally, that
electrons moving along a magnetic field within the classical mechanical domain of
parameters, exhibit the existence of discrete forbidden states, a feature which is not
admitted by the standard initial value paradigm of classical dynamics. The latter admits
the entire continuum of initial conditions as allowed states. This is an entirely new feature
of classical dynamics, not hitherto pointed out to the best of the author’s knowledge.
What is most astonishing and violative of the classical mechanical intuition is that the
forbidden (as also the allowed) states are determined nonlocally by the distant
boundaries. The allowed states may well evolve a la the Lorentz equation of motion.
The new description & la the Schrodinger-like equation merely constrains the allowed
initial data.
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The Schrodinger-like formalism may thus be regarded as providing a global
description of the classical mechanical system as it takes cognizance of the boundaries
which the standard paradigm does not. It is of course, interesting and significant that a
classical mechanical system, such as the one under consideration, admits a Schrodinger
wave-like description, so far considered as the sole preserve of quantum mechanics. Of
course, not every classical mechanical system may be so describable. We have not been
able to identify general criteria for such systems.

We have thus shown how the generalized Liouville equation for the coherent system
gives the Schrddinger formalism (generalized) as its Hilbert space representation
provided the Liouville density and the square-root thereof is periodic in the action phase
® = §/k. The classical Liouville equation is obtained as an action-phase average of the
generalized Liouville equation. It is in this manner that classical mechanics is contained
in this generalized formalism. It will be seen that formally the limit % — 0 (which is
usually identified as the classical limit) also amounts, in the lowest order, to an averaging
over ®.

The question that is most likely to be raised is that of the validity and the validation
of the formalism obtained and the essential steps and arguments leading to it. Such a
validation of the formalism has been provided in a rather spectacular fashion.

As discussed earlier the main thrust of our investigation was to provide a forma-
lism which could cover both classical and quantum mechanics in a more natural
and logically connected manner. The same formalism applied to an appropriate
classical mechanical system (charged particle dynamics in a magnetic field) has
yielded a Schrodinger-like description whose quantum-like predictions have been
experimentally verified in a rather spectacular fashion. These are astonishing observa-
tions in as much as they cannot be understood in terms of the standard classical
mechanical paradigm. Our line of investigation has thus helped unearth
entirely new physical effects in the classical mechanical domain of parameters. More
than just that, they seem to point to a new paradigm in classical mechanics whereby
not the whole of the continuum of initial values are allowed values, just like in the
quantum domain.

The question that presents itself is that what is it that leads a classical mechanical
system, to the discreteness of the allowed states as against the continuum as per the
standard paradigm. It has been shown by the author [13] recently that the topological
considerations of the system configuration space leads to conditions which constrain the
allowed initial values to a discrete set. These conditions turn out to be nothing but the
eigenvalue equations in the EBK form of the Schrédinger-like equations (17). It is
conjectured that the same that is, the topology, may also be the origin of discreteness of
allowed energy values in quantum mechanics.

These investigations thus provide another new point of view in terms of which to
consider the question of classical-quantum relationship: Quantum mechanics as a Hilbert
space representation of the (generalized) classical Liouville equation may thus be
considered as a global description of the same dynamics, with the boundary conditions
simply helping to determine the wave functions and corresponding discrete energies
as eigenvalues permitted by the overall topology of the system. This in turn translates

into an appropriate Liouville density function being determined by the boundary
conditions.
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