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Feedback stabilization of drift cyclotron loss cone instability by
modulated electron sources
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Abstract. Tt is shown that the drift cyclotron loss cone instability can be suppressed
by modulating electron density within the plasma. With the feedback in --90° phase
the critical density gradient needed for the onset of the drift cyclotron loss cone in-
stability increases approximately linearly with the gain. Typically with the gain of
—50£); the critical density gradient can be pushed up by as much as two orders of

magnitude and minimum mirror plasma radius can be brought down in the same
proportion. ;
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1. Introduction

The drift cyclotron loss cone instability (DCLC) which arises because of the reson-
ance between the positive energy electron drift mode and the negative energy ion
Bernstein mode has been conclusively identified in high density mirror machines like
PR-6, PR-7 (Kanaev and Yushmanov 1974, 1975), 2xII B (Simonen 1976), etc.
These modes occur at €, and its harmonics (Q; ion gyro frequency) and have growth
rates roughly of the same order. They require a critical density gradient (CDG) to
become unstable and thus set a minimum limit on the mirror plasma radius (Post
and Rosenbluth 1966) (R=200 4;, R mirror plasma radius, a; ion gyro radius). In
this paper we have examined the feedback stabilization of these dangerous modes by
modulated electron sources. This method has been suggested and used before for
the stabilization of low frequency drift instabilities and drift temperature instabilities,
etc. (Simonen 1969; Kitao 1971; Lakhina and Sen 1974). Here we have shown that
when the feedback differs by --90° in phase from the unstable perturbation then the
CDG increases approximately linearly with the gain. Typically with a feedback
gain of ~50Q,; the CDG can be pushed by as much as two orders of magnitude

thereby considerably improving the stability of mirror plasmas against DCLC
instability.

2. Calculations

We consider a high density hot ion plasma i.e. Wpe 82y, T;> T, (w,, electron plasma
frequency, Q, electron gyro frequency, 7, ion temperature, T, electron temperature).
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This plasma is embedded in a mirror magnetic field B= B,Z and has a density gra-
dient
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The feedback system consists of an instability amplitude sensing probe whose signals
are amplified, phase-shifted and impressed on the suppressor probe. which, with
appropriate negative DC bias, modulates the local electron flow to the probe in giving
rise to modulated electron sources. Although in any real experiment such sources
would be present only at finite points in the plasma, nevertheless we assume in this
model that sources are distributed uniformly throughout the plasma and they respond
linearly to the local density perturbation. Such an assumption yields results in good

agreement with the experiment (Furth and Rutherford 1969). Thus we represent the
source in the form

S = —iw, ng, ' €))

where the amplitude and the argument of lw; represent the gain and the phase of the
feedback, n,; is the local electron density perturbation. This source is included in
Vlasov’s electron equation. -
Following the standard procedure outlined in Sen and Sundaram (1976) and using
the Vlasov-Poisson system of equations with appropriate source term in electron

dynamics the dispersion relation for the electrostatic, flute modes in an inhomoge-
neous, low B plasma can be written as
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Thus, in the dispersion relation (2) the new feature is reflected in X, wherein now we
have a term in the denominator describing the source characteristics. Since we only
consider the electron sources, the ion term is unaffected.

We shall consider the effect of this term on DCLC wave spectrum. For this we
make use of the following approximations (Postand Rosenbluth 1966) &, v,/Q, < 1,
w< (), for electrons and (V% k [Quw)> 1, (k, v/Q;)>1 for jons. With these
approximations and taking a loss cone distribution for ions f; (»;y =0)=0 in
equation (2) we arrive at the modified dispersion relation for the DCLC modes as

[s0]

1 490 — @pe9Qc0] k) wp QF z _° 3)
Q2 [1— wy/w] ki V% T (0—nQ))
n=—00
e}
Using z 1/(x+n) = = cot 7x and putting W = f{— X
n=—0o0 !
and W, = g—f- X r, equation (3) can be put in the form
W2 cot W W [B—W; cot W] —BW; =23 e {a;) m/® (%Jr %i)_m
wpi
' 2
where B=m (W <a;))? (%-}— %1-) >0 “

pi

For a given density gradient € (¢;,» and mode number defined by 8, (4) will give the
real and the imaginary of the frequency defined by W. But as (4) is transcendental,
real and imaginary part of W cannot be evaluated analytically. However, there is
yet another method of examining the stability through (4). For W;=0 equation (4)
reduces to the well-known dispersion relation for DCLC modes obtained in Post
and Rosenbluth (1966). It is shown there that the left side of (4) admits a saddle
point with respect to W and 8 which gives rise to a critical density gradient €, {a;>.
For € {a,) < e, {a;, all the modes defined by g are stable, while for ¢ {a;>
€. {a,;) some of the B are unstable giving rise to the DCLC instability. The idea
here is to examine the stability by evaluating CDG in the presence of the feedback
i.e. for a finite W;. Such an analysis is possible only when W} is real i.e. for 6 =4-90°.
For other values of 6, W, becomes complex which makes the evaluation of CDG
quite difficult. Accordingly, we proceed to evaluate the CDG for different gains in
the phase §=+90°.

® 0 =+90° [wp, = —ay, wgy =0].
In this case (4) becomes
Q%)——‘&/S

2
wpi

W2 cot W-+W [B+W; cot W]-+B W,=p2/8 ¢ {a,) n2/® (”A_:[+
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We shall use a conventional numerical method to estimate CDG in the presence of
the feedback source term, following Post and Rosenbluth (1966). In order to deter-
mine the saddle points at which critical density gradient occurs, we adopt the proce-
dure described below.

A particular value of W, is chosen in (5) and a function f [V B W] is defined as

FIWEW) = W= cot W+ W [+ Wy cot W1 +8 W, ©

B3 % 2/

We plot in figures 1 and 2, f as a function of W for different values of W; and 8
(the values of B are not given in the figure). The plot shows a maximum with
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Figure 2. Plot of W vs F(W) for fixed values of W;
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respect to W between 0 and =, The existence of 2 minimum with respect to g is seen
from the following equation.

(@ £1d Bl gy, = 3B WA > 0, ™
By

As the quantities B;, Wy and‘W, are all positive, there is a minimum with respect to g.
This implies the existence of a saddle point [W¥; ;] which can be located by simul-
taneously solving the following set of non-linear equations

[d£1d By, = By —2 Wy cot Wy =0, ®)
B

©®)

[dfld w]y, =sin W, cos Wl[l +

LA AR AL
B1

3 W, 3

From (8) and (9) we obtain the saddle point coordinates W and By, as a function of
W,. The CDG for a particular value of W, is then given by

1 1B (%), W (W), W] ("_1+9_?)“”‘ — <, {a, (10)

273 3
w2/ M wp

where f [B;, (Wy), Wy (Wy), W] is to be evaluated from (6) which can be rewritten
as

SIW By W] =

W% cot W1+/31 Wl [Wl cot Wl+ﬁ1:| VVf (1 1)
}3%/3 NG ﬂ% 13 v 413

Such calculations have been carried out for different values of W;. The results are

tabulated in table 1. The first column gives the value of W, the second gives the
corresponding CDG. In figure 3, CDG is plotted against Gain. The plot shows that

Table 1. Feedback gain vs critical density gradient.

Gain CDG
0 038
37 3961
4 5231
5w 650
G 779
T 9-07
8 10-35
97 11-64

10~ 12-76
20m 2582
30r 38-72
40 51-52

50w 64:52
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CDG increases linearly with W} in the range 0-50 . It must be mentioned here that

this linearity is only approximate because it so turns out that the value of the first

term and the coefficient of W, in the second term in (11) does not change much for
different saddle point coordinates W, (wy) and By (wy), because of which (11) approxi-
mately represents a straight line with f and W, as the two variables. It must also be
mentioned that (though it appears) the straight line does not pass through the origin
because even in the absence of the feedback there is a CDG. This is also obvious from
(1. _

From the table it is clear that with a gain of ~50 £, the CDG can be increased by
as much as two orders of magnitude, thereby considerably improving the stability

of the mirror plasma against DCLC instability. As shown in Post and Rosenbluth
(1966) the minimum plasma radius is given by

wd/3

Rinin = e (M) 0, ¥ (Q2e02), (12)
AU N i ! |

where ¥ is a function of Q2[w?,, and is tabulated in Post and Rosenbluth (1966) for

different values of its argument. It is clear from (12) that R . goes inversely as the

gain of the feedback. Typically in the present-day mirror machines where Q2/w2,~1,

@~1 cm, with a gain of ~50 Q,, R ;. can be brought down from 500 cm to 3 e,

thereby almost removing the constraint imposed by DCLC instability on the radius
of the mirror plasma.
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Figure 3. Plot of feedback gain vs critical density gradient.
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(ii) 0 = —90° [Wy, = W;, Wy =0]. In this case, as follows from (7) the sign of
d2f]dp? is not fixed. For W > W}, d*f|dp? is positive while for W < W}, d>f]d8* is
negative. Thus the saddle point and the consequent CDG does not exist, and the
effect of the feedback on the overall DCLC spectrum cannot be evaluated. The
stability of a particular K in such phase angles should be evaluated numerically
from the dispersion relation (4).

3. Discussion

We have shown here that the stability of the mirror plasma against DCLC instability
can be considerably improved by modulating electron sources at ion gyro frequencies
and at a +90° phase difference from the unstable perturbation. The question of the
number of feedback loops and their location has to be decided by the experiment.
For instance in Simonen’s (1969) experiment on quenching of drift instabilities
in Q-machines by modulated electron sources only one feedback loop consisting
of two Langmuir probes located in the region of maximum wave amplitude was
sufficient to bring about a considerable improvement in the density build-up, confine-
ment time, etc. In our problem, however, more than one loop may be required as
DCLC modes are not localized and in fact are spread over a larger plasma cross-
section. In the case of mirror plasmas, as the probe would be in actual contact
with the hot plasma some complication may arise due to the heating and sputtering
of the probe. But we do not expect these effects to be very important as mirror
plasma experiments are pulsed (a few msec) and their thermal energy content is
very low ( a few calories).

Arsenin et al (1968 abc) have reported stabilization of m=1 flute mode and ion
cyclotron instabilities in the low density plasmas (~107/cm?®) by placing feedback
loops at the radial boundaries to appropriately control them. This method cannot be
very effective for the suppression of drift instabilities where the boundary conditions
play only a supplementary role. To suppress drift instabilities, the signals have to be
injected in the plasma to modulate the particle sources.

Our calculations mainly highlight the importance of feedback systems in stabili-
zing DCLC mode and provide an upper limiting value of the feedback gain. Consi-
derations such as warm plasma streams (Baldwin et a/ 1976; Gerver 1976) in the loss
region of velocity space and the compressional perturbations of magnetic field (Tang
1972) will significantly lower the limit for the gain and thereby will make the
stabilizing action of modulated electron sources easier.
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