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A geometric generalization of classical mechanics and quantization

R K VARMA
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

.Abstract. A geometrization of classical mechanics is presented which may be considered asa
realization of the Hertz picture of mechanics. The trajectories in the f-dimensional
configuration space ¥ of a classical mechanical system are obtained as the projections on Vy
of the geodesics in an (f+ 1) dimensional Riemannian space V,+1,withanappropriate metric,
if the additional (f+ 1)th coordinate, taken to be an angle, is assumed to be “cyclic™.

When the additional (angular) coordinate is not cyclic we obtain what may be regarded asa
geperalization of classical mechanics in a geometrized form. This defines new motions in the
neighbourhood of the classical motions. It has been shown that, when the angular coordinate is
“quasi-cyclic”, these new motions can be used to describe events in the quantum domain with
appropriate periodicity conditions on the geodesics in ¥, ,.

Keywords. Hertz mechanics; Riemannian space; geometrization; geodesics; classical mech-
anics; quantization.

1. Introduction

All the laws of classical mechanics were set forth by Newton in the most direct form in
his Principia. But these laws have continued to be reformulated from different
viewpoints leading to further insights into their form and content. Such reformulations
which may have appeared to be purely academic at one time have paid rich dividends in
terms of further understanding and development of physical principles.

One of the most useful and successful of these is the variational formulation
involving the Hamilton principle. This leads to the Lagrangian or the Hamiltonian
formulation depending on whether the variational principle is written in the
configuration space or in phase space (p, g). Apart from the aesthetic appeal that these
variational principles have, the resulting formulations have a down-to-earth practical
utility in that they provide a very simple way of writing the equations of motion for any
complicated system, a task which becomes highly cumbersome and involved with the
methods of vectorial mechanics.

The formal structure of Hamiltonian mechanics, however, bloomed into its own
when through the apparatus of canonical transformation the theory was cast into the
elegant Hamilton-Jacobi formalism. Making use of the theory of first order partial
differential equations, the problem of integration of the equations of motion was
replaced by the determination of the complete integral of a partial differential
equation—the Hamilton-Jacobi equation—with the equations of motion as its
characteristic equations. The determination of the trajectory of a system is then reduced
to simple inversions of certain relations. It is well known that Hamilton-Jacobi
formalism played a pivotal role in the formulation of quantum mechanics a la’
Schrédinger.
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While the Hamilton principle does carry some geometrical flavour, Gauss (1829) and
Hertz (1894) gave formulations of classical mechanics which have a distinct geometrical
significance. They introduced a quantity which Hertz called as the “curvature”.
According to the Gauss-Hertz principle, of all the kinematically possible paths, the
actual trajectory was identified to be the one which has the least “curvature”. This can
be considered as a first attempt at geometrization of classical mechanics.

Hertz (1894), however, went further. Dissatisfied with the concept of potential energy
he replaced it with the energy associated with the motion of some “hidden” masses. He
then introduced some “constraints” or “connections” to provide a communication
between the motions of “hidden” and “visible” masses. His formulation does not seem
to have been appreciated and developed further, presumably because he did not get
an opportunity, due to his early demise, to clarify his viewpoint. But it must surely be
considered as a first systematic attempt at a complete geometrization of classical
mechanics. In fact, his point of view proved very much to be prophetic since Einstein’s
geometric theory of gravitation followed a decade or so later.

In the context of the current search for the hidden variable theories of quantum
mechanics, it is pertinent to point out here that Hertz’s formulation involving “hidden
masses” should in fact be regarded as the first hidden variable theory ever conceived—
but the one for classical mechanics.

In this paper, we present what we believe to be a realization of the Hertz picture,
where we seek to geometrize classical mechanics in the spirit of the Hertz Fundamental
Law, viz, “Systema omne liberum perseverare in statu suo quiescendi vel movendi
uniformiter in directissiman” (Every free system persists in its state of rest or of uniform
motion in a straightest path). To be sure, the fundamental law as worded above holds
only for free systems. But any unfree system is regarded here as'a subsystem of a larger
free system. So the motion of an unfree system is deducible from the fundamental law
applied to a larger free system of which the unfree system is a part.

Implicit in the statement of the fundamental law, with its reference to the “straightest
path” for a free system, is the point of view that a free system still follows a straightest
path (a geodesic)as in Newton’s 1st law, but now in a non-Euclidean space. It is now the
geometry of space belonging to a “free” system that will account for the motion of an
unfree system which can always be considered as a part of an appropriate former.
Clearly, as we shall see, this geometric picture dispenses with the concept of potential
energy.

If f be the dimensionality of the configuration space of a classical dynamical unfree
system, then we show that it is necessary to introduce a Riemannian space of only one
higher dimension, i.e. (f+ 1), to serve as the space for the larger free system. The
trajectories of the classical dynamical system are thus realized as the projections on the
f-dimensional space, of the geodesics in the ( f+ 1) dimensional Riemannian space with
an appropriate metric. The structure of space as defined by its metric then determines
the motion.

The geometric point of view has already met with a resounding success in the
Einstein theory of gravitation, and should be extended to other areas. A hidden variable
geometric formulation of classical mechanics based on this view point also provides a
natural framework for a hidden variable crypto-deterministic theory for quantum
mechanics. The author has been carrying out these investigations for some time (Varma
1978, 1984). ,

In §2, we introduce a Riemannian metric in the (f+ 1) dimensional configuration
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space (f being the number of degrees of freedom of the classical dynamical system
under consideration). We discuss the correspondence between the classical motion and
the geodesic in the (f+1) dimensional Riemannian manifold, and obtain an
identification for the “potential” in terms of the metric components. A diagonal metric
for ¥, , | is shown here to induce a “potential” for the classical motion in the flat space
V;, while a particular form of nondiagonal metric shown in §3 yields electromagnetic
potentials in ¥V, for a charged particle. We thereby obtain an identification of the
electromagnetic potentials in terms of the metric components. In §§4 and 5, we show
how quantization can follow from some “periodicity conditions” on the geodesics in
the (f+ 1) dimensional space.

2. Geodesics in (.f + 1) dimensional Riemannian manifold

In accordance with the discussion in §1 we define an (f+1) dimensional Riemannian
space, V.., where fis the dimensionality of the configuration space of the classical
mechanical system. (For an n-particle system in the 3-space, we have f=3n). The
additional dimension is taken to be an angular coordinate x- Let m; be the “masses”
corresponding to the coordinates X;, then we define a line-element ds in the
Riemannian space ¥, by

ds? = 5Zm,.(dX‘)2 +%g(x‘, o X5 )dy?

1
=7 X0, (dX*)’ (1)

where Ga=m,, a=12 .. .f

gre1=9X" X% . X1 y)
For a n-particle system in 3-space, the “masses” m cannot all be different. We must have
my =m, =my=mb, my=my=mg=m? etc. where the masses m? = Maj—3+i)
correspond to the jth particle as i takes only the values 1,2, 3. In general, g can be a
function of all the variables X and y. But for reasons, given later, it is first taken to be

independent of y, and a function only of the X,
A geodesic (or “straightest path”) in the space defined by (1) is given by:

5st=5j[2ga(dX“)2]llz=0 | )

Or if we introduce the Lagrangian
1 dxe

2
A=5§ga( dt) @)

Equation (2) is equivalent to

0= 5‘[[§ga<d§a>z]l/zdt

=5 f A2 gy, 4)
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This yields the Euler-Lagrange equations for the geodesic

d [OAY?\ OA'? :

— - - =0, a=1,...,f+1 S5a

dt(ﬁX“) axX* a=L o SF 2)

df,_4,0A —12 OA

— — | — ——=0. 5b
o dt [A axs |7 Taxe 0 (50)
The Hamilton principle with the Lagrangian A on the otherhand yields the Lagrange
equations ’

d [ 0A oA

e R s — p— 6

o) 0
If the Lagrangian A of the system is time-independent then the energy & defined as

&=X" a/.\ ~A

oX°

i d XxX® 2 .
=5 dr 7
is a constant of the motion and is numerically equal to the Lagrangian A. For such a
system (5b) reduces to (6); i.e., the geodesics with the Riemannian metric (1) coincide
with the trajectories in V., corresponding to the Lagrangian A.

We shall consider only time-independent systems so that the above identification
continues to hold.

2.1 Projfzcted motion in the f-dimensional configuration space, V;

The equations for the geodesic in the (f+ 1)-dimensional Riemannian manifold V.,
in terms of the parameter ¢ are thus:
d2xt 1,4
m; 7 T A X'z 9 i
dt PAND. &

i=12...,f (8a)

d .
3 (90 =0. (8b)

The right side of (8b) vanishes as g is assumed to be independent of y. This yields
P,=gi=¢ (a constant), 9)

where p, = gj is the momentum conjugate to x. Using (9) ¥ can be eliminated from the
right side of (8a) in terms of ¢ and g, giving

d2x? o (&
™47 T T ax? (55) (a0
It is to be noted that X’ and y motions are completely decoupled since (10) does not
involve x at all. It may thus be considered to describe the projected geodesics on the
f-dimensional space (X', X2 ... X/)and may be identified as the equation of motion

of classical mechanics with &2/2g being identified with the potential ¥ = &2 /2g. Thus
one has
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deX"_ 4
Pdi2 T axt

If this identification is to hold universally then ¢ must be related to some fundamental
constants. As ¢ is of the dimension of action it is tempting to relate it to A Such an
identification may not be quite justifiable since we have so far considered only classical
motions. However, such an identification (¢ = h to be precise) does follow when we
proceed to construct a crypto-deterministic theory for quantum mechanics based on
these concepts (Varma 1978, 1984). With such an identification, it furthermore follows
that g should have the form g = K2/2V.

The potential V' for the classical motion of a system in the f-dimensional
configuration space, being expressible in terms of the metric component g, thus appears
as a property of the geometry of the (f+ 1) dimensional Riemannian manifold Vit
This then is a realization of geometrization of classical mechanics (what we believe to
be) a la ‘Hertz: The angular coordinate y, for instance, belongs to Hertz’ “hidden mass”,
which is contained as a factor in the metric component g. Equation (9), which follows
from the independence of g on ¥, can be considered as a “connection” or a “constraint”
which provides a communication between the kinetic energy 132 of the hidden mass
and the kinetic energy )i:—é-gi (dX'/dt)? of the visible masses.

(11)

3. Riemannian metric in ¥y, ; for the electromagnetic potentials

We next introduce a Riemannian metric in the space ¥,,, which induces electro-
magnetic potentials in the flat space V. For a system of n particles of masses m; in the
ordinary 3-space the line-element in the space V,,, , is given by
1
ds? = Z'z‘mi(dxi)z .

1
+59X0 Xa, . X,) (A + 2B A X, (12)

where f§; are constants pertaining to the particles m;, and where g and A’ are, in general,
functions of the X; and y. But here they are taken to be functions only of X,.

If the metric components are independent of the time parameter ¢, then as shown in
§2, the geodesics in the space V3, ; characterized by the line-element (12) coincide with
the trajectories in V3, induced by the Lagrangian Agy,

Agpm =Z%mixi2
+39(X1, X, .. X)) (T Y BA - X)? (13)

and are given by the Euler-Lagrange equations:

d (e e

e\ oX; ) oX,

d (0Agy\ 0Agy

— — =0,

dt( a7 > 2 49

It is useful, in the present case, to transform the equations to the Hamiltonian form.
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The canonical momenta corresponding to X; and yx are:

pi= a;\;M = mX,+Big A i+ LBX A) (152)
51\ . G 1]
py = a;“=g(x+;ﬂfxi-A), | (15b)

so that the Hamiltonian is given by

H= ZP.-‘XI-‘FPXX'*AEM

1 ‘ p2 :
= — e A’ 2 __1_ N 16
Pl (16)
The Hamilton equations of motion are:
oH 0 1 , : |
P = TaX “K[Z'z_m__(pi_ﬁipr )2+P§/29], (17a)
. 0H
P~ =% 0, (17b)
. OH 1
Xi='a—=_(pi'—ﬂipr’)5 (18a)
P ™ .
. aH px ﬁ;‘
_—— e A’ . 3 .—B. ! .
. g Lo (=B A) (18b)

The zero on the right side of (17b) follows from g and A’ and therefore the
Hamiltonian being independent of x. Using (15b) it follows that

p=9(+ Z_ﬁ,-XE-A’) = ¢ (a constant). (19)

With this the motion of X;and y are completely decoupled. In fact, with p, = & = h the
Hamiltonian involves only the variables X; (and not y), and has the form:

1 .
H= anf[pi—hﬂiA/]z'*'hz/")‘g (20)

The Hamiltonian (20) now obviously has the form for the classical motion of charged
particles in an electromagnetic field provided we identify h2/2g as the term correspond-
ing to the scalar potential ® and the quantity Ff;A’ as eA/c, A being the vector
potential. Since ® and A are produced by charges and currents they must be
proportional to the elementary charge e. Thus if we write

A=c¢A and (D=e(f>, . 21
we have the identifications:

KPA’ = eA/c = e2A/c,
and

B?/2g = e® = 2, (22)
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so that we have

B = (2/hc)=a, (23)

where « is the fine structure constant. With these identifications the line element in
V3n+1 has the form:

ds? = 3 4m(dX;)2 +1g (dy +0A - ¥ dX,)? (24)
and the Hamiltonian has the form:
H= Z
L A '
_ Z__(p,._e_) +e0, e3)

where (19), (21), (22)and (23) have been made use of. The Hamiltonian (25) thus has the
required form for particles in an electromagnetlc field, with A and @ being the
electromagnetic potentials. -

aprJZ

4. Geodesics in ¥, ; for quantum systems

In the discussion so far, we had assumed the metric component g appearing in the line
elements (1) and (12) to be strictly independent of the angular coordinate y which led to
a decoupling of the y and X-motions. It was shown that the projection of the complete
motion in the (X, x) space onto the X-space was identical with the classical motion
provided certain identifications of the “potential” were made in terms of g.

It was shown in Varma (1978, hereafter referred to as paper I) that if g is a slowly
varying function of x, so that p, is no more an exact constant of motion, but an adiabatic
invariant, the resulting geodesics in the (X, y) space can be considered to represent the
trajectories of quantum systems. Clearly the projections of these trajectories on the X-
space will deviate from the corresponding classical trajectories. The deviations were
shown to represent quantum effects and were described by a set of Schrédinger-like
equations. It may be recalled that these equations describe the behaviour of an
ensemble of systems with their trajectories in the neighbourhood of the classical
trajectory. The Planck quantum of action £ in this formalism was simply the
momentum conjugate to the angular coordinate y.

Recently (Varma 1984, to be referred to as paper II), we have given a more
straightforward derivation of the Schrédinger-like equations for the Lagrangians (3)
and (13) for the electromagnetic field. The latter also leads to the required form of the
Schrodinger equations for a particle in an electromagnetic field.

Having obtained the Schrédinger equations as the ensemble description of the
~ generalised trajectories in ¥, ,, the quantization and all the other quantum effects
follow in the standard way through solutions which are regular, single-valued and
satisfy appropriate boundary conditions. However, since these quantum properties by
hypothesis, emanate from the generalised trajectories in V41,1t should be possible to
understand quantization and other effects in terms of the properties of individual
trajectories in V. ;.
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In paper I'we have been able to explain the tunnelling of potential be}r.riers in terms of
the trajectory in Vi 4y. We have also given a ‘derivation’ of the pomt;on—momentux.n
‘uncertainty relation’ in terms of these trajectories. However, the question as to what is
quantization in terms of the properties of trajectories in ¥, which are continuous,
deterministic and dense has remained.

4.1 What is quantization?

Quantization means the admissibility of certain well-defined discrete set of states of a
system. From the Schrodinger equation these are obtained as its eigenstates, which are
in turn characterized by solutions which are regular, single-valued and satisfy
appropriate boundary conditions. Does there exist a correspondence between the
eigenstates of the Schrédinger equation and the properties of the trajectoriesin ¥,y ?
Does there exist a class of discrete trajectories in ¥, which correspond to the
eigenstates of the Schrodinger equation? If so, how are such trajectories to be
characterized? Since the Schrédinger wave function in our formalism refers to an
ensemble of trajectories, the answer to the above questions is not expected to be simple.
Nevertheless, in some of the cases we have studied we find that the ‘admissible’ discrete
states are those which are periodic both in the X-space and in the y-coordinate
simultaneously. We give below an example to explain quantization in the presence of an
external magnetic field based on this criterion.

5. Space quantization in an external magnetic field

Consider first a particle in a spherically symmetric potential. The trajectory of such a
particle in ¥, { is given by (5a) and (5b), with a g which is independent of the angles 6
and ¢, and depends only on r = |X|. The first point to note is that the total angular
momentum vector L = X x p, is conserved for such a particle as follows trivially from
(5a). ‘ )
d L=Xxp=0 (26)
G L=Xxp=0 |
This means that all the three components of the angular momentum L of an individual
particle are conserved, whatever they are fixed to be initially.

However, as has been argued in paper II, for an ensemble which represents a
quantum state, not all its members, for reasons of the uncertainty principle, can be
specified with é-function distributions for all the components of angular momentum.
In fact, it was argued that only one component, say L, of the angular momentum can be
specified with a é-function distribution, with L of the different members of the
ensemble distributed uniformly over a cone of angle 6 around the Z-axis and having the
same magnitude L. Thus the magnitude L2 and the component L, are assignable with a
d-function distribution for the ensemble, though it must be emphasized that for every
member of the ensemble the vector L is strictly conserved.

The question of space quantization is then the question of determining the allowed
L, values in relation to the magnitude L; or in other words of determining the different
discrete allowed values of 6.

Experim;—:ntally, the space quantization of the orientation of the electronic orbit in an
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~ atom is manifested through the Zeeman effect. The different discrete orientations
described by the magnetic quantum number m are thus referred with respect to the
direction of the external magnetic field. Such a quantization of direction should thus be
obtainable for the motion in the presence of a magnetic field through appropriate
conditions of periodicity.

To determine the quantization of direction consider the trajectory of a charged
particle in ¥, ; both in the absence and presence of an external static magnetic field.
Recall that because of our identifications (9) and (19)

py=gx=h - (27a)

(4 y
=glf+—X-A|=h
Py g(x + e ) (27b)
where A is the vector potential for the static field and 3’ denotes the angular coordinate
- in the presence of the magnetic field; g is the same in the two cases, since the particle is
acted upon by the same electrostatic potential due to the nuclear charge in the atom.
From (27a) and (27b), we then obtain on subtracting;
e

oA X=0-1) (28)
For a uniform magnetic field B, we have A = 4B x X. Then we get:

eB L .

e 7{=(X“‘X)~ 29)

where we have used
A'X=4{BxX-X=4B (Xxp)/m=14iL-B/m,

L being the angular momentum vector, L = X x P for the particle.

Now if the direction of L is inclined at an angle 8 to the direction of B, the vector L
will precess around the direction of B with the Larmor frequency Q, = eB/2mec.
Integrating (29) over the period of a Larmor precession T'( = 27/ 1) we obtain:

2n(L cos0/h) = A(y —y') = o, : (30)

where Ay is the change in x (in the absence of magnetic field)and Ay, the changeiny’ (in
the presence of magnetic field) over the period of a Larmor precession. 8y = A (x—x)is -
thus the change in the angle over a Larmor precession period induced due to the
presence of the magnetic field. If we set 8y = 2nm with m an integer and measure L in
units of A, L = Ik, then we get from (30):

cosf =m/l (31)

Now [k by definition, is the maximum value of the projection of L along any direction.
Thus given /, the maximum allowed value of | m| from (31) is L. Thus m being an integer
takes on values ‘

m=—l, —(1-1),....0,...(-=1),1L (32)

Equations (31) and (32), then define the allowed directions of the orientation of the
vector L with respect to the magnetic field B and are indeed the well-known directions
with m being the magnetic quantum number.

p—10
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The key condition which defines these discrete directions is of course dy = 2nm,
involving the change in the angular coordinate y (being integral multiple of 2x). Other
quantizations can also be obtained in terms of similar conditions.

Before we close this discussion, we would like to recall how the familiar expression
I(/+ 1)k? for the eigenvalue of the operator L? can be obtained from simply a
knowledge of the discrete space orientations of L given above by (31) and (32). This
problem is considered in the problem book on quantum mechanics (Goldman et al
1956). It is shown that the equation L? = [(/+ 1) >~ can be obtained by using elementary
equations of probability theory, if one uses the fact that the possible values of the
components of the angular momentum ‘along an axis are equal to m(m=
—1,...0...l)and all these components are equally probable and all axes equivalent.
The solution is as follows:

Because of the equivalence of x, y and z axes we have:

[*= [+ 12+ 12 =3I

From the definition of the average L2 value and the fact of equal probability for all
different possible values we have

hz +1
Q2+ 1) ,,,_z_l’"
= 1I(1+ )2,

2 = R =

Therefore, B B
L2 =3L2=1(+1)h%

The reason for pointing out this derivation is to emphasize the fact that /(I + 1)A* is
essentially an average value of L? with the average taken in the usual sense of the
classical probability theory, over the allowed values of the projections. The essential
observables are thus the projections m(m = —1,...0... +1)and not L% In fact, we
know of no experiment where L?> may be directly observed in its eigenstate with the
value I(I + 1)#%. The average being taken in the sense of the classical probability theory
and yielding the values /(I 4+ 1) i again seems to be consistent with our point of view as
developed in papersI and II that the probability in quantum mechanics is already
contained within the framework of classical probability theory provided the latter is
applied to the trajectories in ¥, rather thanin V.

6. Summary and epilogue

We have developed here what may be considered as a generalization of classical
mechanics in a geometrized form. The classical mechanical trajectories ina space V  are
obtained as projections on ¥, of geodesics ina V', , with a certain metric appropriate
for the required classical motion in V. The potentials for the latter are expressed in
terms of the metric components for V. ;.

The space V', differs from ¥V in the addition of an angular coordinate y. When the
coordinate y is “ignorable”, the classical mechanical (cM) trajectories in ¥, can be
regarded as exact projections of the geodesics in ¥, ; with appropriate identification
of the potential for the cM motion with the metric componentsin ¥, ,.In such a case
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we simply have a geometrization of classical mechanics through V;+1. This we believe
is a realization of the Hertz picture of Mechanics.

When the angular coordinate is not ignorable, we have more than a mere
geometrization of classical mechanics. We have a generalization of classical mechanics
whereby we introduce new motions in Vr+1 as also the projections thereof on V. But
- the projections on ¥, do not in general form a “closed” system, describable by an
equation of motion in V.

The main thrust of our line of development is that the quantum effects are essentially
the manifestations of the new motions in V41 as projected onto ¥, such that the
projected ‘motions’ are in the neighbourhood of the classical motion. Furthermore, the
discrete quantum states may be identified as a class of discrete geodesics in V.,
satisfying certain periodicity conditions involving specifically the angular coordinate ze

In particular, we have shown in §5, how the quantization of the orientation of the
angular momentum in an atom with respect to an external magnetic field follows from
some conditions on dy. Similar conditions can be obtained for other quantizations as,
for instance, is implied in the double-slit interference experiment. These points are
discussed elsewhere. Suffice it to say at present that the space V;+1 as obtained by
augmenting the dimensionality of ¥, by an angular coordinate seems to be an
appropriate space for describing quantum events as its geodesics. We shall also show in
a later work how this also leads to ‘quantum correlations’ and ‘quantum non-locality’
for a many-particle system.
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