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Korteweg - de Vries solitons with different co-ordinate stretchings
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Abstract, The differences between the soliton solutions of the K-dV equation for
a homogeneous, collisionless plasma, consisting of cold ions and isothermal electrons
arising due to the two different sets of stretched co-ordinates have been dis-
cussed, In particular, the differences between the amplitudes and the widths of
the solitons and their variations with the soliton velocity have been indicated.
Further, the experimental implications of these differences and also of the two sets
of stretched co-ordinates have been discussed.
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1. Introduction

The ion acoustic solitary waves in a homogeneous collisionless plasma consisting
of cold ions and isothermal electrons have been studied by a mumber of workers
(Zabusky and Kruskal 1965; Gardner etal 1967; Hirota 1971; Jeffry and
Kakutani 1972). The Korteweg-de Vries equation which -describes .their propa-
gation has for its independent variables certain stretched co-ordinates and
is derived from the basic set of fluid equations using reductive perturbation
method (Washimi and Taniuti 1966). There exist, however, two different sets
of stretched co-ordinates in the literature which both give the same K-dV ¢qua-
tion in the two sets for the homogeneous medium.

It has been stated (Asano 1974) that while one 'set is approprlate to study the
propagatlon in spatially inhomogeneous media, the other set is appropriate for
the study in temporally varying (spatially homogeneous) medla The precise
role of these two stretchings is, however, still not entirely clear. In'particular,
if we have a spatially homogeneous medium which is also time independent, we
may ask whether the solitary waves governed: by the K-dV equations resulting
from the two different stretchings have the same or different propagation characteris-
tics in the (x, t) space. This question becomes specially important when one
needs to compare the results of an experiment on soliton propagation in a homo-
geneous medium with theory., One will have to examine carefully which of the two
solitons described by the two K-dV equations (corresponding to the two stretchings)
is to be identified with the experimentally observed soliton.




423 N Nagesha Rao and Ram K Varma

It is somewhat surprising that this simple question has not, to our knov_vledge,
been explicitly considered. In fact, in this paper, we find that the two different
solitons do indeed have different propagation characteristics in the (x, f) space

and correspond from an experimental point of view to two different modes of
launching the solitons.

2. The K-dV equation in two different stretched co-ordinates

The basic set of equations required to derive the K-dV equations for the weakly

nonlinear ion-acoustic waves in a homogeneous, collisionless plasma consisting
of cold ions and isothermal electrons is,
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where 7 is the ion density, ¥ is the ion fluid velocity, ¢ is the electrostatic potential,
and x and f are space and time co-ordinates, all the quantities being suitably norma-
lized with respect to plasma parameters, plasma density, ion acoustic velocity,
a characteristic potential (KT,/e), electron Debye length, ion plasma period respec-
tively (see, for instance Davidson 1972).

The two sets of stretched co-ordinates discussed in the literature (Washimi and
Taniuti 1966; Davidson 1972) are
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If we carry out the reductive perturbation analysis for eqs (1)-(3) using the

co-ordinates (4) and (5), we get the following equations respectively (Davidson
1972; Washimi and Taniuti 1966).
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These two equations are identical in form and differ only in the interchange of
= and » variables.

3. Solution of the K-dV equations for the two sets of stretched co-ordinates

We know that both eqs (6) and (7) admit soliton solutions with a constant velo-
city #in (x, t) space. To afford a proper comparison of the propagation characteris-
tics of the two solitons described by the two eqs (6) and (7) we must obtain
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soliton solutions corresponding to the same soliton velocity » in the (x, ¢) space
in both cases. We thus look for solutions for ¢,, which depend on the variables
x and ¢ through a variable Z = e (x—ut). The factor ¢ ensures the large
width of the solitons, ‘

Using the definitions of £ and =, and ¢ and 4 we find

Z=(¢—ar); a=@u—1)e ®)
corresponding to the stretching (4) and eq. (6), and
Z=W—an); a=@u—1)e ®)

corresponding to the stretching (5) and eq. (7). -
We now assume the solution ¢, = ¢, (Z) which, using eq. (8) becomes

¢ (Z) = ¢, (¢ — ar),

It can be easily shown that the stationary solution of (6) subject to the boun-
dary conditions

2
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.Similarly, the solution of eq. (7) in the form ¢; (Z) = ¢, (ué — an) subject to the

same boundary conditions (10) is given by
3a @
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4.. Comparison of the two solitons

Comparing the two solutions (11) and (12), we obviously note that while the two
solitons propagate with the same velocity u, the dependence on u of their widths
and amplitudes is quite different, The amplitude and width functions are compared
below for the two cases in figures 1 and 2 which show considerable differences
between the two solitons, particularly for Mach numbers of the order of 1-4. How-
ever, sinice the upper limit on the amplitude of an ion-acoustic soliton is of the
order of 1-3, and the corresponding limit on the Mach number is of the order
1-5 (Leontovich 1966), the comparison beyond the value u ~ 1-5 is mot relevant,

There is another important difference between eqs (6) and (7) and their solu-
tions which does not show up in the stationary form of their solutions (11) and
(12). Here the identity of the x and ¢ variables is somewhat lost because of
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Figure 1. Comparison of the widths of the two solitons given by eqs (11) and (12).

The upper curve is for the soliton given by eq. (12) and the lower one is for that
of eq. (11). -

the solitons in the soliton frame being stétionary.‘ The real difference between
eqs (6) and (7) appears when we transform them to the x and ¢ variables,
From eqs (4) and (5), the inverse transformations are

x= eV g + 32 ¢ }

f= 32 7 (13)
and _ _ 4

x = €2y ) .

P= BTy U2 g } (14)

Usmg (13) and (14), wé transform eqs (6) and (7) to the (x t) variables and
obtain respectwely
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Figure 2, Comparison of the amplitudes of the two solitons given by eqs (11)
and (12). The straight line is for the soliton given by (11) and the curved line
for that of (12). ' o T . .

A comparison between eqs (15) and (16) shows, except for some signs, the inter-
change of the role of the x and ¢ variables between the two equations. It is
clear that these two equations will give entirely different time evolution of some
initial pulse. ‘

Equation (15) involves a term with a first order time derivative of ¢,. As an
initial value problem then, one would need to specify as an initial value the values
of ¢, at all points of space. If we, therefore, have a spatial pulse of ¢,, the
soliton that will result should correspond to eqs (4), (11) and (15). On the other
hand, eq. (16) involves a third order derivative in time, and to solve this as an
initial value problem, one would need to specify the function ¢,, its first and
second time derivatives at some initial time. Such a situation would correspond
to a temporal pulse and the soliton that results should correspond to eqs (5), (12)
and (16).

From an experimental point of view, it is much simpler to have a temporal pulse
than a spatial one. Thus the solitons obtained experimentally from a temporal
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pulse (for instance John and Saxena 1976) should be compared for their propa-
gation characteristics with the solitons that are derived from egs (5), (12) and
(16. -

Detailed experiments have not been carried out to check the propagation
characteristics of the above soliton (that is, the variation of the width and ampli-
tude with the velocity ). It would be interesting to do so. Furthermore, it
would also be interesting to study the spatial pulse soliton aud check its propa-
gation characteristics against our theoretical results.

5, Conclusions

We have shown that even though the K-dV equation in the stretched co-ordinates

for a homogeneous, collisionless plasma consisting of cold jons and isothermal
electrons is the same for the two different sets of stretched co-ordinates, the two
solitons do differ considerably in their propagation characteristics in the (X, f)
space. The differences are quite considerable for Mach numbers of the order of
14, Further, we have discussed the experimental implications of the two sets
of stretched co-ordinates and show that they correspond to two different ways
of launching the solitons in the actual experiments.
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