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Abstract. Quantum effects which have usually been associated with micro-scale phe-
nomena can also arise on the macro-scale in situations other than the well-known macro-
quantum phenomena of superconductivity and superfluidity. Such situations have been
shown here to arise in processes involving inelastic scattering with bound or partially
bound systems (not bound in all degrees of freedom), and the macro-quantum behaviour
is associated with the state of the total system in transition in the process of scattering.
Such a state is designated as a ‘transition-state’. It is pointed out that we have already
observed such manifestations for a particular system, the charged particles in a magnetic
field where interference effects involving macro-scale matter waves along the magnetic field
have been reported [R K Varma et al, Phys. Rev. E65, 026503 (2002)].

Keywords. Transition amplitude; inelastic scattering; macro-scale quantum effects.

PACS Nos 03.65.-w; 03.65.Ta; 03.65.Ca

1. Introduction

In a series of papers over the last few years the present author has developed the
concept of a ‘transition amplitude wave’ in relation to the problem of charged parti-
cle dynamics in a magnetic field [1–3]. The concept which is essentially of quantum
origin, predicts the existence of one-dimensional matter waves for charged particles
moving along magnetic field which are of macroscopic dimensions with an astonish-
ingly large wavelength of ∼5 cm for typical parameters (electron energy ε ∼ 1 keV
and magnetic field B ∼ 100 G). Such matter waves with the above macro-scale have
indeed been observed [2,4,5], in the form of one-dimensional interference effects. A
remark must, of course, be inserted immediately to ward off any misunderstand-
ing, namely, that these matter waves are essentially ‘derived’ ones, and belong to a
partially bound system, as distinct from the basic de Broglie waves.

A general formalism for the derivation of the equation of evolution for the tran-
sition amplitude of the above problem was given in ref. [1]. However, a more direct
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qualitative derivation of the required expression was presented in the Appendix of
the experimental paper [2]. It is desirable, however, to give a more precise and
fuller formal derivation of the above-mentioned expression. The purpose of this
paper is to provide such a derivation. Set in the Feynman path integral formalism,
it will be seen to be more general in its applicability. Hence its importance!

2. Transition amplitude in the path-integral representation

The transition amplitude plays a central role in the evolution of quantum phenom-
ena. This is expressed by an integral equation of the form

ψ(X2, t2) =
∫

dX1KV (X2, t2;X1, t1)ψ(X1, t1) (1)

with KV representing the transition amplitude, and ψ(X1, t1) and ψ(X2, t2) de-
noting the state at (X1, t1) and (X2, t2), t2 > t1. Specifically, KV (X2, t2;X1, t1)
denotes the amplitude that a particle emitted at X1 at time t1 transists to the
point X2 at the time t2. It is also called the ‘propagator’.

Following Feynman and Hibbs [6], the ‘transition amplitude’ KV is represented
by a functional integral of the form

KV (X2, t2;X1, t1) =
∫ 2

1

exp
[
i

�

∫ t2

t1

dtL(X(t),X(t); t)
]
DX(t), (2)

where L denotes the Lagrangian for the dynamical system, and where DX(t) de-
notes a functional differential element for the paths over which the integration is to
be carried out between the points X1 and X2. Two of the properties of the propa-
gator KV may be noted: First, if we regard KV as a function of (X2, t2), keeping
(X1, t1) fixed then KV (X2, t2) as a function of (X2, t2) ≡ (X, t) is a Schrödinger
probability amplitude and satisfies the Schrödinger equation.

i�
∂

∂t
KV (X, t) =

(
− �

2

2m
∇2 + V

)
KV (X, t). (3)

Secondly, it can be shown that

KV (X2, t2;X1, t1)
=⇒

t2→t1+0
δ(X2 − X1) (4)

and

i�
∂KV (2, 1)

∂t2
−H2KV (2, 1) = δ(X2 − X1)δ(t2 − t1) (5)

with

H2 = − �
2

2m
∇2

2 + V (X2). (6)
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By virtue of eq. (3), KV (2, 1) is a Schrödinger probability amplitude with respect
to the point (X2, t2) of its argument. But taking note also of its argument (X1, t1),
it may also be interpreted as a ‘conditional probability amplitude’: namely the
amplitude of finding the particle at (X2, t2) if it was at X1 at the time t1. Taking
note of this interpretation and the fact of its being a transition amplitude, allows
us to impart it a novel physically observable attribute which we shall discuss in
what follows. Note that in eq. (1) an integration over X1 with the wave function
ψ(X1, t1) gives the contribution to ψ(X2, t2) from all points {X1}. But if the source
of particles is only at the point X, then we write ψ(X1, t1) = δ(X − X1), so that

ψ(X2, t2) = KV (X2, t2;X, t1), (7)

the contribution coming only from the point X. The wave amplitude ψ2(X2) at X2

(regarding X fixed) is then essentially the transition amplitude KV (X2, t2;X, t1).
The state represented by ψ2(X2, t2;X, t1) then has its origin attached to it through
the argument (X, t1). In that sense it is a kind of ‘conditional state’. One would
interpret it as the amplitude for finding the particle at (X2, t2) if it originated at
(X, t1). Since KV is a Schrödinger (conditional) probability amplitude (by virtue
of eqs (3) and (7)) it must satisfy the integral equation (1), so that we have

KV (X2, t2;X1, t1) =
∫

dX3KV (X2, t2;X3, t3)KV (X3, t3;X1, t1) (8)

another important property of the propagator. Note that (7) also follows from (8)
in making use of (4). Hence the mutual consistency of the above set of equations
and definitions.

The conditional Schrödinger amplitude specified by the propagator KV which
carries the label of the initial state (besides that of the final state through its
argument) is, as we shall see, a rather interesting object since it carries the specific
information of the transition involved. We shall discuss, in what follow, some of its
interesting quantum properties.

3. Perturbation expansion of the Feynman kernel

We shall first define an unperturbed one-dimensional system specified by a time-
independent potential U for which the Schrödinger eigenvalue problem can be
solved exactly with eigenvalues En and eigenfunctions φn. The total potential
V is then split into V = U +W , where W represents, in general, a time-dependent
perturbation.

If we denote by KU , the propagator with the potential U , it is well-known that

KU (X2, t2;X1, t1) =
∑

φn(X2)e−iEn(t2−t1)/�φ∗n(X1). (9)

Then the perturbation expansion of the propagator KV around KU can be written
in the form [6]:

Pramana – J. Phys., Vol. 68, No. 6, June 2007 903



Ram K Varma

KV (2, 1) = KU (2, 1) − i

�

∫
KU (2, 3)W (X3, t3)

×
[
KU (3, 1) − i

�

∫
KU (3, 4)W (X4, t4)KU (4, 1)dX4dt4

+ · · ·
]
dX3dt3, (10)

where the arguments (2, 3), (3, 4) etc. ofKU denote the totality of variables (X2, t2),
(X3, t3), (X4, t4) etc. Writing the expression (9) for KU in (10) we obtain

KV (2, 1) =
∑

n

φn(X2)φ∗n(X1)e−iEn(t2−t1)/�

− i

�

∑
n,m

∫
φm(X2)φ∗m(X3)W (X3, t3)e−iEm(t2−t3)

×φn(X3)φ∗n(X1)e−iEn(t3−t1)/�dX3 dt3 + · · ·
=

∑
n,m

φm(X2)λm,n(t2, t1)φ∗n(X1), (11)

where the coefficients λmn(t2, t1) are the ‘transition matrix elements’, and may be
written as a perturbation expansion

λmn = δmne−iEn(t2−t1)/� + λ(1)
mn + λ(2)

mn + · · · (12)

with

λ(1)
mn = − i

�

∫
dX3

∫ t2

t1

dt3φ∗m(X3)W (X3, t3)φn(X3)

×e
i
�
[Em(t3−t2)−En(t3−t1)]. (13)

With the form (11), λmn(t2, t1) includes all orders of perturbation corresponding
to one or more scatterings, with λ

(1)
mn giving the first-order contribution, while the

first term of (12) pertains to no scattering and thus no change of state. Hence the
Kronecker δmn.

We now seek a physical interpretation of the terms in the summation in the
expression for KV . Consider one of the terms such as

Amn(X2, t2;X1, t1) = φm(X2)λmn(t2, t1)φ∗n(X1). (14)

Following Feynman and Hibbs [6] (p. 116) it can be interpreted as follows: φ∗n(X1)
is the amplitude that if we are at point X1 we are in the state n, λmn is the
transition amplitude matrix element for going from the state n at the time t1 to
the state m at the time t2. Thus λmn(t2, t1)φ∗n(X1) may be interpreted as the
amplitude for the system being initially (time t1) at the point X1 and the state
n and transiting over a time (t2 − t1) to the state m, being still at the point X1.
Finally interpreting the factor φm(X2) as the amplitude for the system to be found
at the point X2, knowing that we are in the state m, Amn(X2, t2,X2, t1) is finally
interpreted as the amplitude for being initially in the state n at the time t1 and
to be found in the state m at the later time t2 as a result of the time-dependent
perturbation W (X, t).
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4. Equation of evolution for the ‘conditional state’

We introduced in §1 the terminology of the conditional state through eq. (7), as
one example. We shall discuss here this concept in more general terms and in
more detail. As already discussed in §1, the propagator K(X3, t3;X1, t1) can be
interpreted as a ‘conditional’ probability amplitude. The equation of evolution (8)
of the propagator KV is the proper equation of evolution for the conditional state.

If in Eq. (8), we let [from (4)]

KV (X3, t3;X1, t1) ⇒ lim
t3→t1

KV = δ(X3 −X1) (15)

then we essentially recover eq. (7) except for the suffixes on X and t.

KV (X2, t2;X1, t1) =
∫

dX3KV (X2, t2;X3, t3)δ(X3 −X1) (16)

ψ(X2, t2;X1, t1) = KV (X2, t2;X1, t1). (17)

Note that the expression (7) for ψ(X2, t2;X1t1) or expression (17) for
ψ(X2, t2;X1, t1) in terms of KV as the conditional state, was obtained with
KV (X3, t3;X1, t1)|t3→t1 = δ(X3 − X1). The interpretation for the relation (15)
is that it gives the probability amplitude to be at X1 at the time t1, and to be at
X3 at the time t3 → t1. The δ-function describes the fact that there is no evolution.

So far the conditional state was defined with the initial state being localized at a
point X, defined by the δ-function δ(X1−X). However, a more interesting situation
arises, when the conditional state is defined with the initial state being one of the
eigenstates of the unperturbed system or sharply centered around it. Therefore, in
what follows, we shall gradually pass on from the initial state δ(X1−X) to the one
corresponding to one of the eigenstates and obtaining the final state corresponding
to it.

To this end, we begin by expressing the δ-function in terms of the eigenfunction
φn(X) as a completeness property

δ(X1 −X) =
∑

n

φn(X1)φ∗n(X). (18)

Then a given term of the sum, φα(X1)φ∗α(X), is to be interpreted as: φ∗α(X), the
amplitude to be at X, but in the state α, while φα(X1) for the particle to be in
state α, but at the position X1. The δ-function is ensured only if all the states n
are allowed to operate in the sum with equal weights.

If, on the other hand, the sum is centred around a particular eigenstate N , we
have the function

Δ(X3 −X1;N) =
∑

ν

φN+ν(X3)φ∗N+ν(X1)p(ν), (19)

where p(ν) denotes the weight function for ν. If p(ν) = exp[−(ν/ν0)2], then the
dominant term in the sum is φN (X1)φ∗N (X), if ν0 � N .
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If we now use the function (19) instead of δ(X3 − X1) in eq. (16), we have,
employing the expression (11) for KV (2, 3)

KV (X2, t2;X1, t1) =
∫

dX3

∑
m,n

φm(X2)λmn(t2, t1)φ∗n(X3)

×
∑

ν

ΦN+ν(X3)φ∗N+ν(X1)p(ν). (20)

Carrying out integration over X3 on the right-hand side we get

KV (X2, t2;X1, t1;N) =
∑
m,ν

φm(X2)λm,N+ν(t2, t1)p(ν)φ∗N+ν(X1), (21)

where we have added a label N to the kernel KV (X3, t3;X1, t1;N) on the left,
indicating the fact that the distribution of eigenstates defining the initial state is
peaked at n = N . Considered as a Schrödinger wave amplitude with respect to
the argument (X2, t2), the KV (X2, t2;X1, t1;N) is then a probability amplitude of
finding the particle at (X2, t2), if initially it had the amplitude at X1 with a sum of
eigenstates centred around N as given by (19). The initial distribution (19) in X1

is a broad one as against the δ-function, δ(X2 −X1). In the limit ν0 → 0, so that
p(ν) = 0, for ν �= 0, there is only one term, ν = 0 in the summation (21), and the
situation is completely complementary to the δ-function case. The corresponding
KV is then a ‘conditional’ probability amplitude with the initial eigenstate label
N , rather than the initial position label X1 as in eq. (7) or (17).

KV (X3, t3,X1, t1;N) =
∑
m

φm(X3)λmNφ
∗
N (X1). (22)

This state is now comprised of the eigenstates φm obtained through transitions
λmN from the well-defined initial state φN . We may call this a ‘transition state’
(for want of a more suitable name) as it is related to a state in transition. This
is also essentially a conditional state but with the initial state being an eigenstate.
This nomenclature emphasizes this specification. It is found to have some rather
interesting properties as we shall see in what follows.

5. ‘Transition state’ in two dimensions

It will be necessary to consider a generalization of the above formalism to two
degrees of freedom to uncover these properties. The two degrees of freedom may
refer to the two dimensions of a given particle. Let x and y refer to the two
coordinates of the particle. Then the two-dimensional counterpart of eq. (11) is
given by

KV (2, 1) =
∑
n,m
μν

φm(x2)χμ(y2)λmn;μνφ
∗
n(x1)χ∗

ν(y1), (23)

where we assume that the perturbation potential W (x, y) is time-independent, so
that λmn;μν is also time-independent.
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We recall thatKV (2, 1) is a Schrödinger amplitude with respect to the coordinates
‘2’ ≡ (x2, y2, t2) of the particle, subject to the initial state being given as fixed. If
the initial state is weighted as in (19), centred around a (N,K) with the weight
functions p(σ, τ) 	 exp[−(σ/σ0)2 − (τ/τ0)2] so that (23) leads to

KV (2, 1;N,K) =
∑
m,σ
μ,τ

φm(x2)χμ(y2)λm,N+σ;μ,K+τ

×φ∗N+σ(x1)χ∗
K+τ (y1)p(σ, τ), (24)

where we have written n = N + σ, ν = K + τ , and included the labels (N,K) on
KV , signifying the fact that the initial state is ‘biased’ to be centred around the
eigenstate (N,K). The final state denoted by the left-hand side is then a conditional
state. Since it is essentially defined by the transition λm,N ;μ,K we have called it a
‘transition state’ in the limit σ0, τ0 � 1.

5.1 Scattering problem with one ‘bound’ and one ‘free’ degree of freedom

We shall now apply the above formalism to a scattering problem where the particle
is bound in its one degree of freedom and free in the other: the potential U in the x-
coordinate, and a constant potential along the y-coordinate. Since the perturbation
W which induces the transition λm,N ;μ,K is assumed to be time-independent, the
total energy is conserved across the transition so that

Em + Eμ = EN + EK , (25)

where EN and EK are respectively the energy of the initial ‘bound’ and ‘free’
degrees of freedom. Correspondingly φN , φm represent bound state eigenfunctions
while χK , χμ represent plane waves along y.

χK = eiKy, χμ = eiμy (26)

with (K,μ) being continuous wave number variables, so that

EK =
(�K)2

2m
, Eμ =

(�μ)2

2m
. (27)

Now from (23) the transition state (with the initial labels N,K) is given by (with
σ0 = τ0 = 0)

KV (2, 1;N,K) =
∑
m,μ

φm(x2)φ∗N (x1)χμ(y2)χ∗
K(y1)λm,N ;μ,K . (28)

Note that,

χμ(y2)χ∗
K(y1) = eiμy1−iKy1 = ei(μ−K)y2eiK(y2−y1). (29)

Using (25) and (27) one can calculate the quantity (μ − K) in (29). Assuming
that the transition N → m = N + α, is such that α � N , then from the energy
conservation (24) we have
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Eμ − EK = EN − Em = −α∂EN

∂N
. (30)

Using the expression (27) for EK and Eμ, we get

(μ−K) = −
(

�K

m

)−1
α

�

∂EN

∂N
= −α

v
, (31)

where we have approximated (μ + K) 	 2K, in view of α � N, α being the
level interval across which transition has taken place, and where v = �K/m is the
velocity along y, while  = (∂EN/�∂N) is a frequency corresponding to the bound
motion in the x-coordinate in the correspondence limit.

5.2 Harmonic oscillator in the bound degree of freedom

We now specialize to the case where the bound degree of freedom is a harmonic
oscillator with the potential U(x) = 1

2mΩ2x2; with the frequency Ω, so that EN =
(N + 1

2 )�Ω. The expression for (μ−K) is then obtained from (30), as (μ−K) =
−αΩ/v.

Consider now the complete expression for KV (2, 1;N,K) of eq. (28) with m =
N + α. Note that because of the energy conservation (25), the summation (or
integral) over μ is restricted to values given by (31), which is in turn related to
α = m−N . We thus have from (28) for the case under consideration.

KV (2, 1;N,K) =
∑
α

φN+α(x2)φ∗N (x1) exp[i(μ−K)y2 + iK(y2 − y1)]

×
{
δN+α,NδμKe−i(EN+EK)(t2−t1)/�

−iπe−i(EN+EK)(t2−t1)/�

×δ(EN + EK − Em − Eμ)WN+α,N ;μK , (32)

where WN+α,N ;μK is the matrix element of the perturbation W (x, y) between
the states (φN+αχμ) and (φNχK), and the δ-function in energy arises from the
time integration in the expression for λ(1)

mn;μK , when the perturbation W is time-
independent. Note that the δ-function term ∼ δN+α,NδμK in (32) corresponds
to the unperturbed part of KV (2, 1;N,K), which would be non-zero only for
N + α = N ; that is α = 0, and for μ = K.

On the other hand, the factor WN+α,N ;μK in the expression for λ(1)
N+α,N ;μK ,

which is the matrix element of the perturbation W (x, y), is also defined for α = 0.
This pertains to the elastic part of the transition amplitude. Separating it from the
inelastic part we have

KV (2, 1;N,K) = φN (x2)φN (x1) exp [iK(y2 − y1)]
× exp[−i(EN + EK)(t2 − t1)/�]

×
{

1 − iπδ(Ē)
[
WNN ;KK + (φN (x2)φN (x1))−1
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×
∑
α�=0

φN+α(x2)φN (x1)WN+α,N ;μKei(μ−K)y2

]}
, (33)

where we have denoted for brevity Ē = (EN +EK−EN+α−Eμ). If the perturbation
potential W (x, y) in the expression for λ(1)

mN,μK is centred around y = y0, then the
matrix element WmN ;μK is

WmN ;μK =
∫

dxdye−iμyφm(x)W (x, y − y0)eiKyφN (x)

= e−i(μ−K)y0W̃mN ;μK . (34)

Now define K(1)
V (2, 1;N,K) as the kernel describing the transition (N,K ⇒ N +

α, μ) for all integers α. The matrix element WN+α,N ;μK , of the perturbation W
would be non-zero for the set of values (α, μ) which are consistent with the energy
conservation given by (30) to the lowest order.

If α� N , as assumed, we may write ΦN+α = φN +α∂φN/∂N , then the pertur-
bation transition kernel is given by (from (33))

K
(1)
V (2, 1;NK) = −iπ exp [−i(EN + EK)(t2 − t1)/�]

×φN (X2)φN (X1)δ(Ē)eiK(y2−y1)

×
{
W̃NN ;KK +

∑
α

α
∂ lnφN (X2)

∂N

×W̃N+α,N ;μKe−iαΩ(y2−y0)/v + · · ·
}
, (35)

where eq. (33) has been used and (μ − K) has been substituted for from (31)
identifying  with ω.

Expression (35) has a rather interesting structure which needs to be taken note
of. It has under the summation over α, an exponential exp [−iαΩ(y2 − y0)/v]
which derives from the term exp [−i(μ−K)(y2 − y0)] and which represents a (one-
dimensional) plane wave with a difference wave number (μ − K) = −αΩ/v origi-
nating at y = y0. Since α takes values 1, 2, 3, . . ., the sum is over all the harmonic
waves with the wave number (μ−K) = −αΩ/v originating at the centre y0 of the
potential, while the original (large) de Broglie wave number K appears only in the
overall common factor exp[iK(y2 − y1)] representing a direct propagation from the
initial point y1 to the final point y2.

The consequence of such a structure is that if there are more than one scattering
centres denoted by (y(1)

0 , y
(2)
0 , . . .), then K(1)

V would have the form

K
(1)
V (2, 1;NK) ∼ eiK(y2−y1)

{
W̃N,K +

∑
α

α
∂ lnφ(x2)

∂N

×
[
W̃

(1)
N,αe−iαΩ(y2−y

(1)
0 )/v + W̃

(2)
N,αe−iαΩ(y2−y

(2)
0 )/v + · · ·

]}
. (36)

If we then calculate the modulus squared |K(1)
V (2, 1;NK)|2 to obtain the transition

probability, one would get interference terms involving the terms ∼ e−iαΩ(y2−y
(1)
0 )/v,
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and eiαΩ(y2−y
(2)
0 ) while the overall factor eiK(y2−y1) (involving the original wave

number K) is annihilated. The initial de Broglie wave number is thus not involved
in the interference pattern. These terms represent a set of plane waves along the
y-direction with the wavelength λα = 2πv/αΩ. These waves, which are associated
with the transition amplitude, may be called ‘transition amplitude waves’, with α
being the harmonic number. From the nature of their derivation, it is clear that
these are matter waves, but are interestingly independent of the Planck quantum
� to the lowest order in the present case.

Of course, these are not the basic de Broglie waves, but are derived, and have as-
tonishingly long wavelengths. Assuming for example, the frequency of the harmonic
oscillator to be Ω ∼ 109 rad s−1 and a velocity v ∼ 109 cm s−1, yields a value for
λ1 = 2πv/Ω ∼ 2π cm. This is a rather large value for a matter wavelength, which we
have indeed observed in our experiments [1] in the form of one-dimensional matter
wave interference effects in a system of charged particles (electrons) moving along a
magnetic field. Here the bound x-motion correspond to the Landau bound states in
the normal direction (with the frequency Ω being the gyrofrequency Ω = eB/mc)
and the free motion along y, the magnetic field direction.

6. Summary and concluding remarks

As mentioned in the Introduction, the concept of transition amplitude wave was
developed by the author in relation to the problem of charged particle dynamics in
a magnetic field. This problem which involves effectively a harmonic oscillator in
the normal direction to the magnetic field (of frequency Ω = eB/mc, the particle
gyrofrequency), and a free motion along the magnetic field, is completely analogous
to the problem discussed in this paper. The magnetic field value which would cor-
respond to an electron gyrofrequency Ω = 109 rad s−1, used in the above estimate
is B = 100 G.

The derivation given in this paper culminating in the expression (36) for the
transition kernel thus provides a formal justification for the transition amplitude
concept introduced in a qualitative manner in the Appendix of ref. [2], with the
object e−iαΩ(y−y0)/v in (34) being the wave function describing the macro-matter
wave being the same as obtained in ref. [2]. Though the derivation given here is
for a simple case (a harmonic oscillator in one of the dimensions and free motion
in the other) the concept is applicable to more general cases. The author has, for
example, applied this concept to atoms and molecules [7] where the centre of mass
motion takes up the role of free motion. Interestingly, the corresponding expression
for the macro-matter wavelength has the same form as obtained above, namely
λM = 2πv/ω, where v is now the velocity of the centre of mass and ω is the orbital
frequency of the internal motion of the atom or molecule in the correspondence
limit.

What is interesting and remarkable about the expression (36) is that it consists
of a sum of the transition amplitude waves e−iαΩ(y2−y

(1)
0 )/v, e−iαΩ(y2−y

(2)
0 )/v etc.

with their points of origin y
(1)
0 , y

(2)
0 , . . . specified therein. This indicates that they

arise only as a consequence of and subsequent to the scattering process. An image
profile of the interference of these waves would thus carry information about the
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relative location of the scattering centres, such as in a crystal or atoms in a long
molecule, for example.

In an extension of the experiment already reported in [1], we have demonstrated
in a simple manner, the possibility of extracting such an information from the
interference patterns. The experiment of ref. [1] was repeated with varying grid
positions between the electron gun and the collector plate. As was emphasized,
the grid had served as a scatterer of electrons moving along the magnetic field,
and hence as the generator of the transition amplitude wave at its position. As
the position of the grid is varied, the interference current profile at the collector
plate (and the grid) would vary accordingly. This is indeed found to be the case
in the performed experiment [5]. Inverting the argument, one can say that by
analysing the interference pattern one can deduce information about the relative
position of the grid vis à vis, the plate. Moreover, the frequency of the internal
motion, the gyrofrequency in this case (corresponding to the Landau levels), is also
deducible from the experimental data, as also the Landau level structure through
the harmonics observed.

Finally, we wish to emphasize the importance of the ‘transition amplitude state’
which results from the process of inelastic scattering of electrons (or any other
particle) off a bound system. This is distinct from both the initial state and what
we have been calling as the ‘final state’ in the scattering process. It is a kind of
a projection of the final state on to the initial state, indicating the ‘extent’ by
which the initial state has changed in the process of scattering. The interesting
point is that this ‘extent’ of change is directly observable through the interference
phenomena in the cases discussed above. We give this state a distinct identity
calling it a ‘transition amplitude state’ or for short a ‘transition state’ with the
understanding that this name will convey the required meaning. This may also be
called an ‘overlap state’ if one so prefers.

Besides the experimental results of ref. [1], a more dramatic consequence of such
a state has already been reported [8,9]. This is the observation on the detection of
a curl-free vector potential on the macro-scale and in one dimension through the
dynamics of the transition amplitude generated as a consequence of scattering of
electrons moving in a magnetic field. This is the Aharanov–Bohm-like effect, but
occurs on the macro-scale and in one dimension. This effect was predicted by the
author in ref. [1], and was subsequently observed [8].
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