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Abstract. In this paper we propose a deterministic basis for quantum mechanics and
give equations of motion (derivable from an action principle) which describe determini-
stic trajectories in an extended space that the quantum events are assumed to follow.
By applying the laws of classical probability, namely the conservation of probability
along the deterministic trajectories, we derive a probability description which is found
to be a generalization of the Schrddinger description with built-in probability inter-
pretation. The generalized description admits of an infinite number of wave functions
following coupled set of Schrédinger-like equations while the total probability is given
by the sum of the modulus squared of all these wave functions, one of which is identified
as the Schrédinger function. If all the functions other than the Schrédinger wave
function be neglected the Schradinger description is retrieved. It is thus concluded
that the classical probability not only embraces probability in quantum mechanics
but allows other new modes for its propagation.

We thus predict new modes of quantum behaviour and we discuss two situations and
propose experiments where these modes could be looked for. Finally, our theory also
provides an identification for the quantum of action, .

Keywords. Quantum mechanics; deterministic trajectories; Copenhagen interpreta-
tion; hidden variables; classical probability; uncertainty principle; tunnelling; Bohr-
Einstein controversy.

1. Introduction

The probability in quantum mechanics has generally been considered to be of a
different nature from the classical probability (see, for example Fine (1972) and
reference cited therein). While the latter is usually traced to a genuine lack of informa-
tion, or some information forgone voluntarily (as, for example in statistical mechanics)
the former has generally been regarded as intrinsic and * irreducible ’ in nature by
the followers of the Copenhagen School.

That the nature of probability should be different in two different physical situa-
tions is somewhat disconcerting from a conceptual view point. This question is
also the essence of the Bohr—Einstein controversy. For, if we regard the probability
in quantum mechanics to be of the same nature as the classical probability we are
necessarily led to Einstein’s view point that the J-function in quantum mechanics
describes an ensemble of °similarly prepared ® individual systems rather than the
individual systems themselves (as insisted upon by the Copenhagen School). With
the Copenhagen view point, on the other hand, we are forced to a concept of proba-
bility which is entirely peculiar to itself (see, for instance Schrédinger in Przibram
1967).
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Rather than accept such a peculiar concept of probability and other ‘conceptual
difficulties emanating therefrom, we assume that the probability in quantum mechanics
is also of the same nature as the classical probability. This point of view, naturally
leads to the so called ‘ hidden variables ’ theories of quantum mechanics. A review
of the hidden variables theories put forward so far has been given in the excellent
book by Belinfante (1973) and we shall therefore not discuss them here. We present
in this paper what may be considered in some sense as a © hidden variables ’ theory,
though for reasons to be given later we would prefer not to use this terminology for
this theory. It differs from the other ¢ hidden variables ’ theories in a very impor-
tant respect namely that it explicitly involves the application of the laws of classical
probability theory to the individual events in quantum mechanics.

We first give a generalization of the classical equations of motion by introducing an
extra angular coordinate which, together with the three position coordinates and
corresponding velocity coordinates, specify completely what we term as the microstate
of an individual system. The generalized equations of motion then describe the time
evolution of the microstate along deterministic trajectories in the extended space.

A quantum mechanical state is then represented as an appropriate ensemble of
systems following these generalized trajectories in the extended space. We apply the
laws of classical probability to the ensemble and derive what turns out to be a gene-
ralization of the Schrédinger formalism with a built-in probability interpretation.

2. The state preparation and the quantum mechanical ensemble

One of the distinctive differences between a quantum mechanical system and a classi-
cal one lies in the state preparation which precedes any experiment. This consists,
in either case, in obtaining a large number (an ensemble) of systems prepared under
identical conditions by means of some specified physical processes. '~ These processes
essentially serve to fix identical initial conditions for all the members of the ensemble.
In the framework of classical mechanics, all the systems in a given experiment follow,
ideally speaking, identical courses. This can be expressed by saying that the process
of state preparation in classical mechanics is able to fix or control, in principle, all
the initial data or alternatively the integrals of motion. Such states are referred to as
dispersion free.

The quantum mechanical states, on the other hand, are dispersive. In spite of
being similarly prepared the systems belonging to a quantum state behave quite
differently in a given experiment. From the point of view of the classical probability
this means that these systems still differ from each other in the initial values of some
of the variables which the state preparation processes are not able to control.
Following Khinchin (1949) such initial values or integrals of motion are referred
to as “ free * while those which can be fixed by the state preparation processes, are
called “ fixed ” or * controllable ** integrals of motion. ‘

While the controllable integrals of motion completely specify an ensemble represent-
ing a quantum mechanical state, the free integrals serve further to specify the micro-
state of the individual members of the ensemble. The various members of the
ensemble belonging to a quantum state would then naturally have the same set of

values for the controllable integrals but will have a distribution in the values of the
free integrals.
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3. Generalized equations of motion for the microstate in the extended space

As we know, the equation of motion of classical mechanics follow from the
stationarity of the action S,

S,= [ La (1)

where the (classical) Lagrangian, L is considered to be a function of the coordinates
x; and the velocities X;. In view of the considerations given in section 2, the equa-
tions of classical mechanics must be generalized to include the free variables (or the
so-called hidden variables in the conventional terminology) so that they describe the
motion of an individual quantum system in a higher dimensional space. The micro-
state of an individual system is thus specified by the totality of the coordinates
{xi, X:} and the corresponding generalized velocities where the X, represent the
additional (free) variables.

The generalized equation of motion is then postulated to be given by a variational
principle similar to (1)

1
S= [ Adt @
21

with a generalized Lagrangian A of the form

A=32mx+§2g {x} {X}) k2 ®)
i J

We shall consider here only a simple case of a particle of mass m and only one free
variable X which we assume to be an angular coordinate. Thus let

' A———%miz-l—%g(x,x)kz. | (3a)

The stationarity of the action (2) with A given by (3a) then gives the following
Euler-Lagrange equations for x and X:

mi =3 x2 %8 (x x) (4a)
ox ‘

d, . 00 08

Lax) =3 %298

b =i (@)

These equations constitute a generalization of classical mechanics where now it
must be emphasized that x and x do not represent the corresponding variables of
the latter. 'We must now show under what conditions and with what identifications
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these equations go over into those of classical mechanics. Note that if A is time

~ independent, then the energy is a constant of motion, Thus

—x.0A i O _y
o0xX oX
=pmx+ 3 gX )

Thus the energy is numerically equal to the Lagrangian in this case, and is a constant
of motion. :

4. The classical limit and the origin of dispersion of a quantum state

We assume that the angular coordinate X is locally cyclic. This means that g is only
weakly dependent on X locally. The implication of this for the trajectory of a
particle is that for a given variation of g along the trajectory the change in the X
coordinate is very large compared to the change in the x coordinates.

We then integrate both sides of eq. (4b) with respect to ¢ and obtain:

gX =%f dtkéa.i(gic) + e (const). 6)

The integral on the right of eq. (6) is a trajectory integral. If, as stated above, the
trajectory advances a little along x while it changes its X coordinate by a large
amount, so that the fractional change in g due to the change in the x coordinate is
small per period of the X motion, that is,

na(g)'()-lfi'-a::-<l )
ox

then the integral in (6) can be considered to be at constant x and therefore partially
with respect to X. Thus writing % dt = dx we get immediately on carrying out the

integration
gX =3gX + €
or

JgX=c (8)

The condition (7), however, is the familiar condition for the variation of g, following
the trajectory, to be adiabatic, so that eq. (8) expresses the adiabatic invariance of
3gx

It may be noted that g X is, by definition, the canonical momentum p,,, COIres-
ponding to the coordinate X. Equation (8) thus expresses the adiabatic invariance
of the canonical momentum p,

py=gx=2e (8a)
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If the coordinate X were strictly ignorable or cyclic, og/dy would be strictly zero

and the invariance of g X following from eq. (4b) would be strict. The equations of

motion (4a) and (4b) for x and X respectively would be exactly decoupled. If we

now eliminate X from eq. (4a) using eq. (8) we get

2 2

__2:ag__ jl(%i). ©)
g ox ox

Equation (9) then describes the motion of the x-coordinate of the point mass m.
If this motion be identified with a classical motion, then the quantity 2¢%/g(x) can be
interpreted as the potential for this motion. The equation of motion (9) can obvious-
ly be obtained from the Lagrangian

’ 2
L=} mir 2% - (10)
g

as the Eﬁler-Lagrange equation resulting from the stationarity of the reduced action

t
§S, =8 Ldt=0. 11
4

As is shown in the appendix, this reduced action principle can also be obtained
directly by incorporating into the original action (2), the constancy of the canonical
momentum p,, as expressed by eq. (8) or (8a). The potential V' =2 ¢2/g as viewed
from this higher dimensional space, thus appears as a property of the extended space
as described by the metric component g.

Note that so long as the adiabatic invariant of eq. (8) and (8a) is a good invariant,
the potential function V' = 2¢?/g is well defined and the classical equation of motion
(9) is a good description. However, since the invariance of (8) is only adiabatic,
departures from classical motion are to be expected and the potential function as an
energy would cease to be well defined whenever the conditions for the validity of the
adiabatic invariance are violated. We shall show that these departures can be
identified with the quantum behaviour and that statistically these are described by a
generalized set of Schrédinger equations.

As noted earlier, if the coordinate y were strictly ignorable or cyclic, the invariance
expressed by eq. (8) or (8a) would be exact and the equations for x and y would be
decoupled. Equation (9) for x which describes the classical motion with 2&%g as
the potential would be exact. In this case, systems with different initial values for
the y-coordinate but the same initial values for x and %, and, of course, the same
initial values for the canonical momentum Py Will all follow the same classical

trajectory. The coordinate y can be considered hidden from the point of view of the
classical motion, since its presence is not manifested in the latter. Very nearly the
same behaviour would follow when y is not strictly cyclic, but the adiabatic invari-
ance expressed by eq. (8) is good.

When y is not even approximately cyclic, and therefore when the adiabatic invari-
ance of p, is appreciably violated in certain regions of space, the motion of the x
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coordinate will depart appreciably from the classical motion. These departures
from the classical motion are identified with the quantum behaviour. The exact set
of eqs (4a) and (4b) are then the proper equations to describe the motion. Now
systems with the same initial values for x, x and, p, but different ones for y will,

in general, end up with different values for x and x after the same time interval.
From the point of view of the exact motion as governed by the set (4), the variable X
is no more hidden, because a dispersion in its initial value yields, in general, a disper-
sion in the final values of x and X. This variable may of course, be free, if the state
preparation is not able to fix definite initial values forit. The dispersion in a quantum
state is then a consequence of one or more free variables of the system acquiring a
distribution of initial values during the state preparation. '

While the set of eqs (4) describe motions involving arbitrarily large departures
from adiabatic invariance of p,,, we stipulate that the departures corresponding to

the actual quantum behaviour are not arbitrarily large and the exact motion for x
though different from the classical one, is usually in the neighbourhood of the latter.
This means that the adiabatic invariance of p, still holds at least approximately.

5. Formulation in terms of classical probability and the Liouville equation for the
system

The set of egs (4a) and (4b) with an appropriate choice for g describes the time
evolution of the microstates of the individual systems. As discussed eatlier in
section 2 a quantum state is an appropriate ensemble of these microstates (or of
systems in these microstates). We shall now specify this ensemble corresponding
to the quantum state, which we, of course, consider to be a pure state.

We first stipulate that the ensemble corresponding to any pure quantum state is
microcanonical in the initial value of the adiabatic invariant p,, as defined in eq. (3a).

We further assume that it is microcanonical in also the energy ¢ of the system. On
the other hand, since the angular coordinate X is fiee, the state preparation will
necessarily result in the systems of the ensemble being distributed over the various
values of X. In general, the systems will also be distributed over various values of
the variables x and X at any given time t. Then if f represents the Liouville density
in the phase space of the eight variables (x, X, p,, x) at a time 7, we have f satisfying
the following Liouville equation

Ui 48 p & 38 (12)

ot ox ov OPy oX

where v and [’x are given by eqs (4a) and (4b) respectively. Following the stipula-

tion made at the end of the last section, we shall assume the adiabatic invariance of
Py to hold and therefore put

ety =0 | )

Ijx:dt
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in eq. (12). Next, from eq. (9) which uses eq. (8a) or (13) we have for v
my = — 2 (2e/g). (14)
ox 4

Because of (13) and the nature of the ensemble constructed above (being microcanoni-
cal in Py = 2¢), the distribution function f'is of the form

f=8(px'_2€)f(xav,x9 t;px =2€) (15)
where Py =2ein foappears as a parameter. Using (13) and (15), eq. (12) becomes

f+ aj+v . 5% o (16)

5.1. A change of variables

In order to be able to make a connection with classical mechanics on the one hand
and quantum mechanics on the other, it will be found to be useful to change the
- variables X to @ defined by

@:X_lfdtlmya %)
€ 2 R

and transform eq. (16) accordingly. Thus we have

2 2\| _(o 2 2 3) 2
(at+ v ax)‘ | (at+ v'ax) o +(at+ " ox) ¥l og
] ) 1 m? 0
=2 2 - 18
(5t+v 3X)0 2 € o0 (182)
and 0.0 (18b)
oX o0 :
Equation (16) then becomes
. 2 o
3f 4y, af ( 1’1‘”_) o _ (19)
ot ax 2 €/ 00

where f is now considered as a function of (x, v, @, ¢; €) and X and v are to be ex-
pressed as functions of the new set of variables. These are given essentially by
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eqs (8a) and (14) respectively, where g in these expressions still contains X as an
argument, To express X in terms of the new variables we substitute for  m? in
(17) from the energy relation (5), so that we have '

W=p -8t (20)
€

The characteristics of eq. (19) are thus given by

X=v : (21a)
i=—120 (2_'33) (21b)
mox\g
2e 1 mv? L
and O =———- —=—=C 21c
g@) 2 e € )

where the X dependence of g is to be transformed by using the relation (20). The
variable @ now serves in place of X as the free variable. We note that the right hand
side of (21c) is (—L/e), where L is the (classical) Lagrangian of the system [eq. (11)]
except for the weak X (or @) dependence of g. This was, in fact, the motivation for
the change of variable from X to @.

The above set of eqs (212)-(21c) constitutes a generalization of the equations of
motion of classical mechanics in an adiabatic approximation to the original set (4a)
and (4b). It may be noted that the velocity X appearing in the above set is not the
same as the velocity in classical mechanics but tends to the latter in the classical limit.

6. Connection with probability in quantum mechanics and equations for the probability
amplitudes

An event in an experiment in quantum mechanics is here identified as the end-point -
of the trajectory of an individual system in this space. The density of trajectory
end-points at a certain point (x, v, @; €) of the space at a time ¢ is given by the function

A
f(x, v, ®, t; €). Since in an experiment one records the density of end-points
without regard either to v or @, the total integrated density is given by

Gx, t)=[dd dF(x,V, D, 1; €)

=[dof(x, 0,1 ). @

Since the functions, f, f~ represent probabilities, we demand them to be positive
definite. We, therefore, write

Foowo,0=4 @3)

where i is a real quantity.
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Consider now an experiment over the duration of an infinitesimal time interval +
between the times 7 and ¢ + r. Thus using eqs (22) and (23) and introducing a
8-function, & (v — v'), we have at the time ¢ + +

_f(X, Oﬁ'f’ t+ T) == f dv dv’ l/;\ (X, v, (I)H--ra r+ T)

(v —vY) l/7 (X V', Optrs t + 7). (24)

From eq. (19), on the other hand, we have for the infinitesimal time interval r

f/-\(x, Y, 40 ! + 7') - .//V\(X — VT, V— v T, (Dt’i-f - (D 7, t) (25)

where v is given by eq. (21b) and @ by eq. (21c). Equation (25), as also eq. (19)
express the conservation of probability in the space of the set of variables x, v, ®)
this being a hypersurface defined by py = 2 in the space of the original set of eight
variables. Making use of (23) in (25) we get on taking the square root

BV, B 4 7) = k4 (X — vr, ¥ — ¥,
Qi L7/ 1) (26)

where we have substituted for @ from eq. (21c).

We now substitute for *Z’\ (X, V', ®p4ry t + 7) from eq. (26) in eq. (24) taking the
positive sign. The choice of the positive sign, as we shall see later, is dictated by the
obvious requirement that the leading term on the right hand side of eq. (24) should
have the same positive sign as the term on the left hand side. We thus have:

f~(X, () P AR T) = f dv dv' ‘['\(x, V, Oy 7')

SOV —V) i (X —v'r, ¥ — ¥, Dpir + L' 7] & 1) 27
where

L'=3}m"*— V(x, X, t). (28)

Here Vis the “potential” 2¢*/g, which now depends on X through g and its X-depen-
dence is to be converted into the @ dependence through the relation (20). To avoid
dependence on the half angles as would follow from the relation (20) we assume that
the argument of g is 2X rather than ¥.

We recall that X is an angular coordinate so that any physically significant function
must be periodic in X with a period 2=. Since @, as defined by eq. (17) is given
additively in terms of X, periodicity in X implies periodicity in @ also, We therefore

write a Fourier series for 4 with respect to (1) P
b @) =2 (1) einore, (29)
n

p.—7
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We thus use the Fourier expanswn for the n,l: according to (29) in eq. (27) and expand

the Fourier coefficients "l’ (x —V 7,V —V 7,n,t) around the point (x, v/, n, 1)
and use the following Fourier representation for the 8-function, 8 (v — v):

o e ,
8(v——v):(2_;)_3fdke’k =V | (30)
We then obtain:

S (X Opirs fi- T) = f dv dv' dk z (27-,)8 g in’ Otar

n,n

{i’ (x,v,—#n, t+) {‘/I\’ x, v, mt)

v BB TN 2 O @)
ox 2 d L 9x®
I

+ r? Z v, v,j@‘“l’(n)_ V. ___BT (1) %
ox; 0%, ov

i<j
exp ik.(v— V') exp in (O, + L't]e), - (3D

Integrating both sides of eq. (31) over @+, we obtain on using the definition (22) for
G(x, t): '

G(x,t+T) :—-vz (2%)3 f dk dv exp (ik-v)

n

¥ (x,n,V, t +7) [ dv exp (—ik V) exp (} inmv? 7] e)

Z %Snn'———i%-z (n' | Vin)

! 0 122 2 & z 9,7 o
—|Vr. == ' — 2 / ’
( ox 3 LY axp L 7 axiax.f)S”"

J i<y

o7

| viny. 2 | | ‘
e <n| |n> %‘{’(x,v,n,t) @
where we ha-ve 'expanded the exponential i:ivolVing the Lagrangian as below:

exp (inL' v[e) =exp in(m? v]e—V1]e)

=exp(inmerle [l —inVr]e +‘...] ' (33)
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and where the matrix element { »’ | V| n> is defined as
2
(A | Vny = [ dp exp (— in’ @) V exp (in ®). (34)
0 4

The potential ¥ was assumed to have a weak dependence on X in a quasi-adiabatic
approximation. We can thus effect an expansion in terms of the small parameter 7
as defined by (7) each term of which is Fourier expanded with respect to the angular
coordinate X. We thus have, using formally e in place of #:

Vix, 2X, 1) =2 " V(x, v, 1) exp (2 vX), (35)

Substituting for X in terms of @ using (20) we get
(H |V ny = el W=l ¥ (x, 0 —u, 1) exp [i (1 — n) 8t/ q. (36)

We next introduce in eq. (32) the Fourier expansion of {I\’ x,nv,1)
A 1 3
Y(x,mv,t)= (2_) f dk exp (ik.v) ¥ (x, n, k, t). 37
AT

and obtain:

| o
Gx, t+7)= z f dk dk’ (i’i:;i)a exp [—5 i e (k—k')2/mn’ 7)]
n ’

9
ox

@m)=8 W* (x, n', k, t+7) z { S’ [ 14+ -5 (k—K).
mn
n .

1 N € 2“21 k—]-'z( € )2 o2
+§T (-z’mn'r v ‘ Z(i ) mnt] 9xz
I

2 2 k06— )]

i<j '
in ,
""“; (n ]V[n)

——-fllk,_?_<n’]V|n>} ¥ (x, k, n, 1) . (38)
m ox .




100

R K Varma

where we have made use of the following integrals:

[ v exp (—ik- V') exp (} inm v r/€) exp (k' V)

3

' -_—-( 2ne )‘T exp [—4 ie (k — K')?/mn 7]

Note that

imnrt
[ dv' exp (—ik-V) v éxp (3 inm v [ €) exp (Ik' - V')

2me

P 32
= (k — k') (—-—-) exp [—% i e (k —K)?/mn].
imn T

mnT

[ dv' exp (— ikv') v exp (dinmv"r[e) exp (K"v')

e st () (22
imn'r 4 \mn'r imn~] .

exp [—iie (k—K'P[mn+].

70 imn T

_%<%ﬁmmhwm4Wmh%th

(39a)

(39b)

(39¢c)

(40)

Anticipating this limit, and carrying out integration over k' we get from eq. (38):

G(x, t47) =2 (2m)™ f dk ¥* (x, k, i, t+47)
n
s’ Y1— ST 2%
z[ " { 2imn v
n

1——

mn  Px

€

in 'r( ck . _a__) ' |'V| n)] Y (x, k1, t).

From egs (22), (23), (29) and (37), on the other hand we have:

G(x, t47) = 2 2m)3 [ dk ¥* (x, v, k, t+7) ¥(x, 1, k, t47).
n

(41)

(42)

Comparing the two expressions (41) and (42) for G(x, t--7) we obtain on interchang-
ing the role of n and n': '

Y (x, k, #, t4-7) =[1— fT \VA
2imn
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_ﬁ"_:(l__f_k-éé) (| Vnd W (x, k, n, 1)
X

€ mn

i 1
. n'(l-——-ik'
€

, .2) | V'S ¥ (x, k7, £). 43)
mn ox

n

Expanding the left hand side around ¢ and taking the limit - 0 we obtain:

,;fa_‘P_@z__(s)szw(n)
n/ 2m

mn

n [(1.__6_ k~£) V(O)] ¥ (n)

+ 2

Smd

nsn

H_ (1_’;_;?1(-8_3)()<n] V[n’)] ¥ ().

n=1273.... (44)

where W(n) stands for ¥ (x, k, », t) and where V(0) = {n| 'V| n') is just the phase
averaged part of the ‘ potential’ V. The total probability density G(x, ¢) from
(42) is obtained ss:

G(x,1) =2 2m)® [ dk W* (x, k, 7, DY (x, k, n, 1), (45)
n

Equation (44) represent a set of coupled partial differential equations for the set of
functions ¥ (n, k) for different values of # and k. Equation (45) expresses the pro-
bability expressed, as usual, as the modulus squarred of the wave function ¥ (n, k),
now generalized as a sum over the varios modes 7 and k.

If we assume that W* (x, k, 1, ) ¥ (%, k, 7, ) =5 (&). (27 ¥* () ¥ () and
that all ¥ (n) =0 forn # 1 the set of eqs (44) and (45) reduce to

e BD_. _ ¢ G2 §m)1v0) T 46)
ot 2m ‘
G (x, £)=T* (1)¥(1). @7

The set of eqs (46) and (47) describe completely the Schrédinger formalism of non-
relativistic quantum mechanism provided we identify e with % and #(0) with the
classical potential. Equations (44) and (45) may thus be considered as constituting
a generalization of the usual Schrédinger theory which involves new modes other
than the Schrédinger mode for n#1, k+#0 for the propagation of probability. We
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shall discuss in section 7 the interpretation and significance of the new modes re-
presented by the functions ¥(n, k). ’

7. Discussion

It may be emphasized that the Schrédinger description and its generalization have
been obtained as a consequence of the application of the classical probability to
individual events. Thus rather than being restrictive in its application, the classical
probability not only embraces the probability in quantum mechanics but allows and
predicts new modes provided it is applied appropriately to the events in quantum
processes.

To understand the complete significance of these new modes would require a
careful analysis of these new functions ¥ (n, k) in terms of ensemble that they re-
present. We consider these questions in section 7.4. Before this we first consider
some interesting physical implications of our model to characteristic quantum pheno-

mena like the quantum tunnelling, uncertainty relations and the existence of 7, the
quantum of action.

1.1. Identification of € with #

An entirely new feature of our theory is that we have given an identification for # as
the value of the adiabatic invariant associated with the locally cyclic variable X that
we introduced. It is a general property of adiabatic invariants that so long as the
fields in which the particle moves (here the metric component g) vary slowly, the
invariance is good. That is, the value of the expression for it remains close to, say,
its initial value. In the present case the condition (7) represents such a condition on
the slowness of the variation of g. The # is thus identified with the initial value of
$gx=¢ (eq. (8)). .Ithasbeen assumed in the above derivation that all the systems of
the ensemble have the same value for it.

Sharp variations in the field lead to significant violations of the adiabatic invariance.
This property will be found to be an essential physical feature of our formalism in
terms of which we would be able to physically explain the characteristic features of
the basic quantum phenomena.

As noted earlier, classical equations of motion follow from the set of eqs (4) with
the identification of 2e?/g with the potential, if the adiabatic invariance lgx=¢€ of
(8) is almost exact. This would be so if the metric g is a slowly varying function of
x in the sense of condition (7). In that case, the potential V as an energy is a well
defined quantity in the sense that a well defined separation of energy into the kinetic
and potential energies is possible. When g or alternatively the potential ¥ is rapidly
varying, however, so that the adiabatic invariance of {gy is violated the potential as
an energy ceases to be well defined. Since the quantum effects are known to be
more pronounced when the potential varies rapidly, they would appear to be the
manifestations of the violation of the adiabatic invariance. We show that this is
indeed the case for the two cases discussed below.

Furthermore, numerical calculations of some adiabatic invariants (Hastie et al
1969) have shown that they exhibit jump like changes in their values at certain points
of space where the metric has certain particular properties, and the sign and the
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magnitude of the change depends on the value of the phase angle just before the
change. Since the different members of the ensemble representing a quantum state
would be distributed over different values of X, the dispersion in a quantum state
would be a consequence of phase dependent interaction and changes in the adiabatic

invariant.
7.2. The uncertainty relations

We shall now derive the momentum position uncertainty relation in terms of our
model. We shall, first of all, like to emphasize that contrary to the widely held
misbelief, the uncertainty principle applies to future predictions rather than to the
measurements which by definition refer to completed events (see, for instance Feynman
et al 1963). Correctly interpreted, the uncertainty principle then states that if a
position determination of the particle is attempted with a certain precision Ax,
then the knowledge of its momentum after this determination becomes uncertain by
an amount Ap~hfAx. This is obviously a probabilistic statement referring to a
spread in the values of the momentum p, over an ensemble rather than to the value
in any particular case.

Now for a position determination with an accuracy < A x to be carried out one
must use a particle or any other entity whose characteristic range of interaction is
< Ax. We shall thus identify Ax in the uncertainty relation as the characteristic
length Ax=(dV|Vdx) for the potential ¥ with which the particle (whose position
is to be determined) interacts during the determination of its position.

Consider now an interaction over a certain length of time Af, which involves a
change A x of the angle X. If Auv, is the resulting change in the x-component of the
particle velocity (consider only a one dimensional case) then assuming no exchange of
energy, we have from eq. (5) following the motion

d .
mo, Av,=— AKX 7 (4 gx%). (48)

Again, following the motion we have:

d _dx d ___(dx dt) d =(vx)_c_l_
X dxdx \dr ax)ax \y/) dx®
Using this and gy==2e=2# from (8) in eq. (48) we obtain .

mA"x:‘.“ﬁAX(l (&) ’ 49
x dx

where we have neglected the nonadiabatic change of gy=2¢ during the interaction.
Noting that the potential V= eX we have for Ax=[(1/ V)(dV]dx)]* discussed above

1 av )—1 _ (1 dx )—1.

/‘\‘x:(r_/c'z.? i
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We thus have from (49)
MAv,Ax=—h AX; - (50)

Equation (50) thus gives the actual change of A, corresponding to a change AX in
x following the trajectory when Ax is the characteristic length of the potential. If
we now consider an ensemble of particles (which are subjected to the position deter-
mination with the accuracy Ax), the change Ay in X will be centred around a mean

value Ay corresponding to the mean, that is, the classical trajectory for which we have
on taking the average of (49)

_— -1 A

or

MAv, Ax=—F Ay - (50a)

Subtracting (50a) from (50) we get

mAsy Ax=—1 Ay (51)

where
&x = Az’x - Ex

Ax=Ax—Ax (51a)
denote dispersions around the mean values E and E Note that Ax has the

same value for all the systems of the ensemble since it represents the accuracy with
which the position determination is carried out over the ensemble,

If we now assume E;( to be normally distributed over the ensemble according to
~ 1 ~
P(Ax)= V22 P [ A
then squaring eq. (51) and taking the ensemble average we get ( A’;x =m Amv;) :

{BPS (Axp=1. (52)

Extracting the square root we obtain

(Apsy A=t (53)
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where we have denoted for simplicity,

CA P =[(A P2 (53a)
Equation (53) represents the momentum-position uncertainty relation without the

~
inequality sign, where { A Py is mean (square root) spread around the classical

e r~/
trajectory value Ap,. The root mean squared deviation {Ap,» is this inversely
proportional to Ax and vanishes only when Ax->oo0. Equation (53), it may be
emphasized, does not hold for an individual event. Equation (51), on the other

hand, holds for the individual event and accordingly A'\pr for any particular event
may have any value including zero (for a given Ax) depending on the value of &}

But the important point is that A X cannot be limited controllably to any preassigned
range. This is a consequence, by definition, of the  free® nature of the variable X.

7.3, Tunnelling of potential barriers

We shall finally discuss how we can understand physically another of the characteri-
stic quantum phenomena, namely the tunnelling of potential barriers, in terms of our
model.

As discussed earlier, the potential V=ex=2eg as an energy is a well defined
quantity only when the adiabatic invariance expressed by eq. (8) is almost exact, and
thus only so long as g or Vis a slowly varying function of position. The energy
conservation equation

8 =Ym®+ V(x) | (54)

is then a well defined equation in that a clear separation exists between the kinetic
energy 4mu® of a particle and what is defined as a potential energy ¥(x). When,
however, the potential V' (or alternatively g) varies rapidly like, for instance, a step
function appreciable violations of the adiabatic invariance 3gy=€ would occur.
The potential energy ¥ as a function of x is no more 2 well defined function. The
energy conservation relation (5), namely

E=4m*+jgy* (35)

rather than the approximate one (54) is then the correct relation to use. Thusif Av
is the change in velocity of a particle corresponding to a change Ax of its coordinate
following the motion, then we have

O=mv. Av-+(ex) Ak + Y Alkgy)

=mv. Av-+eAx* ?_X-. - ;'(Ae
ox

—mv. AV A x —S{-P-XAE (56)
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where the second term represents the variation of g% holding $gx==e constant and
hence corresponds to the change of the potential energy V=e¥, while the third term
represents the change of e itself and hence corresponds to the nonadiabatic change.
Equation (54) corresponds to this third term being zero.

Consider now a particle moving in a potential ¥. Classically, a particle is forbidden
at a point x where its potential energy ¥(x) exceeds its total energy &, for according
to the relation (54) the kinetic energy 3mw? becomes negative at such points. Accord-
ing to the exact eqgs (55) and (56), however, this need not be so. If for instance, a
change Ax of the position of the particle takes it from a classically accessible to a
classically forbidden region (which means that Ax - edx/ox=AX" 0V[ox >0 where
»=0) then eq. (56) could still be satisfied for real values of » by virtue of the term

X Ae which could provide the balance. The term X A\ e represents the violation
of the adiabatic invariance. Thus by virtue of the exact energy relations (55) and
(56) {or from the point of view of the approximate classical relations, because of the
violations of the adiabatic invariance) the particle would appear to ‘tunnel’ a
potential of a height which is greater than the total energy. Since these violations
of the adiabatic invariance are more pronounced for sharply varying potentials,
the tunnelling would likewise be more pronounced for such potentials. This is again
in conformity with the well known characteristics of this quantum effect. Thus once
again we see that the quantum effects can be considered as the manifestations of the
violation of the adiabatic invariance of eq. (8).

7.4. Interpretation of the new functions ¥(n, k)

We have so far made no restriction in the construction of the quantum mechanical
ensemble except that it is microcanonical in the initial value of the adiabatic invariant
P, The ensemble may be further specified, however, by assigning distributions for
the different constants of motion of the system. If a particular constant of motion is
‘ controllable ’ then an appropriate state preparation process will be able to  project ’
a microcanonical ensemble corresponding to the particular constant of motion.
More than one integral of motions may be simultaneously °controllable’. The
arguments of the distribution function then group into ‘ controllable * and free integ-
rals of motion, or ‘isolating® and ‘ non-isolating ’ integrals to use the language of
stellar dynamics. '

We may accordingly replace the arguments of the distribution function ?(x, v, X, t;
p,) of eq. (15) by as many isolating integrals as may exist. Leaving the explicit
dependence on x and X in tact, we may replace the three components of v by three
time independent integrals of motion, one of which may be chosen to be the total

energy given by eq. (5). The other two may or may not be isolating dependmg on the
symmetry of the system.

Assuming the energy to be the only controllable (or isolating) integral, eq. (16) may
be transformed accordingly. Since the energy is an integral motion, 6=0 and the
term 60 f /06 would disappear from the transformed equation, yielding

.a_f-.t—v.?.j_ﬂ+5c?_£+(),

of _
Y. ox 2Q | (57

g
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where () is now a two dimensional vector, and fis of the form f(x, X, Q, ¢; Py é).
If no other isolating integrals exist then the distribution function must be independent

of the non-isolating integrals (see for instance Lynden-Bell 1962). Thus f\ must be
independent of . Then eq. (57) further reduces to

of . of ol _ (58)
ot ox oX

The v. af /ov term will consequently also be transformed away from eq. (19). As
a result of this, eq. (44) will no longer have the term ~ e/mnk- 9lox (n| V|n'>. The
argument k of the ¥ (», k) will now also correspond to the Fourier transformation
with respect to ¢ and Q. Let these variables be named as A and k (a two-dimen-

sional vector). Because of the independence of _//'\on Q, W*(n,, k) ¥ (n, A, k) will

be ¥* (n, ) ¥ (n, A) (2m)2 8(K)
so that eq. (45) gives

G(x, 1) :%T z fd)\‘?*(n, )t)if/(n, A)
n

=X [ d&¥*(n, §)¥(n, &) 4 (59)

where ¥(n, &) is the inverse transform of ‘~Il(n, A). If the ensemble be micro-
canonical in energy, that is 8(6—&,), we get

G(x, 1) = I V*(x, n, 8,) W(x, n, §,) (60)

H
where the W(x, n, 8,) obey the equations

ih QLP(n):___(ﬁ

2] < n' ) /
- 5) %VZ‘P()’I)"{-V(O)‘P(n)-wL- Z ;<n] VI n'>S¥@) (61)

nstn'

First of all we note that if only one of the functions say ¥ (1) were to be non-zero
then it implies that the distribution function S will be independent of @ or X. Con-

versely, any dependence of f on @ will reflect in some of the functions ¥(x, n) being
different from zero. Now X was postulated to be a * free > variable so that in state
preparation the systems of the ensemble are distributed uniformly over X (modulo
27). Inthe Py—X plane of the phase space the points are distributed over a ring of

radius equal to Py=2e. So long as the adiabatic invariant Py s well conserved the

distribution in X or alternatively in @ will remain uniform, and consequently only the
function W(1) will be different from zero.
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If in certain processes the adiabatic invariant is significantly violated the distri-
bution in X (or @) will tend to depart from uniformity to at least approximately
conserve the phase  volume’ in the p,—X plane. Such a departure from uniformity

will then generate functions W(n), with ns¢1. Such effects may be considered as higher
order quantum effects which could arise over very short times in processes involving,
say, sharp variations of potential in space or/and time. In view of this we may assign
explicit magnitudes to the W(n) in eq. (29) and rewrite it as

(@) = 2 An- P (n) eine (62)

n
so that

G(x, 1) = Z A2 (171 W (n) ¥ (n) (63)
and eq. (61) ree;ds as

iho¥(m _

A\ 1
"o (n) 5=V W) + V(0 ¥()

4 z "k awim {n|Vn"y ¥(n). (64)
n
nost

The expansion (62) is similar to other such expansions in other similar situations (see
for instance, Rosenbluth and Simon 1965, Rosenbluth and Varma 1967).
Now, since from eq. (36),

|\ V|ny = el™=" V(x,n —n) exp [i (0 — n) §t]#] (65)

it suggests that for systems microcanonical in the total conservaed energy ¢ we seek
solutions for ¥(x) in the form ‘

Y(x,nt) =¥ (x, n) exp (—in &t [%). (66)

This rids eq. (64) of the explicit time dependence. This is also the form which is
in conformity with the standard form of the solution in the Schrédinger case.  With
this eq. (64) gives

2

@'117(;1):—(;) = 2@ (1)< V(OYF ()

2m

. Z At L bt ' —n)¥(n') (67)

n'#n

We see tha,t the various modes ¥(n) are rather weakly coupled to each other through
terms ~4 |71+ [7]=1 peg n'—n) where V(x, n'—n) is the Fourier component

e
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of the potential arising from its weak dependence on x. To be sure, both the

expansions (35) for ¥ and (62) for ¥ (®) are somewhat arbitrary in assigning the
magnitudes to their terms. Nevertheless, the weakness of the coupling would appear
to prevail.

Thus, if as an initial condition one starts out with Y (1)#0,and ¥(n)=0, n5£1, then
in course of time the W(#), n3 1 may acquire some small non-zero values, if the system
goes through a potential sharply varying in space or time.

8. Observability of the new modes

It would be very interesting indeed if one could observe these new modes corresponding
ton=2, 3, etc. The relative magnitudes of these modes would of course be small
in accordance with the relation (63), so that one will have to look for extremely weak
effects, whatever the kind of situations one may be considering.

One may consider a host of situations in which the new modes would predict new
effects. We shall, here consider only two physically simple situations to see the kinds
of new effects that follows. We further consider, for simplicity, the coupling of only
two modes ¥ (1) and W(2) and neglect the others because of their weaker coupling.
The coupled set of equations for the stationary state are then obtained from eq. (56)
as:

- 57:1’; VEE (D)~ VO)¥ (1) -+ A2V ()W (2) =8 F(1)

(5‘2.)-21”; VIR QR) L VOF Q)+ V(1) (1)=8F(2). (68)

The eigenvalue problem defined by eq. ‘(68) represents weak coupling of the two
separate eigenvalue equations for ¥(1) and W(2): ‘

— 2 ow@yropwy=avay
2m
ﬁ 2 1 . ) ) . .
— ( _> — VW) + V(0)¥(2)=E6¥(2) (69)
2/ 2m

through the weak coupling term ~ #2F (1). The eigenvalues of (68) would then be
the two sets of eigenvalues of eqs (69) shifted from their positions because of the
small coupling.

8.1. Electron diffraction
We consider as one example, the case of an electron in the potential field of a crystal

lattice. The equation for ¥ (1) being the usual Schrédinger equation gives the usual
allowed eigenvalues, given by the Bragg relation (dis the usual lattice spacing)

2dsind = %’ ¢ = §m® (70)
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Equation (69) for ¥ (2), on the other hand, gives the relation

2d sin 6 =" (7)
2my

Thus for a given energy &, the particle behaves, according to the Schrédinger mode
W(1), as having the usual de Broglie wave length A = A/mwv. According to the mode
¥ (2) on the other hand, it would behave as having the wave length A = //2mo, that
is, half the de Broglie wave length. The probability of such a behaviour (the ¥ (2)
mode) is, according to eq. (63) smaller by a fraction proportional to 2.  One would
accordingly expect the presence of very faint half-odd integral order maxima in the
electron diffraction. It will not be possible to estimate precisely the magnitudes of
these half order maxima which are forbidden according to the mode ¥ (1), but these
should be more pronounced when quantum effects themselves are more pronounced
—that is, when the de Broglie wave lengths are comparable to the characteristic
length of the potential.

The de Broglie wave length for an electron of about 100 eV is roughly 1 AU, A
typical lattice spacing of say 2 AU would correspond to a de Broglie wave length of
an electron of roughly 25 eV. One would thus expect the half-integral order maxima
mentioned above to be observed in low energy electron diffraction (LEED). Such
faint half integral order maxima have indeed been observed in at least one case—the
diffraction from [100] and [110] planes of tungsten (Gervais et a 1968) where they
have been termed as “forbidden * and no satisfactory explanation has been offered for
their existence. Such half integral order maxima are, of course, strictly forbidden
kinematically by the three dimensional reciprocal lattice. Dynamical or multiple
scattering effects in the case of low energy electron diffraction are, however, known
to give rise to a very large number of non-Bragg peaks at various fractional order like
5%, 6%, 72, 83, 94, etc. (Dvoryankin et al 1970). But these fractional order peaks
do not lie specifically at half integral order positions as those observed for
tungsten. It would therefore appear that multiple scattering could not account for
the systematic observation of these half-integral order maxima (for tungsten).

It would be tempting to identify these half integral order maxima with the mode
¥(2), but one must obviously first rule out all possibilities of explanation in terms of

the usual Schrédinger mode ¥ (1). No such explanation has so far been found,
however.

8.2. Atomic spectra

One may next consider the implications of the mode ¥(2) (and other modes n =3, 4,
etc.) for the atomic spectra. It will be easy to see that the eigenvalues for the Coulomb
potential for the equation for W (2) may be obtained by replacing 4 by #/2 and may
be considered to correspond to the charge on the nucleus to be doubled. Thus for
the hydrogen atom, the spectrum for the ¥ (2) mode would correspond to that for
the ionized helium, - :

If we now assume that a very small fraction of the hydrogen atoms exist in the
state corresponding to ¥ (2) then they should give rise to atomic lines corresponding
the spectrum of the ionized helium (neglecting the difference in the electron reduced
mass in the two cases). The observations of ‘these lines, if they exist, would pose

DT T e e
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severe problems. First of all, these lines are expected to be extremely faint. Further-
more, there may be several other faint lines from impurities, for instance, from mole-
cular hydrogen which may coincide with the lines to be detected. High purity of
the atomic hydrogen sample becomes a very severe requirement besides elimination
of other background lines. If, however, one could choose an appropriate laser to
correspond to one of the new lines to be detected then one can use it to pump the
atoms to the excited state which could then decay coherently to give large enough
intensity to be detected. This process, which is known as ‘ laser resonance fluore- -
scence ’, has, in fact been used to detect atoms in very small numbers (Fairbank ef af
1975). ‘

9. Summary and conclusions

The motivation for this work was to find a deterministic basis for non-relativistic
quantum mechanics and to see if the latter can be obtained as a probabilistic descrip-
tion of an ensemble of systems following deterministic trajectories. Contrary to the
Copenhagen School view point, the probabilistic nature of the description, in this
view point, is then a consequence of the lack of information about some of the initia]
data pertaining to the deterministic trajectories postulated. The investigation at the
same time also seeks to clarify whether the probability in quantum mechanics isofa
different nature from the classical probability implicitly presumed in the above view
point,

We have given a deterministic set of equations of motion in a space extended by
introducing an extra angular coordinate. The motion in classical mechanics is
identified as the motion of the position coordinate in an adiabatic approximation,
while the quantum behaviour of an individual system is identified as the motion of
the system in the extended space in the neighbourhood of the adiabatic (that is, classi-
cal) motion.

By applying the laws of classical probability to an ensemble of systems in the
extended phase space (in particular, the law of conservation of probability along
trajectories—the Liouville theorem) we arrive at a probabilistic description which
turns out to be a generalization of the Schrodinger description with a built-in pro-
bability interpretation. This generalized description admits of an infinite number
of wave function W(n), n =1, 2, 3... which obey a set of coupled Schrédinger-like
equations with the total probability density being | ¥ (n) |2 summed over all the
modes n =1, 2, 3, etc. In the particular case that all the modes n#1 are negligible
(as seems to be the case as observed so far) the system of equations reduces to the
Schrédinger set. In general, however, the generalized set of equations do predict the
existence of other modes 1 # 1 for the propagation of probability. It is, therefore,
concluded that the classical probability applied appropriately to individual events
not only embraces probability in quantum mechanics, but allows for new modes for
its propagation.

We have discussed in section 8 two physical situations in which the effects associated
with the new modes could be observed. The mode ¥ (2), for instance, would give
rise to the presence of half integral orders in the Bragg diffraction of low energy
electrons by crystals. Such faint half integral orders have actually been reported,
though their identification with W (2) may be premature and must be subject to
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further experimental investigation. We have also suggested a method to observe
atomic lines associated with the mode W (2).

Finally, another interesting feature of our theory is that we have given an identifica-
tion for 7, as the initial value of the adiabatic action invariant associated with the
angle variable that we introduced.

Appendix

We wish to show here that the action principle of eq. (11) for the classical equation
of motion (9) can be obtained directly from the original action principle of eq. (2)

- for the generalized equations of motion (4) by incorporating into the latter the cons-

tancy of the canonical momentum Py

Py =37 =2 B (A1)

where A is the Lagrangian given in eq. (3a).
Consider the variation of the action S of eq. (2):

1,

>

)
Y rBA . 0A .. . OA
SfAdt:J dr[a sk + 94 x—%—g—.5x+aa_‘28,¥]

% ok ox
tl 1‘1 '
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:[%3x+2§ .8x]-— f dt S[E(%)-—?A].ax
D o Clar \ox/ ox
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d aA) aA] }
Lo[oA) 9 ey
|7 G)-5 2

where the integration by parts is carried out as usual. According to the usual argu-
ments, the equations of motion follow from here if we demand that (i) the end-points
do not vary and (ii) the variation of .S vanishes for arbitrary variation (8x, 8X) of the
path between the end-points.

We note that the condition (A1), which we wish to incorporate can be used to
obtain X by a quadrature. As a consequence, the usual condition that the varia-
tions vanish at the end-points is violated since X is no longer arbitrary, Making
use of (A2) and the Euler-Lagrange equation for x we get

r)

fa s ty
oA . - ’
thdt_ ax@ 2€f8xdl‘ 263fxdl‘ | . (A3)

1 4 4 o
where now y is to be considered as a function of x obtained from (Al) or (8) as
2e ‘ - '

X= 7 | . ' - (A9
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Using this in (A3) and transposing terms to left hand side:

sfw(méﬂ: | (AS)

Equation (A5) thus expresses the reduced action principle for the motion of the
x-coordinate with the reduced Lagrangian

L= A—4ée/g

262

g

(A6)

=} mx? —

where in the expression (3a) for A, y has been eliminated making use of (A4). We
thus see that the expression (A6) is identical with the expression (10) for the
Lagrangian for the motion of the x-coordinate.
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