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Ton acoustic solitary waves in density and temperature gradients
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Abstract. The propagation of ion-acoustic K-dV solitary waves in weakly inhomo-
geneous, collisionless plasmas with gradients both in the density and the temperature
of the ions has been considered. The electrons are assumed to be hot and isothermal,
and the ions to be warm and adiabatic. The reductive perturbation analysis of the
fluid equations is then carried out. The zero order quantities existing in the system
due to the presence of the inhomogeneities are taken into account consistently and a
set of ‘ stretched coordinates ° appropriate for the inhomogeneous system is employed.
A more general modified K-dV equation has been derived and its soliton solution is
obtained explicitly. It is shown that as the soliton propagates along the temperature
gradient, its amplitude and the velocity decrease, and the width increases. Further,
it is found that when the two gradients are in opposite directions, the amplitude of the
soliton remains constant.

Keywords. Solitary wave; soliton; Korteweg-de Vries equation; temperature and
density gradients; inhomogeneous plasma; stretched co-ordinates.

1. Introduction

The propagation of certain weakly nonlinear waves in weakly dispersive media is
known to be governed by the Korteweg-de Vries equation (Jeffry and Kakutani 1972).
In particular, the ion acoustic solitary waves in homogeneous plasmas have been
extensively studied, both theoretically and experimentally, by many people over the
last several years (Sagdeev 1966; Washimi and Taniuti 1966; Davidson 1972; Ikezi
et al 1970; Ikezi 1973). These are found to be described by the K-dV equation if one
assumes cold ions and isothermal electrons. Sakanaka (1972) and Tappert (1972)
have, on the other hand, studied the propagation of ion acoustic waves in inhomogene-
ous plasmas with warm adiabatic ions.

The propagation of solitary waves in weakly inhomogeneous media has been
considered quite generally by Asano (1974) and specialized to the ion acoustic case
by Nishikawa and Kaw (1975), and by Gell and Gomberoff (1977). Both these
calculations are inadequate and inconsistent since they do not take into account the
zero order quantities—the ion-fluid velocity and the electric field which arise due to the
presence of inhomogeneity, and further, they have not used the right set of ‘stretched
coordinates’ appropriate for the spatially inhomogeneous system. Recently, Rao
and Varma (to be published) have eliminated these shortcomings.

Finally, the case of cold ion plasma with gradients in ion density as well as in.
electron temperature has been considered by Goswami and Sinha (1976). Since the
electron thermal conductivity goes as 7,%2, for high temperature plasmas appreciable
temperature gradients cannot be expected. Hence, they assume the electron tempera-
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ture gradient scale-length to be much larger than that of the ion density gradient. On
the other hand, a more realistic problem would be to consider temperature gradient
in the ions (not in electrons) coupled with their density gradient, with the scale-lengths
of the two gradients to be of the same order.

In the present paper, we extend our previous calculations to include spatial in-
homogeneity both in the density and the temperature of the ions. 'While the electrons
are still assumed to be isothermal, the ions are assumed to be warm and adiabatic.
The reductive perturbation analysis of fluid equations is then carried out by employing
a set of ‘stretched co-ordinates’ appropriate for spatially inhomogeneous plasmas (see,
for instance, Asano 1974). A more general modified K-dV equation has been derived
and is integrated analytically to get the soliton solution. The main result of this
analysis is that as the soliton propagates in the direction of the temperature gradient,
its amplitude and velocity decrease whereas the width increases. Further, it is
found that when the two gradients are in opposite directions, the soliton amplitude
remains constant whereas the width and the velocity keep changing.

2. Basic equations and stretched coordinates

We consider a collisionless, spatially inhomogeneous plasma having both density and
temperature gradients inions. The scale-lengths of the two gradients are assumed to
be of the same order. The electrons are assumed to be isothermal because of their

high thermal conductivity, while the ions are assumed to be warm and adiabatic.
The basic equations for the problem are then:
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ot ox dx

where the last equation is the adiabatic law for ions, with y =3 (because of one
dimensionality), neglecting transport processes such as heat conduction, viscosity,
etc. Here, # is the ion density, V the ion-fluid velocity, P the ion pressure, ¢ the
electrostatic potential and x and ¢ are the space and time variables. All the quantities
are normalized respectively with respect to the standard plasma parameters, viz.,
plasma density (), ion acoustic velocity (V/ KT,[my), electron pressure (NKT)),
a characteristic potential (KT,e), electron Debye length (V. KT,[47Ne?) and the ion
plasma period (Vm, [4mNe?), all these quantities being defined at x =0
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Following Asano (1974), we introduce the following stretched coordinates,

T ead
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where A, (x) is the phase velocity of the moving frame and will be determined later
self-consistently. From eqs (5a) it follows that
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From eqs (5a) and (5b) we easily obtain the following transformations for the space
and time derivatives.
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Hence, the equilibrium quantities 7, and P, which depend only on x satisfy
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3 Using eqs (5a) and (6a), we write eqs (1)—(4) as
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Next, we carry out the reductive perturbation analysis of the above equations.

3. Derivation of the modified K-dV equation
To carry out the perturbation analysis, we expand the quantities #, V, ¢ and P in terms
of the smallness parameter ¢ around their equilibrium values n, V,, ¢, and P,
respectively, as
n == ny-+ eny,+ e’y + eyt . .
V= V0+ €V1+ €2V2+€3V3+- . ' (12)
$ = ot ey + €3y s+
P = Py+€P;+ 2Pyt 3Py+ . . .

Substituting these expansions into eqgs (8)-(11), we get sets of equations to different
orders in e. The zero order equations are
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Combining these equations with eq. (7), we get
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The first order equations in e from eqs (8)—(11), respectively, are
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where we have used eqs (7) and (17). We now impose the bouhdary conditions that
the plasma is homogeneous at | ¢ | > co; that is,

m=Vi=¢;
Vo» b0 P>0 ¢ as | ¢]|—> oo,
Mgy A1

Usiﬁg these boundary conditions, eqs (18)-(21) can easily be integrated with respect to
¢ to give, respectively,

Vi=Rm—£Q (22)
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where
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Equations (22)-(25) form a set of nonhomogeneous equations for ny, V3, ¢, and P,.
Using eqs (22), (24) and (25), we eliminate ¥; and P, in eq. (23) in terms of ¢, alone
to get
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Here, the right hand side depends only on the zero order quantities whereas ¢, is
a first order quantity. Since the first order quantities cannot be determined in terms
of zero order quantities alone, we make the above expression for ¢, an indeterminate
quantity with respect to the zero order quantities; that is, we put both the numerator
as well as the denominator of the above expression equal to zero separately.

Putting the denominator equal to zero, we get

3P
A=V, + /\/ 1+ -};—9 @n
) |

which determines A, self-consistently. Similarly, setting the numerator equal to zero
one gets, after using eq. (27),

gy — Vo) 200 V° 4 VO!Z”" + 5; 0t g — Vo 2 3‘50 (28)

This equation gives a self-consistent relationship between the zero order quantities.
To derive the modified K-dV equation, we now consider the second order quantities
coming respectively from eqs (8)—(11):
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Using eq. (27), the second order quantities in eqs (29)—(32) are eliminated exactly.
In this, we substitute for #,, ¥; and P; in terms of ¢, using egs (22), (24) and (25).
Simplifying the various coefficients, we finally get the following modified K-dV
equation
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where F.'D = V143 Py/n,

It can be noted that for cold ion plasma, p, =0 and hence, y, =1. The eq.
(33) then reduces to the one obtained earlier by Rao and Varma for the case of

_density gradients alone, and further, for the approximation A, & 1, it reduces to the

equation obtained by Nishikawa and Kaw. Hence, eq. (33) is a general equation
for ion acoustic K-dV solitons in inhomogeneous plasmas with the zero order
quantities taken into account self-consistently.

4. Solution of the modified K-dV equation
To solve the modified K-dV equation (33) we make transformations of dependent

and independent variables similar to those given by, for example, Asano (1974), and
Nishikawa and Kaw (1975). Defining the new variables

By = (Moued2 - ¢y (34a)
Ho T (34b)
J

eq. (33) can easily be reduced to

3961 1 ¢ a¢1+ 1 5¢'1

._\______

(35)
where Ny = Hoprodst.

In order to reduce eq. (35) to the usual K-dV equation with constant coefficients, we
introduce a set of independent variables ({, 7) defined by :

L= [Ny (] &

;o (36)
r= {7 a5 NG
Then, eq. (35) can be written as

or 6C3
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with K= . (?.ZYO).
4N2%\ oq

The last term on the L.H.S. of eq. (37) can be eliminated by defining another set of
variables

I

4
=

(1 — fK(T)~dT)}

T

(38)

I

Thus, eq. (37), finally, reduces to the usual K-dV equation for a homogeneous plasma,
namely,
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The soliton solution of this equation can be written as

~ a\l2 ~

¢y = 3a-sech? l:(é) (C—-a'r)] 40)
In terms of ¢ and + variables, this solution becomes

' 172 .
¢y = 3a . sech? [(f) g(N01/4 (1—log N,/%
V”of"o:'x 2 (41)
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It is obvious from this solution that the temperature gradients do modify the pro-
pagation characteristics of the solitary waves.

5. Results and discussions

If we assume the ideal gas law for the ions, viz., P = ynT with y = 3 for one-dimen-
sional adiabatic motion of the ions, then, P, = 3n, T, and the expression for p,
becomes

o = V149T, (42)

where Ty(x) is the given ion-temperature distribution with respect to the space variable
x and is normalized with respect to the constant electron temperature (7,). Combin-
ing the expression (42) with the solution (41), we note the following result: As the
soliton propagates in the direction of the temperature gradient, its amplitude and
velocity decrease, and the width increases. This result is as expected and is easily
understood physically as follows. As the temperature of the ions increases, the dis-
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persive effects tend to increase; thus, as the soliton propagates towards higher
temperature regions, a given non-linearity in the wave is always overbalanced by the
dispersive effects and hence the amplitude keeps on decreasing. Corresponding
results follow for the width and the velocity of the soliton.

The fact that the effects of the temperature gradients on the propagation character-
istics of the solitons is similar to those of density gradients brings out another
interesting result. From the solution (41), we notice that if the quantity (ny wo®
remains constant with respect to the space variable x, then, the amplitude of the
soliton remains constant as it moves in the plasma. However, the width and the
velocity of the soliton will change. Hence, for this to happen, the gradients have
to be in the opposite directions and satisfy the relation

s - G
ng \oX o \OX
This result can, again, be easily explained by the reasons given above.

To conclude, we have derived a general modified K-dV equation for ion-acoustic
solitary waves in plasmas with gradients both in the density and the temperature of
the ions. We have shown that along the temperature gradient, the amplitude and
velocity of the soliton decrease whereas the width increases. Thus, the ion-tempera-
ture gradient affects the propagation characteristics of the soliton in a way similar
to that of the density gradient. Further, we have pointed out that in a plasma with

the two gradients in opposite directions, the soliton amplitude remains constant.
These results are easily explained on simple physical grounds. ‘
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