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ABSTRACT

Let C be a smooth irreducible projective curve and G a simply connected simple
affine algebraic group of €. We study in this paper the relationship between the space of
vacua defined in Conformal Field Theory and the space of sections of a line bundle on the
moduli space of G-bundles over C.
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Iniroduction.

Let € be a smooth projective irreducible algebraic curve over C  and
G a connected simply-connected simple affine algebraic group over C. In this paper we
elucidate the relationship between

(1) the space of vacua (“conformal blocks™) defined in Conformal Field Theory, using an
integrable highest weight representation of the affine Kac-Moody group associated
to G and

(2) the space of regular sections ( “generalised theta functions™) of a line bundle on the
moduli space TR of semistable principal G-bundles on C.

Fix a point p in C and let @, (resp. k) be the completion of the local ring &, of
C at p (resp. the quotient field of &,). Let § := G(Icp) {the ﬁ‘,;rzi.tiomﬂ points of the
algebraic group G} be the loop group of G and let P := G(@,) be the standard maximal
parahoric subgroup of G. Then the generalised flag variety X := G/P is an inductive
limit of projective varieties, in fact of generalised Schubert varieties. One has a natural G-
equivariant line bundle £{x,) on X (¢f. §2.2), and the Picard group Pic(X) is isomorphic to
2 which is generated by £(x,) (Proposition 2.3), where § is the universal central extension
of G by the multiplicative group C* {cf. §2.2). By an analoguc of Dorel-Weil theorem
proved in the Kac-Moody setting by Kumar (and also by Mathieu), the space of the regular
sections of the line bundle £(dx,) :=£(x.)®? (for any d > 0) is canonically isomerphic
with the full vector space dual of the integrable highest weight {irreducible) module of the
affine Kac-Moody group ¢ with highest weight dy, (cf. §6.1).

Using the fact that any principal G-bundle on C \ p is trivial (Proposition 1.3), one
sees easily that the set of isomorphism classes of principal G-bundles on € is in bijective
correspondence with the double coset space I'\G/P, where T' := Mor(C \ p, &) is the
subgroup of G consisting of all the algebraic morphisms of €'\ p — &. Moreover X
parametrizes an algebraic family 2 of principal G-bundles on C (cf. Proposition 2.8).
As an interesting byproduct of this parametrization, we obtain that the moduli space 9
of semistable principal G-bundles on € is a unirational variety (¢f. Corollary 6.3). Now,
given a finite dimensional representation V of G, let ¢V} be the family of associated vectar
bundles on € parametrized by X. We have then the determinant line bundle Det{Z/(V))
on X, defined as the dual of the determinant of the cohomology of the family L/(V) of
vector bundles on C (cf. §3.8). As we mentioned above, Pic (X) is freely generated by
the homogenecus line bundle £(x,) on X, in particular, there exists a unique integer
my (depending on the choice of the representation V) such that Det{U{V)) = £(mvx.)-
We determine this number explicitly in Theorem (5.4), the proof of which makes use of
Riemann-Roch thecorem. It may be menticned that the number my is given explicitly in
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terms of the decomposition of ¥V under si(2) ‘passing through the highest root space’ (cf.
§5.1). For example, if we take V to be the adjoint representation of G, then my =2x dual
Coxeter number of G (¢f. Lemma 5.2 and Remark 5.3).

The subgroup I' C § can canonically be thought of as a subgroup of § (cf. Lemma
2.7). Suggested by Conformal Field Theory, we consider the space H(G/P, £(my x, )T of
T-invariant regular sections of the G-equivariant (in particular -equivariant) line bundle
£(myx,). This space of invariants is called the space of vacua. Now the connection,
alluded to in the beginning of the introduction, between the space of vacua and the space
of generalised theta functions is via our theorem (6.6}, which asserts that (for any d > 0) the
space HO(91, ©(V)¥?) of the regular sections of the d-th power of the 8-bundle (V) (cf.
§3.8) on the moduli space M is isomorphic with the space of vacua HY(G/P, L{dmyx,))F.
(In the case G = SL(n,C), this result has also independently been obtained recently by
A. Beauville and Y. Laszlo by different methods.}

The proof of our theorem {6.6) uses Geometric Invariant Theory; in particular, we make
crucial use of the following extension lemma (cf. Propoesition 7.2):

Let H be a reductive group and @ be a projective scheme with a H-linearised ample line
bundle £ on @, and let Q* denote the (open) subset of semistable points of . Then, for
any irreducible norimal open H-invariant subscheme U O @ of @, the canonical restriction
map HONU, 21 HY(Q*, £ is an isomorphism, for any N > 1.

We also make crucial use of a ‘descent’ lemma (¢f. Proposition 4.1}, in the proof of
Theorem (6.6).

Our Theorem (6.6} can be generalised to the situation where the curve C' has n marked
points {p1,....Pn} together with finite dimensional G-modules {1,...,V,} attached to
them respectively, by bringing in moduli space of parabolic G-bundles on C.

It should be mentioned that Tsuchiya-Ueno-Yamada [TUY} have obtained a factoriza-
tion theorem for the space of vacua, from which one gets the validity of the Verlinde's
formula for the dimension of the space of vacua. In view of the identification of the space
of generalised theta functions with the space of vacua, one gets the same formula for the di-
mension of the space of generalised theta fuctions. Recently G. Faltings has given a proof
of the Verlinde's formula. A purely algebro geometric study (which does not use loop
groups) of generalised theta fuctions on the moduli space of (parabolic) rank two torsion-
free sheaves on a nodal curve is made by Narasimhan-Ramadas [NRa]. A factorization
theorem and a vanishing theorem for the theta line bundle are proved there.

The organization of the paper is as follows:

Apart from introducing some notation in §1, we realize the affine flag variety X as
a parameter sct for G-bundles. Section {2) is devoted to recalling some basic facts (we
need) about the affine Kac-Moody groups and their flag varieties. In this section we
prove that the affine flag variety is the parameter space for an algebraic family of G-
bundles on the curve C (cf. Proposition 2.8). Section (3) is devoted to recalling some
basic definitions and resuits on the moduli space of semistable G-bundles, including the
definition of the determinant line bundle and the ©-bundle on the moduli space. We prove
a curious result (cf. Proposition 4.1) on algebraic descent in §4. Section (5) is devoted to
identifying the determinant line bundle on the affine flag variety with a suitable power of
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the ba.slic homogeneous line bundle. Section (6) contains the statement and the proof of
the main result ( Theorem 6.6). Finally in Section (7) we prove the basic extension result
(Proposition 6.5), using Geometric Invariant Theory.

Acknowledgement. We thank R.R. Simha and J. Wahl for some helpful conversations.
The first author was partially supported by the NSF grant no. DMS-9203660.

1. Affine flag variety as parameter set for G-bundles.

(1.1) Notation. Throughout the paper & denotes an algebraically closed field of char. 0.
By a scheme we will mean a scheme over k. Let us fix a projective curve ' over k, and
a smooth point p € C. Let C* denote the open set C'\ p. We also fix an affine algebraic
connected reductive group G over k.

For any k algebra 4, by G(A) we mean the A-rational points of the algebraic group G.
We fix the following notation to be used throughout the paper:

G =Gz = G(k,),
P =Py = G(,), and
[ =Tt = G{[C)),

where O, is the completion of the local ring O, of C at p, k, is the quotient field of &,,
kIC*] is the ring of regular functions on the affine curve C* (which can canonically be
viewed as a subring of k), and T is the triple (G, C, p).

We recall the following

(1.2} Definition. Let G be any affine algebraic group over k (not necessarily reductive). By
a principal G-bundle (for short G-bundie) on an algebraic variety X, we mean an algebraic
variety E on which G acts algebraically from the right and a G-equivariant morphism
m: E — X (where @ acts trivially on X)), such that = is isotrivial (i.e. locally trivial in
the étale topology).

Let G act algebraically on a quasi-projective variety F from the left. We can then form
the associated bundle with fiber F, denoted by E(F). Recall that E(F) is the quotient of
E x F under the G-action given by g(e, f) = (eg™?,9f), forg€ G, e € Eand f € F.

Reduction of structure group of E to a closed algebraic subgroup H C G is, by definition,
an H-bundle Ey such that Ey(G) ~ E, where H acts on G by left multiplication. Reduc-
tion of structure group to H can canonically be thought of as a section of the associated
bundle E{(G/H) — X.

Let X = X(G,C) denote the set of isomorphism classes of G-bundles on the base C,
and Xy = Xo(T) C X denote the subset consisting of those G-bundles on C which are
algebraically trivial restricted to C.

Even though the following proposition is known, we did not find a precise reference and
hence have included a proof,

(1.3) PROPOSITION. Let G be o connected reductive algebraic group over k. Then the
structure group of o G-bundle on & smooth affine curve Y can be reduced to the connected
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component Z°(G) of the cenire Z{(G) of G.

In particular, if G as abave it semi-simple, then any G-bundle on ¥ is frivial.

PROOF: We prove the proposition by induction on the rank &(G) of the semi-simple part
[G,G) of G:

If4(G) = 0, i.c., G is abelian, there is nothing to prove. So assume that £(G) > 0. Let us
choose a maximal parabolic subgroup P of G (got by deleting a simple root, say a). Then
we first claim that the structure group of any G-bundle £ on Y can be reduced to the
subgroup P, i.e., the associated fiber bundle E(G/P) admits a global section. Since ¥ is
a curve, from the local isotriviality of E, we get that the bundle E(G/P) admits a section
on a Zariski open subset UV of Y. But since G/ P is a projective variety and dimY = 1, the
section on I extends to a section on the whole of Y. We next reduce the structure group
of Ep from P {o a Levi component M of P: The homogeneous space P/M is biregular
isomorphic with the unipotent radical U = Up of P and moreover U/ has a decreasing
filtration by counccted normal subgroups with successive quotients isomorphic with the
additive group G,. So, by an argument similar to [R;, §3], considering the associated fiber
bundle Ep({P/AM) we get that the structure group of Ep can be reduced to the subgroup
M. But since £(AM) = #{G} — 1, by induction hypothesis, the structure group of Ep can
further be reduced to the connected component Z°(M) of the centre Z{M) of M. Let
pe t SLy — G b the algebraic group homomorphism corresponding to the (positive)
simple root a. Let Z, be the algebraic subgroup of G generated by Z°(G)} and Im p,.
Then Z, is the direct product Z%(G) x Imps and Z, 2 Z°(J). Let Ez_ denote the Z,-
bundle got fram Ez+(ar) by extending the structure group and let E, := Ez_ (Z./Z%(G))
be the associated fiber bundle with fiber Z,/Z% (), which can in {act be thought of as a
(principal) Imp,-bundle. We now prove that E, is a trivial Imp,-bundle:

Using the exact sequence :

HU(Y,5Ly) — HYY,PSLy) - HL(Y,2/(2)),

and the vanishing of H (Y, Z/{2)) (cf. {Mi]), we first see that the structure group of any
PSLy-bundle can Le lifted to SL,. Further, since Im p, is either PS L or SLy, it suffices
ter show that any SLg-bundle {i.e. any rank-2 vector bundle V with trivial determinant) on
any smooth affine curve Y is trivial: Since dimY = 1, there exists a triviai line sub-bundle
¢ of V such that the quotient @ := V/e is a line bundle on Y. But since Det V is trivial,
Det @ = @ is trivial as well. Further, ¥ being affine, the extension

0—=e-VoQ@—0

is split, showing that V' is a trivial bundle. This, in particular, implies that (Z4/Z°%(&))-
bundle E, admits a global section, i.e., the structure group of Ez, (and hence of E)
can be reduced to ZY(G). This completes the induction hypothesis, thereby proving the
proposition. B

The following map is of basic importance for us in this paper. This provides a bridge
between the moduli space of G-bundles and the affine (Kac-Moody) flag variety.
(1.4) Definition (of the map ¢ : G — Ap). Let G be a connected reductive algebraic group
over k. Consider the canonical morphisms i, : Spec(0,;) — € and i3 : C* — €. The
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morphisms i; and i; together provide a flut cover of C. Let us take the trivial G-bundle
on both the schemes Spec(U,) and €. The fiber product

F := Spec(0,) xC

of 2y and i; can canonically be identified with Spec (1::,,). This identification F' ~ Spec {;cp]
is induced from the natural morphisms

Spec (frp)
e ~
Spec (@p) k cr
~N Ve
F

By a “glueing”lemma of Grothendieck [Mi, Part I, Theorem 2.23, pg. 19], to give a
G-bundle on C, it suffices to give an automorphism of the trivial G-bundle on Spec (k,),
ie., to give an element of § := G(}}p). (Observe that since we have a flat cover of C by

only twe schemes, the cocycle condition is vacuously satisfied.) This is, by definition, the
map ¢ : G — Ay,

(1.5) PROPOSITION. The mep ¢ (defined above) fuclors through the double coset space to
give @ bijective map (denoted by)

5:T\G/P - Xo.

(Observe that, by Proposition (1.3), Xy = X if G is assumed to be connected and
semi-simple.)

ProOOF: From the above construciion, it is clear that for g,¢' € G, {g) is isomorphic
with (g') (written ©{g) = (g")) if and only if there exist two G-bundle isomorphisms :
Spec (5,,) x G 24 Spec (6,) xG
™~ e
Spec (5,)

and

c'xGlorxe

~ e
C‘
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such that the following diagram is commutative:

ek
Specik,) x G e, Spec(k,) x G

I I

L
SPac(I(,)

Spec (k,) x G ——-— Spec (k) x G .

Any G-bundle isomorphism 8; (resp. 6;) as above is given by an element A € P (resp.
+ € T'). In particular, from the commutativity of the above diagram (*), ¢(g) = (g") if
and only if there exists b € P and 4 € I such that gh = v¢', i.e., y"1gh = ¢'. This shows
that the map ¢ factors through I'\G/P to give an injective map . The surjectivity of ¢
follows immediately from the definition of &), and the fact that any G-bundle on Spec (@p)
is trivial. il
(1.6) Remarks.

(a) We will show (cf. Proposition 2.8) that G/P in fact is a parameter space for an
algebraic family of G-bundles.

(b) The correspondence given in the above proposition is paralle] to the correspondence
from the Adele group to bundles on a curve {cf. [H], also see {PS, §8.11]). Some
other analogous constructions are given by Beilinson—-Schechtman, Mulase [Mui,

{¢) G/P should be thought of as the parameter space for G-bundles E together with a
trivialization of Ey.. (cf. Proposition 2.8].

{1.7) An alternative description of the map  for vector bundles. We give an alternative
description of the map ¢ in the case when @ = GL,. In this case X can also be thought
of as the set of isomorphism classes of locally free O¢-modules (where O¢ is the structure
sheaf of C') which are free as O¢. -modules of rank n.

Let us denote by E = E,, the n-dimensional standard representation of GL,. Then the
group & has a canonical representation in E(ky) and P is precisely the stabilizer of E(@P).
Let € := C x E(k) = C be the trivial rank-n vector bundle over C. Fix any ¢ € ¢, and
define the presheaf 3{g) of O¢-modules on C as follows: For any Zariski open U C C, set

Gl U)=HU,€), ifpglU and
Uy = {o € HY(U\p,€): (o), € g(E(D,))), ifpel,

where (o), denotes the germ of the rational section o at p viewed canonically as an element
of E(ks).

Now let ¢(g) be the associated sheaf of Oc-modules on C. Since the representation of
G in E(k,) is k,-linear {in particular 5,,-linea.r), it is easy to see that the sheaf ¢(g) is
a locally free sheaf of Og-modules of rank n and of course (by construction) p(g),. is
trivial, It can be easily seen that the map ¢ : § — Ay thus obtained is the same as the
map ¢ defined in §1.4.

mn LU ey mwe W, o L . . . IR

R e g s -

2. Affine Kac-Moody groups and their flag varieties.

Let T = (G,C,p) be as in §1.1. In this section we will assume that the base field k
is C and further essume that G is ¢ connected simply-connected simple affine elgebraic
group over C. We fix a Borel subgroup B C G and a maximal torus T C B, and define
the standard Borel subgroup B of G as ev;!(H), where ev, : P = G((f),,) — G is the
group homomeorphism induced from the C-algebra homomeorphism : @p — C, which takes

f e f(p)

(2.1) Generalized Schubert varieties. The generalised flag variety X .= G/P (where G, P
are as in §1.1) has the following Bruhat decomposition:

(1) x= |J Brp/P,
neW /W

where W := Ng(T)/T is the (finite) Weyl group of G, Ng(T) is the normnlizer of T in G,
and W is the affinc Weyl group of @ (cf. {K, §6.6]). Morcover the union in (1) is disjoint.

The affine Weyl group W is a Coxeter group and hence has a Bruhat partial order <.
This induces a partial order (again denoted by) < in W/W defined by

t:=umod W<o (foru,vEW)
if and only if there exists a w € W such that

u < vw.
We define the generalised Schubert variety Xy (for any o € W/DV_) by

(2) X = || BoP/P.

vl

Then clearly X € Xv if and only if © € w, The set Xy has the structure of a (not
necessarily smooth) finite dimensional projective variety over C. Moreover, the inclusion
X € X (v < tv} is a closed immersion.

We put the inductive limit Hausdorff (resp. Zariski) topology on G /P, i.e., a set Ucg/P
is open if and only if U [} X is open in X\, in the Hausdorff (resp. Zariski) topology for
all g W{W The decomposition (1) provides a ceflular decomposition of G/P, where
BroP /P is biregular isomorphic with C*(™) and é(m) is the length of the smallest element
in the coset w = wW.

(2.2) Line bundles en G/P. We define

(1) Pic{G/P) := Inv. it. Pic(Xn),
weW /W

7



where Pic(Xr) is of course the set of isomorphism classes of (algebraic) line bundles on
Xw. Then an clement £ € Pie(§G/P) is given by a collection of algebraic line bundles £y,
on Xp (for every w € W/W) together with a morphism im e (for 2ll v < W)

ino

Ly = Lo
i {
X — Xn s
satisfying i o 0iou = fn.u, forall u < v < 1.

One can similarly define the notion of veetor bundles or principal bundles on G/P.
Let us recall that the group & admits a ‘canonical’ one-dimensional central extension:

{2) 1—-C ?g;»g-ﬂ

The ‘Lie algebrs’ Lie(G) of G is described explicitly in [K, Chap 7, Identity 7.2.1) and
is dencted by L{g). o N
The compasite map C* — P — P/[P, P is an isomorphism, where P := 7} (P) and ¢
i 7

is the canonical projection. [n particular, identifying 75'/[73, P] with C* (under go1), we get
the character denoted exe « B — C*. Alternatively, this is the unique character which is
identically 1 restricted to the commutator [5, ﬁ], and restricted to the standard mazimal
torus T := A=Y T) it is got by exponentiating the “integral’ weight x, : Lie(j‘) — C, where
Yo is defired by

3) Xolog)=1,  and
( wiol) =0, foralll €2 <8,
where {ay,ay,....a}} (vesp. {@),...,a}}) are the simple coroots for L(g) (resp. g) (cf.

[K, page 76]). B

For any d € Z, let L(dx,) be the homogeneous line bundle on the base GIP ~G/P,
which is associated to the principal P-bundle : G - g'/ﬁ by the character (eX2)~%. We
denote its restriction to Xp by Loldxa). Then Lw{dx,) has a canonical structure of an
algebraic line bundle, which is compatible with respect to the inclusions, i.e., Lr(dXo)|,, =
Lo(dy,) for any v < ro (cf. [SI, §2.7]). In particular, we get an element (again denoted
by} £(dxa) € Pic(G/P).

We have the following proposition determining Pic (G/P).

(2.3) ProrositioN. The map: £ — Pic(G/P) given by
d 'C(an)

is an isomorphism.

PrOOF: Since X, is a projective variety, by GAGA, the natural map
(1. Pic(Xn} 5 Picgn{Xw)

8

is an isomorphism, where Pic,n(Xn) is the set of isomorphism clisses of analytic line
bundles on X,
We have the sheaf exact sequence:

(2) ) O*Z‘*Oan'_’oe:n_'01

where O, (resp. ;) denotes the sheaf of analytic functions (resp. the sheaf of invertible
analytic functions) on Xy. Taking the associated long exact cohomology sequence, we get

(3) .. Tt HI(XWIOGH) - H‘(Xtv)ozn) 3 HQ(*YW!Z) - I{’:(-“-m»onn) - ...

»

where the map ¢; nssociates to any line bundle its first Chern class. Nuw

(4)... H(Xp,0y=0, forali>0
by [Ku;, Theorem 2.16(3)] (also proved in [M]), and by GAGA
{5). .. HiXnp,O) = H(Xn, Ocn)

7

and hence the map ¢, is an isomnorphism. But
(6). . Pican(Xw) & H'Y (X, 05,5,

Hence, by cambining (1) and (3)6), we get the isomorphism {again denoted by)
(... e1: Pic(Xn) S HYXp, 7).

Further the following diagram is commutative (whenever Xy C X ) :

<1

Pic(Xp) ——— HYXp,Z)

(D)... 1 l

<1

PIC(XU) __“~ — H2(XD)Z)5

where the vertical maps are the canonical restriction maps. But from the Bruhat decom-
position (1) of §2.1, for any w > 5,, the restriction map

(8)... cHY X, I) — HYX,,,7)
is an isomorphism, where s, is the (simple) reflection corresponding to the simple coroot
ag, and 8, 1= s,mod W. Moreover, X;, being isomorphic with the complex projective

space P!, H¥ X, ,Z)is a free Z-module of rank 1, which is generated by the first Chern
clasa —1 of the line bundle £,,{x.).
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Since any element o # ¢ € W /W satisfies tv > 8, (in particular the elements v > s,
are cofinal in /1), taking the inverse limit of diagram (D), we get the proposition. I

(2.4) Topology on I' . We fix an embedding G — GLn(C) (for some large m), and define
a filtration of I' as follows:
G = Fu C Pl | '

where T := {f - C* = G € GLn{C) such that all the matrix coefficients of f have poles
of order <1 at p}.

It is easy to sce that ['’s admit canonically a compatible structure of finite dimensional
affine varieties. [n particular, we have Hausdorff as well as Zariski topology on I';’s. Now
we define the corresponding (Hausdorff ar Zariski) topology on I' as the inductive limit
topology from [';’s. It is easy to see that the topology on I' does not depend upon the
particular embedding of G — GL,(C).

We prove the following curious lemma.

(2.5) LEMMA. Let X be a connected variety over C. Then any regular map : X — C*,
which is null-homotopic in the topelogical category, is a constant.

{Observe that if the singular cohomology H'(X,Z) = 0, then any continuous map : X —
€* is null-homotopic. )
PROOF: Assume, if possible, that there exists a null-homotopic non-constant regular map
A: X — C*. Since X is algebraic, there exists a number N > 0 such that the number of
irreducible components of A7 (z) < N, for all z € €C*. Now we consider the N'-sheeted
covering 7y : C* — C*(z ++ zV'), for any N' > N. Since X is null-homotopic, there exists
u (regular) lift X : X — C*, making the following diagram commutative:

cr
;\/‘ J‘"N’
X —

A

Since } is regular and non-constant, by Chevalley’s theorem Im 1 (being a constructible
set) misses only finitely many points of C*. In particular, there exists a 2, € C* (in fact a
Zariski open set of points) such that w;.}(zﬂ) ¢ Im . But then the number of irreducible
components of A7'{z,) = A" (wyt)(2,) 2 N' > N, a contradiction to the choice of N.
This proves the lemma. §

(2.6) ConroLiary. There does not exist any non-constant regular map A : r—C-,

(A regular map A : I — C* is, by definition, a map such that A |r, is regular for each
n, cf. §2.4.}
PROOF: By Segal |S] (see also [PS, Proposition 8.11.6(i), page 157]), I' is connected and
simply-connected, in particular, (T, Z) = 0. This gives that the map A is null-homotopic.
By using the above lemma (2.5), A is constant on each connected component of T, ({for
any n > 0} and hence 3 itself is constant. B

0

Restrict the central extension (2) of §2.2 to get a central extension

(1) 1—’C'—.0f\—ﬂrl—‘—v1,

where T is by definition #~}(T'). The group I admits a canonical structure of an inductive
limit of affine algebraic varieties.

(2.7) LEMMA. There exists a unique regular group homomorphism :I' — T, which splits
the above central extension.
In particular, we can canonically view T as a subgroup of G.

PROOF: The existence of a regular splitting on I' is well known (cf, e.g., [W, §4]). The
uniqueness follows immediately {rom the above corollary.

Finally we have the following proposition, which is proved by using the local triviality
of the P-bundle G — G/P.

{2.8) PROPOSITION. (a) There is an aigebraic G-bundle if — C' x G/P (ie. Ucyxx, 18
algebraic for any tv € W/W ) such that, for any z € /P the G-bundle U; = Uy,
is isomorphic with (z) (where y is the map of §1.4). Moreover the bundle Uig gy
comes equipped with a trivialization o : € 5 Uice xg@, where ¢ is the trivial G-bundle on
C*xG/P.

(b) Let £ — C x T be a family of G-bundles {parametrized by an algebraic variety
T), such that £ is trivial over C* x T and also over {Spec @,) x T. Then, if we choose
a trivialization § : ¢ = §|cv T, we get a Schubert variety X and a urnique morphism
f:T — Xy, together with a G-bundle morphism f: £ — Ujcx x,, inducing the map Idx f
at the base such that fof = aof, where € is the trivial bundle on C* x T and 8 is the
canonical G-bundle morphism : ¢ — e inducing the map Idx f at the base.

PROOF: Let K be a C-algebra and let T ;= Spec R be the corresponding scheme. Suppose
E — C x T is a G-bundle with trivialisations « of E over C* x T and 3 of E over
(Spec &,) x T. Note that the fiber product (C* x T') X cxr (Spee @, x T) is canonically
isomorphic with (Spec fcp) x T. Therefore the trivialisations o and 3 give rise to an element
af € Gk, ® R). Conversely, given an element g € G{k, ® 1?), we can construct the
family E <+ C x Spec R by taking the trivial bundles on C* x T and (Spec @,) x T and
glueing them via the element g. Moreover, if g; and g2 are two elements of G(J}p & R) such
that gz = g1k with k& € G(, ® R), then h induces & canonical isomorphism of the bundtes
corresponding to g1 and gz. All these assertions are easily verified.

To construct the family parametrized by G/P, we note that it is enough to construect the
families U, — C x X, parametrized by the Schubert varieties X together with certain
isomorphisms #w o of Uy |cxx, with Uy, for any Xo C X5, such that the isomorphisms
#m,o satisfy the cocycle condition ¢ ooy = Py, forallw > v >

Choose a local parameter t for C at p and set A/~ := G{C[t™!]). Then A/~ can canoni-
cally be thought of as a subgroup of G. Further the A'~-orbit I/ “through the base point
¢ € X is open in the Zariski topalogy on X. In particular, by the Bruhat decomposition
{rol/ =}, provides an open cover of X. The map U~ — ¢, defined by z.e — z, forz € A/~
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provides a section ¢ of the principal P-bundle § — G/P over the open set U™ (and by
translating this scction we also get sections oy over any U ™). Now take any Schubert
variety X, and cover this by the affine open sets {{(wU ™) N X, } (cf. [Kug, §3]) and take
the sections ¢n over them. In view of the discussion above, this canonically gives rise to
G-bundles Uy, = U on C x (v~ NX,). Further, for any z in the intersection Uy, NUx,,
where Up, 1= (10, U7 )N X,, we have 0, (£) = 0w, (Z) hm, ma(2)} With ke, w,(z) € G{O,).
These Ay, m, give rise to the canonical isomorphisms Uy, — My, over the intersection
C % (Up, NUn,), which obviously satisfy the cocycle condition. Thus the bundles {¢{g}x
patch up to give the G-bundle 4 = U® on €' x X,. Since the sections oy are defined on the
whole of tol7 7, it is easy to see that U canonically restricts to {*2, whenever v; > v,
This completes the (a)-part, i.e., the construction of the family i parametrized by G/P.

To prove the (b} part, let us choose a trivialization 7 of the bundle £ restricted to
(Spec@,) x T. As above, this {together with the trivialization §) gives rise to a map
fr:T = G and hence amap f: T — G/P. (It i1s easy to see that the map f does not
depend upon the choice of the trivialization 7.) We claim that there exists a large enough
Xw such that Iimf C Xy, and moreover f : T' — Xy is a morphism:

For both of these assertions, we can assume that T is an affine variety T' = SpecR, for
some C-algebra R. Then the map f, can be thought of as an element {again denoted by)
fr € G(fcp ®@ R). Choose an imbedding G — GL(¥), and also choose a local parameter ¢
around p € €. Then we can write f, = (fi’j)lgé.jgNa with fi7 ¢ Il',, ® R. In particular,
there exists a large encugh § > 0 such that (for any 1 < 4,7 < N) fi4 € t7'C[[t]j® R. From
this one can see that Im f is contained in a Schubert variety Xn. Now the assertion that
f: T — Xy is & morphism follows from the description of the map f7 as an element of
G(IA\:p ® R) together with the explicit description of the variety structure on G/P, as given,
e.g., in [KL, §5.2]. The remaining assertions of (b) are easy to verify, thereby completing
the proof of {b). B

3. Preliminaries on moduli space of G-bundles and the determinant bundle.

Throughout this section, G denotes a connected reductive group over an algebraically
closed field k of char. # and C a smooth projective curve over k.

We recall some basic concepts and results on semistable G-bundles on ¢, The refer-
ences are [NS], [R,), [R;], and [RR]. Recall the definition of G-bundles and reduction of
structure group from §1.2.

(3.1) Definition. Let E — € be a G-bundle. Then E is said to be semistable (resp. stable),
if for any reduction of structure group Ep to any parabolic subgroup P C G and any
character x : P -+ G, which is dominant with respect to some Borel subgroup contained
in P, the degree of the associated line bundle Eplx) is < 0 (resp. < 0). (Note that, by
definition, a dominant character is taken to be trivial on the connccted component of the
centre of G.)

(3.2) Remark. When G = GL,, this definition coincides with the usual definition of
semistability {resp. stability) due to Mumford (cf. [NS]) vz. a vector bundle V — C
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is semistable (resp. stable) if for every subbundle W G V, we huve p(W) < p(V) (resp.
(W) < u(V)), where p(V) := deg V/rank V.
Let V — € be a semistable vector bundle. Ther there exists a filtration by subbundles
Vo=0CWGEWwL<&---SV,

such that p{V;) = (V) and V,/V;., are stable (cf. {Ses|). Though such a filtration in
general is not unique, the associated graded

gVi= & V,/Vi,
i1

is uniquely determined by V (upto an isomorphism).

We will new describe the corresponding notion of grE for a semistable G-bundle E.
(3.3) Definition. A reduction of structure group of a G-bundle £ — C to a parabulic
subgroup P is called admissible if for any character of P, which is trivial on the connected

component of the centre of 7, the associated line bundle of the reduced P-bundle has
degree 0.

It is easy to see that if Ep is an admissible reduction of structure group to a parabolic
subgroup P, then E is semistable if and only if the P/U-bundle Ep(P/U) is semistable,
where I/ is the unipotent radical of P. Moreover, a semistable G-bundle E admits an
admissible reduction to some parabolic subgroup P such that Ep(P/U) is, in fact, a stahle
P/U-bundle. Let M be a Levi component of . Then M = P/U (as algebraic groups)
and thus we get a stable M-bundle Ep(A). Extend the structure group of this M-bundle
to G to get a semistable G-bundle denoted by gr(£). Then gr(E) is uniquely determined
by E (up to an isomorphism).

Two semistable G-bundles F and E, are said to be S-equivalent if gr(E,) 7 gr{E,). We
call a semistable G-bundle E quasisiable if E =~ ge(E). (It can be seen that a semistable
vector bundle is quasistable if and only if it is a direct sum of stable vector bundles with
the same u.}

Two G-bundles E, and E; on € are said o be of the same topological type if they
are isomorphic as G-bundles in the topological category. The topological types of all the
algebraic G-bundles are bijectively parametrized by (G} (cf. [R2, §5])

{3.4) THEOREM. The sei M of S-equivalence classes of all the semistable G-bundles of a
fixed topological type admits the structure of a normal, irreducible, projective variety over
k, making it into a coarse moduli.

In particular, for any algebraic family £ — C x T of semistable G-bundles of the same
topological type (parametrized by a variety T), the set map 3 : T — 9, which takest € T
to the S-equivalence class of £ in "M is a morphism.

We will give some indication of its proof in §7. The details can be found in [NS], [R,],
[R2]1 [Ses], [S]']}

{3.5) Remarks. {a) In general 9R is not a fine moduls, i.e., there may not exist any family
F — C x M (parametrized by D) such that F,, belongs to the S-equivalence class m € m.
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{b) For G = G L,, i.e., for the case of rank-» vector bundles, the topological type is nothing
but its degree. When the degree is coprime to the rank, the coarse moduli is in fact a fine
moduli. {When the degree is not coprime to the rank, the coarse moduli is not a fine
moduli.)

We prove a result on gr( E) which we will need later. We first prove the following :

(3.6) LEMMA. Le! P be a parabolic subgroup of G. Suppase that E — C* is a P-bundle,
such that for every character y + P — G, the associated line bundle is trivial on C*. Then
the P-bundle E — C* itself is trivial.

PRrooF: This follows easily from the proof of Proposition (1.3). 1

(3.7) ProPOs(T1ON. Let E — C be a semistable G-bundle. Then there exists a family of
G-bundles £ — C x A! suck that £ ~ E ift # 0 and & = gr E, and such that £|C* x A’
as well as the pull-back of £ to (Spec Op) x A! are trivial.

ProoF: Let Ep be an admissible reduction of the structure group to a parabolic subgroup
P = M -U corresponding to gr £ (see §3.3). By the above lemma, Epjc. is trivial. Since
11(Ep) is trivial {i; : Spec @, — C) as well, we see that Ep is obtained by patching up
(via flat descent, sec §1.4) the trivial P-bundles en C* and Spec @p. The patching is given
by an element of P(k,) = M(ky) - U{ky). Let this element be g - u where g € M(}}p),
ue Uk

Let us choose a maximal torus T in M. Now since U is the unipotent radical of P, we
can find a 1-parameter subgroup A : G (= A\0) — T such that for any root a in U, (a, A)
> 0 {where {a, A} is by definition the integer n such that the composite G, Ar=2 G, is
given by t — ).

Define a P-bundle on C x A! by taking the trivial bundles on C* x A! and (Spec @, ) x A}
and patching up by the element At)guA{t)"? (resp. g ) in P(frp), ift #0 (resp. t = 0).
This bundle has the required properties. 1
(3.8) Determinant bundle end O-bundle. We now briefly recall a few definitions and facts
on the determinant bundles and @-bundles associated to families of bundles on C. We
follow [DN], [NRa).

In the case of the moduli J; of line bundles of fixed degree d on C, i.e., the Jacobian,
there is a natural divisor (on the Jacobian) called the @-divisor. It is defined only up to an
algebraic equivalence in general, but on the Jacobian J;_; it is canonically defined (where
g 1s the genus of ). Since we have chosen a base point p on € , the © -divisor on any J4
can be canonically defined.

To generalise this notion to the moduli of higher rank vector bundles, one makes use of
the determinant bundle associated to any family of vector bundles.

Let ¥V — C x T be a vector bundle. Then there exists a complex of vietor bundles V;
on T ( with V; =0, fer all + > 2):

Vo=V, =-0—=0— ...,

such that for any base change f : Z — T, the it" direct image (under the projection
C x Z — Z3 of the pull back (id x f)*V on Z is given by the i'" cohomology of the pull
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back of the above complex to Z. We define the determinant line bundle Det V on T to be

the product 'Rp(vl) @ (‘R"(vn)*). ( Notice that our Det V is dual to the determinant line
bundle as defined, e.g., in (L, Chapter 6,§1].)

The ahove base change property gives rise to the base change property for Det V, ie,
if f:Z — T is a morphism then Det({id x f)*V) = f*(Det V).

Let £ be a line bundle on T, and let p; : € x T — T be the projection on the second
factor. Then for the family V@ p3 £ ~ C x T, we have Det (V @p}£)= (Det V)@ £-YV)
where X(V) := k%(V,} — R}(V,) is the Euler characteristic and ¥, '= Vicx,. (Qbserve that
h%(Vy) — R*(V¥\) remains constant on any connected component of T'.)

We now define the ©-bundle ©(V) of a family of rank r and degree 0 bunles V —» C x T
to be the modified determinant bundle given by (Det V)& det(V,)¥ /7, where V,, is the
bundle V],,xq- on T, and det V, is its usual determinant line bundle. It follows then that
O(V) = &(V @ p; L), for any line bundle £ on T. Moreover O(¥} also has the functorial
property O((id x £)*V) = £(O(V)).

If £ = CxT is a family of G-bundles and V is a G-module, then Det (£(V)) and @(E(V'))
are defined to be the corresponding line bundles of the associated family of vector bundles,
via the representation V of G.

For the family &/ — C x G/P (cf. Proposition 2.8), the line bundles Q(H(V)) and
Det(U(V)) coincide, since U, . is trivial.

It is known {[DN], [NRa] ; see also Remark 7.6) that there exists a line bundle © on the
moduli space I, of rank r and degree ( (semistable) bundles, such that for any family ¥ of
rank r and degree 0 semistable bundles parametrized by T we have f*(0) = O(V), where
f: T — 9, is the morphism given by the coarse moduli property of M, {cf. Theorem
34).

Let V be a finite dimensional representation of G of dimension r. Then for any semistable
G-bundle on C, the associated vector bundle (via the representation V) is semistable (cf.
{RR, Theorem 3.18]). Thus, given a family of semistable G-bundles on € parametrized by
T, we have a canonical morphism (induced from the representation V) T — R, (where
9N, as above is the moduli space of semistable bundles of rank r and degree 0 }. Let 97
be the moduli space of semistable G-bundles. By the coarse moduli property of M, we
see that we have a canonical morphism ¢y : 90 — 9M,. We define the theta bundle O(V)
on O associated to V to be the pull back of the line bundle ©® on M, via the morphism
$v (see Remark 7.6). Tt can be easily seen that for any family V — C x T of semistable
G-bundles, f*(@(V)} = B(V(V)), where f : T — M is the morphism (induced from the
family V) given by the coarse moduli property of M.

4. A result on algebraic descent.

We prove the following technical result, which will crucially be used in the paper. Even
though we believe that it should be known, we did not find a precise reference.

(4.1) PROPOSITION. Let f: X -+ ¥ be a surjective morphism between irreducible alge-
braic varieties X and Y over an algebraically closed field k of char 0. Assume that ¥ is
normal and let £ — Y be an algebraic vector bundle on Y.
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Then any set theoretic section o of the vector bundle £ is regular if and only if the
induced section f*(a) of the induced bundle f*(£) Is regular.

Proo¥: The ‘only if' part is of course trivially true. So we come to the ‘if’ part.

Since the question is local {in Y'), we can assume that ¥ is affine and moreover the
vector bundle £ is trivial, i.e., it suffices to show that any (set theoretic) map o : ¥ — &
is regular, provided & := oo f : X — k 1a regular (under the assumption that ¥ = Spec R
is irreducible nornal and affine):

Since the map [ is surjective (in particular dominant), the ring R is canonically em-
bedded in T'(X) := H°(X,Ox). Let R[5] denote the subring of I'(X) generated by R and
7 € I{X). Then R[7] is a (finitely generated} domain (as X is irreducible by assumption),
and we get a dominant morphism f:Z - Spec R, where Z := Spec (R[#]). Consider the
commutative diagrimn:

X
8.  Nf
Z-—Y

7
where § is the dominant morphism induced from the inclusion R|5] < I'(X). In particular,
Im 8 contains & non-empty Zariski open subset U of Z. Let z;,25 € X be closed points
such that f(z,)} = f(z;). Then T(xl_) = r(z), for all r € R and also &(x;) = &(z;). This
forces 8(z,) = #{xy). in particular, fiy is injective on closed points of U.

Since f is dominant, by cutting down U if necessary, we can assume that J?]U U -V
is a bijection, for some openr subset V' Y. Now since Y is {(by assumption) normal
and Z is irreducible, by Zariski’s main theorem (cf. [Mum, Page 288, I. Original form]),
fIU U — V is an isomorphism, and hence o is regular on V. Now we give two different
proofs for the remaining part:

First proof. Assume, if possible, that o), does not extend to a regular function on the
whole of ¥. Then, by {B, Lemma 18.3,AG|, there exists a point yp € Y and a regular
function %k on a Zariski neighborhood W of yo such that A{ys) =0 and he =1l on WnN V.
But then ho = 1 on f~'(W N V) (where A := h o f) and hence, & being regular on the
whole of X, 5 = 1 on f~*{W). Taking o € f~!(vo) (f is, by assumption, surjective),
we get h(yo)a(_fu} = (). This contradiction shows that o|, does extend to some regular
function (say ¢’) on the whole of ¥. Hence & = &', in particular, by the surjectivity of f,
¢ = ¢'. This proves the proposition.

Second proof. Let us define a subset Uy C Z by
Uy ={z € Z :dime{z) = 0},

where e{z) is the union of ail the irreducible components of f~*(f(z)) containing z. Then,
by Chevalley’s theorem, Uy is open (possibly empty) in Z and the map f), : Us — ¥ has
all its fibers finite. But since f is birational, Uy is non-empty. Further, by Zariski’s main
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theorem , Vj = f(Ug) is open in ¥ and the map flu : Up - V4 is an isomorphism. This
gives that o)y, is a regular function. Consider the surjective map

FrZ\f (V) Y\ V.

Then, by the definition of 1}, every fiber of the above map has at least one irreducible
component of dim > 1 (actually of dim exactly 1). Hence

dim(Y \ ¥5) < dim(Z \ f~'(Ve)) = 1 < dimY - 2

(since f: Z — Y is birational and Z is irreducible), i.e., codimy (¥ \ Vy} 2 2. But since
Y is assumed to be normal, the regular function )y, admits a regular extension o' to the
whole of Y. Now by the same argument as in the first proof, we get that o = ¢’ on the
whole of Y. This completes the second proof as well. §

{4.2) Remark. Even though we do not need, the same result as above is true in the analytic
category if the underlying field % is taken to be C.

5. Identification of the determinant bundle.

In this section we consider the triple T = (G,C,p), where GG 15 a connected, simply-
connected, simple algebraic group ever C, C is a smooth projective curve over C, and p is
any point of C. We follow the notation es in §1.1.

{5.1) Recall from §2.8 that G/P is a parameter space for an algebraic family I/ of G-
bundles on €. Let us fix a (finite dimensional) representation V of G. In partieular, we
can talk of the determinant line bundle Det(/(V)) {cf. §3.8). Also recall the definition
of the fundamental homogeneous line bundle £(x,} on G/P from §2.2. Our aim in this
section is to determine the line bundle Det{2{(V)} in terms of £(x,). We begin with the
following preparation.

Let # be the highest root of g. Define the following Lie subalgebra sly(#) of the Lie
algebra g of G :

... sl(8) '=g_s ® CHY @ g4,

where g, is the 6-th root space, and 6 is the corresponding coroot. Clearly sly(8) = sla
as Lie algebras. Decompose

(2)... V= @iv;';

as & direct sum of irreducible sl2(8)- modules V; of dim m;, Now we define

(3)... mv=2(mi3+1) , where we set (g) =0,

We give an expression for my in the following lemma. Write the formal character

(4)... chV=Zn,\e".
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(5.2) LEMMA.
v 2
(1). E;ﬂ,\<k,9 >

In particular, for the adjoint representation ad of g we have

... may = 2(1+ < p, 87 >),

—

where p as usual is the half sum of the positive roots of g.
Similarly, for the standard n-dim. representation V™ of sl,, mya = 1.

PROOF: It suffices to show that, for the irreducible representation W(m) (of dim m + 1)
of sy

1 b 2 m + 2
(3)... §Z<mp1—na,H>-—( 3 ,
n=0
where « is the unique positive root of sle, H the carresponding coroot and py 1= 50 Now

the left side of (3) 1s equal to

m+ 1){(m +2)

2i——n —42162— 6

=2Z(ko_1_n)2, if m = 2k, — 1 is 0dd

n=0

, if m = 2k, is even, and

ko

=4 L-- 4421&’ Yt ko _4Zk
k=1

_mm 4+ 1)}{m +2)
=
+2 :
So in either case the left side of (3) = n mﬂs mt2) - (ma ) This proves the first part

of the lemma.
For the assertion regarding the adjoint representation, we have

ch(ad) = dimb.e® + 3 (¢f +e77).
,Be&+
SO mad:Eﬂ¢A+ <’G,BV >2

=4+ Z < B,8% > ,since<,6,8v>=00r1,foranyBeA+\9
BeAL\E

=4+ <20—0,8" >

=2(1+ < p,8Y >).
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The assertion about my~ is easy to verify. §

(5.3) Remerk. The number (1+ < p,8Y >) is called the dual Cozeter number of g. Its
value is given as below.

Typeof g dual Coxeter number

Ag £41
By 2-1
Cy £+1
D, 202
Eg 12
E; 18
Ey 30
G, 4
Fy 9

Now we can state the main theorem of this section.

(5.4) THEOREM. With the notation as in §5.1
Det{U(V)) ~ L{mvxo)

for any finite dimensional representation V of G, where the number my is defined by (3)
of §5.1.

PROOF: By Proposition (2.3), there exists an integer m such that
Det (U(V)) = £(mx,) € Pic (G/P).

We want to prove that m = my. Set U, 1= U(V)jcxx, as the family restricted to the
Schubert variety X, := X;, (cf. proof of Proposition 2.3), Denote by o (resp. f) the
canonical generator of H¥(X,,Z) (resp. H?(C,Z)). Then it suffices to show that Det
U, =~ £, (myXo), which is equivalent to showing that the first Chern class

(1)... ci(Detll,) =mva:
From the definition of the determinant bundle we have
(2)... c1(Detlly) = —er(maulds),

where ; is the projection € x X, — X,, and the notation 7. is as in [F, Chapter 9].
Since Uy|c-xx, 88 well as Uy|cx, are trivial (where 1 is the base point of X,), we get

(3) e Cl(ua) =0.
Let & (resp. J) be the pull back of a (resp. B) under 1, (resp. m). Now write

(4)... cqo(,) = laf, for some (unique) [ € Z.

19



Let Ty, be the relative tangent bundie along the fibers of 7;. Let us denote by ¢;
(resp. c) the first (resp. second) Chern class of 2,. By the Grothendieck's Riemann-Roch
theorem [F, §9.1] applied to the (proper) map m, we get

ch{mz.lf,) = ma, (ch(U,).td( Ty, ))
= mp.[(tkis + 1 + %(Cf ~2ea))(1 + %m(Tn))l

= maul(ekh, ~ 2)(1 + 3a(Tw)s by (3,

where c¢h denotes the Chern character and td denotes the Todd genus. Hence

e (ma.dy) = 72 (—c2(l))
= m.(~1ad), by (4)
(5). - = —!.a, since ﬂ'z-(ft,@) = .

So to prove the theorem, by (1),(2) and (5), we need to show that [ = my, where ! is
given by (4}

It is easy to see (from its definition} that topologically the bundle I{, is pull back of the
bundle ! (Where I’ is the same as U, for C =P1) on P* x X, via the map

cx X, 24pt x x,,

where § : C — P! pinches all the points outside a small open disc around p to a point. Of
course the map § is of degree 1, so the cohomology generator o pulls back to the generator
8. Hence it suffices to compute the second Chern class of the bundle 24! on P? x X, :

Choose Xy € g¢ (where @ is the highest root of g) such that < Xg,—wXs >= 1,
where w is the Cartan involution of g and <, > is the Killing form on g, normalized
so that < 6.8 >= 2. Set Yy == —w(Xy) € g_g. Define a Lie algebra homomorphism
:sly — C[t,t7 @c p, by

X » 18Ys

Y o 710X

H — -1g6Y,
where {X,Y, H} is the standard basis of sl;. The corresponding group homomorphism
{choosing a local parameter ¢ around p) i : SL2{C) — G induces a biregular isomorphism
7:P! & SLy(C)/B,=X,, where B, is the standard Borel subgroup of SLy(C) consisting
of upper triangular matrices. In what follows we will identify X, with P* under 7. The

representation V of G on restriction, under the decomposition(2) of §5.1, gives rise to a
continuous group homomorphism

¥ : SUa(6) — [ (Autwy),

where S§U2(6) is the standard compact form (induced from the involuticn w} of the group
SL(8) {(with Lie algebra sly(8)).
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There is a principal SUs-bundle W on §* (in the topological category) got by the
clutching construction from the identity map : §% & SU; ~+ SU;. In particular, we obtain
the vector bundle W(y) — §* associated to the principal bundle W via the representation
#, which breaks up as a direct sum of subbundles W;(1) (got from the representations V;).

We further choose & degree 1 contimuous map v : P! x P! — 5% We claim that the
vector bundle If] on P! x P! is isomorphic (in the topological category) with the pull back

VW)
Defl'ne a map & : (SU,/D) x §' = SU; by

ah det™? de\™'
((£8) moame) = (%5) (22)
for (::) € SU; and t €'57; where D is the diagonal subgroup of SU,. It is easy to see

that the principal 5Uz-bundle +*(W) on P! x P? is isomorphic with the principal SUs-
bundle obtained by the clutching construction from the map @ (by covering P' x P! =

§?x 52 =8% x HY U5% x H™, where H* and H~ are resp. the upper and lower closed
hemispheres). By composing & with the isomorphism: SU; — SU,(9) (induced from the
Lie algebra homomorphism: sly — sh(f) taking X — Xy,Y — Yaand H — §Y), and

using the isomorphism 7 together with the definition of the vector bundle i, we get the
assertion that &) ~ v*(W(¢)). So

Uy} = v (c(W(¥))) = »° Zcz(W.-(i.b))

= Z (m.',;- 1)&}?, by the following lemma (since v is a map of degree 1).

Hencel =3, ("“;’1) = my, proving the theorem modulo the next lemma. §
(5.5) LEMMA. Let W{m) be the (m 4 1) —dimensional irreduciblc representation of SU,

and let W(m) be the vector bundle on S5* associated to the principal SU;-bundle W on
S* (defined in the proof of Theorem 5.4) by the representation W{m) of SU;. Then

(1)... e2(W(m)) = (”’";2) 2,

where Q is the fundemenial cohomology generator of HA(S54,1).

PrOOF: By the Clebsch -Gordan theorem (cf.[Hu, Page 126}), we have the following
decomposition as §U;-modules:

Wiml@Wl)=Wim+1})@W(m-1), forany m>1.
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In particular, the Chern character
(2)... chW(m). chW(1) = chW(m + 1) + chW(m — 1).

Assume, by induction, that (1) is true for all | £ m. (The validity of (1) for I = 1 is trivial
to see.) Then by (2} we get

chWim +1) = chW(m). chW(1) — chW(m — 1)
((m+1).1 = W(m))(2.1 —- ;W(1))
—(m.l —caW(m — 1)), since cyW(I) =0 as it is a SUz-bundle.

Hence by induction

(3)... ehW(m+1)= ((m+1).1— ("‘;“2)9) (2.1-Q)- (m.l— (”";1)9)

Writing chW{m + 1) = (m + 2).1 — coW(m + 1), and equating the coefficients from (3),

we get
cWim+1) = (2("‘;2) tml- (mgl))n

(1)

This completes the induction and hence proves the lemma. i

6. Statement of the main theorem and its proof.

Let the triple T = (G, C,p) be as in the begirnning of section 5.

(6.1) Definitions. Recall the definition of the homogeneous line bundle L{my,)on X :=
G/P = GJP ( for any m € 1) from §2.2. Define, for any p € Z, {cf. {Ku,, §3.8])

Inv. It.

1)... HP (X Sma) = e w

HA X, En(my.)).

Since £(mx,) is a G-equivariant line bundle, H?(X, £(my,)) is canonically a G-module.
This module is determined in [Ku,] ( and also in [M]). We surnmarize the results :

(2) ... H*(X,L(my,))=0,ifp>0and m >0,
(3)... HYX, £(my,)} =0, if m <0, and
(4) ... HYX, L{myx,)) = V(mx,)* form >0,

where V(my.,) is the irreducible highest weight G -module with highest weight mx,, and
V{myx,)* denotes its full vector space dual. Recall from Lemma 2.7, that T' is canonically
imbedded in §. By H?(X, &{my,))" we mean the I-invariants in H?{X, £{mx,)).
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Recall the definition of the map ¢ : § — A&, from §1.4, and the family I parametrized
by X from Proposition (2.8). Now define

X° = {g¢P € G/P : v(g) is semistable}
= {z € X : Ujcxis semistable}.

and set (for any m € W/W)
Xp=X"NXg.

Then by the same proof as {R,, Proposition (4.1}], X2 is a Zariski open (and non-empty,
since 1 € X}) subset of Xn, in particular, X? is a Zariski open subset of X. Now define

Inv. it.

(5)... HP(X?, L(mx,)) = we WfW

HP (X5, Lnlmxo}).
Clearly I" keeps X * stable, in particular I acts on the cohomology HP(X?, £{my,)), and
we can talk of the -invariants HP(X*, £(my,))F.

The family 1| x. yields a morphism ¢ : X* — 9, which maps any z € X* to the 5-
equivalence class of the semistable bundle I/, where " is the moduli space of semistable
G-bundles on C (cf. Theorem 3.4). (By a morphism X* — 9 we mean a map which is a
morphism restricted to any X2.)

(6.2) LEMMA. There exists a v, € W/W such that
P(X,,) = M.

PROOF: Since | J, X3 = G*/P and ${C*/P) = M, we get M = |}, ¥(X3). But by
a result of Chevalley (cf. [B, Chapter AG, Corollary 10.2)) #(X3) is a finite union of
locally closed subvarieties {9R%} of 9, hence 90 is & countable union [JOME of locally
closed subvarieties. But then, by a Baire category argument, 91 is a certain finite union
of (locally closed) subvarieties {2},,,..., M5 }. Now choosing a v, € W /W such that
Y, 2, , forall 1 i< n, we get that 9 = (X ). This proves the lemma. B

(6.3) COoROLLARY. The moduli space M is a unirational variety.

PROOF: Since X2 is an open subset of Xy, and Xy is a rational variety { by the Bruhat
decomposition, cf. §2.1), the corollary follows from the above lemmma (6.2). 11

{6.4) PROPOSITION. For any d > 0 and any finite dimensional representation V of G, the
canonical map
¥*: HYM, O(V)®) - BO(X ", (O(V)®)

is an isomorphism, where O(V) is the theta bundle on the moduli space 9l associated
to the representation V (cf. §3.8), and the vector space on the right denotes the space
of T-invariants under its natural action on the line bundle ¥*(©(V)}). (Since the map
% : X* — M isT-equivariant, with trivial action of T' on M, the pull back bundle ¢*(O(V})
has a natural ['-action.)

PRrOOF: Using Lemma (6.2) we see that the map ¢ is injective. Now the second part of
Proposition (2.8), and Proposition (3.7) show that if z and y are two points in X* with
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U, ~ gr(lf:), then y belongs to the Zariski closure of the I-orbit of z. In particular, two
points in X * are in the same fiber of v if and only i the closures of their T'-orbits intersect.
This, in turn, shows that if ¢ is a T-invariant regular section of ¢*(©(V))®¥ on X*, it
is induced from a set theoretic section g of ©(V)®¢ on M. That g is regular, is seen
by taking all thosc Schubert varieties Xp such that $(X3) = M (cf. Lemma 6.2) and
applying Proposition (4.1) to the morphism yx; : X — 91 1

By the functorial property of the theta bundle, @(U(V)) x. is canonically isomorphic
to $*(©{V)}, since ¢ is defined using the restriction of the family L{V) to X* (cf. §3.8).
Moreover, as observed in §3.8, the line bundles ©(24(V')) and Det(U(V')) coincice on the
whole of X.

{6.5) PROPOSITION. Any T-invariant {regular) section of ¢*(@(V))®% on X* extends
uniquely to a regular section of (Det U{V))®¢ on X.

This proposition will be proved in the next section.
We now state and prove our main theorem, assuming the validity of Proposition (6.5).

(6.6) THEOREM. Let the triple T = (G, C,p) be as in the beginning of section 5 and let
V be a finite dimensional representation of G. Then, for any d > 0,

HY(9M, ©(V)®4) ~ HY(G/P, L{dmyx,))T,

where the latter space of [-invariants is defined in §6.1, the Integer my is the same as in
Theorem (5.4}, and the moduli space M and the theta bundle G(V'} are as in Proposition
(6.4).

In particular, H*(G/P, L(dmyx,)) is finite dimensional.

(Observe that by (4) of §6.1, HYG/P, £(dmyx,))' is isomorphic with the space of
TI' — invariants in the dual space V(dmvyx,)*.)

Proo¥r: We first begin with some simple observations:

(a) For any line bundle £ on X, the canonical restriction map H°(X, £) ~ HY(X*, £(x+)
is tnjective: This is seen by restricting any section to each Schubert variety Xy, and ob-
serving that the trivial G-bundle being semistable X2 is non-empty (since the base point
1 corresponds to the trivial bundle), and open {and hence dense) in the irreducible variety
X

(b) If £ is a T-equivariant line bundle on X (with respect to the standard action of T
on X ) end o 1s o regular section of £ such that it restriction fo X* is [-invariant, then
o itself i3 D-invarignt: In fact, for v € T, the section v*(¢) — & vanishes on X* {and hence
on the whaole of X).

(¢) Suppose that £ and £ are two T'-equivariant line bundles on X*. Then any biregular
isomorphism of line bundles £ 1 £ — £ (inducing the identity on the base} in fact is
T-equivariant. In particular, { induces en isomorphism of the corresponding spaces of
I-tnvariant sections:

Define a map e: ' x X* — C* by

€(4,2) = Ly €y Ly (€)1 € Autc(£2) = C°,
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for y €T and x € X*, where L, is the action of 7y on the approprinte line bundles, and £,
denotes the restriction of £ to the fiber over z € X*. It is easy to see that € is a regular
map and of course €(1,z) = 1, for all z € X*. In particular, by Corollary (2.6), e(y,2) = 1,
for all ¥ € T'. This proves the assertion (c).

We now consider (Det U(V))ﬁ,}i, as a I-equivariant line bundle by transporting the
natural T-action on ¢*(©(V))®¢ {(cf. Proposition 6.4), via the canonical identification

1)... Det U(V)ix. = 9™ (B{V}).
Choose an isomorphism of line bundles on X
£: (DetU(VN®E = £(x,)®9m |

which exists by Theorem (5.4). Recall from §6.1 that £(x,)®*™" is a G-equivariant line
bundle, in particular, by Lemma (2.7), it is a I-equivariant linc bundle on X. Hence
by (¢} above, the map &, := £x. is automatically I'-equivariant. We have the following
commutative diagram:

13
HD(X,DetL{(V}®d) _- HY(X, L0, )B4 v)

} !

£
HO(X',DetH(V)ed) ~ HO(X', E(xo)gdnw)
where £ (resp. §,) is induced from £ (resp. ¢,), and the vertical maps are the canonical

restriction maps. Observe that £, is I-equivariant (since £, is so).
Further we have

HOY(om, 0(V)®1) ~ HOX? DetU(VI®) (by {1) and Proposition 6.4)
=~ HY(X?, 2(x,)® ™)' (underf,).

We complete the proof of the theorem by showing that the restriction map
HO(X, £(xa)®dmv )i‘ - HG(X', s(xn)Qdmv )‘{‘

is an isomorphism:

It suffices to show that any T invariant section ¢ of £(x,)%¢™" over X? extends to &
section over X, for then the extension will automatically be [-invariant by (b) and unique
by (a). By the above commutative diagram, this is equivalent to showing that any I'-
invariant section o, of DetZ{(V)}®¢ over X* extends to the whole of X. But this is the
content of Proposition (6.5), thereby completing the proof of the theorem. il

Az an immediate corollary of the above theorem, we obtain the following result.
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(6.7} COROLLARY. Let the notation and assumptions be as in the above theorem. Then
the space of covariants V(dmyvx,)/(Ut (g ®c C[C*]).V(dmvx,)) is finite dimensional,
where Ut denotes the augmentation ideal of the universal enveloping algebra. 4

7. Geometric invariant theory- Proof of Proposition {(6.5).

(7.1) LEMMA. Let X be an irreducible normal variety, U C X a non-empty open subset
and £ a line bundle on X. Then any element of @zHO(U, L™} which is integral over
ne

®HO(X, £") belongs to @H (X, £").

PROOF: Since the rings in question are graded, it suffices to prove the lemma only for
homogeneous elements. Let & € HP(U, £°¢) be integral over @H(X, £7), i.e., b satisfies
a relation b™ + a 0™ 4 - + 4y = 0 with g; € @HY(X, £7). Let D be a prime divisor
in X \ U and let | have a pole of order £ > 0 along D. Then the order of the pole of
b™ along D is of course ém and that of a;b™ % is < £(m — 1) for every i > 1. But since
b 4+ a0 ... +a,,_;b is by assumption regular along D, we are forced to have £ = 0,
Le., b is regular along D. Hence b &€ HY(X, £™). 11

We state now u general result on the extendability of invariant sections for actions of
reductive groups.

Let a reductive group H operate on a projective scheme @ such that it also acts equiv-
ariantly as bundle automorphisms on an ample line bundle £ on Q. Let @ denote the
open subset of @ of semistable points {with respect to the H-equivariant ample line bundle
£) for the action of H. Recall that ¢* = {z € @ : 3o € H*(Q, £M)H for some N = 1 such
that o(z) # 0}. We then have the following proposition {c¢f. [NRa], [Se]).

{7.2) PROPOSITION. Let U D @° be a H-invariant open subset of }, which (i.e. U)is a
normal irreducible variety . Then, for N > 1, any H -invariant section of £¥ on Q* can be
extended to a H-iuvariant section of £ on U.

PROOF: We indicate the proof when @) is normal and U = (). { The general case can be
reduced to this case by the arguments as in [NRa].} Let ¢ € H“(Q',L‘.N)H. IfDisa
divisar in @ \ @* on which o has a pole, then we can find a 7 € H%(Q, oV )" (for some
N'» 0) such that #¥ ™ will not vanish identically on I} for suitable Ny, Ng > 0. This
is a contradiction since D C @\ @*, in particular, any invariant section vanishes on D. }

(7.3) G.IT. and moduli of vector bundles. We recall the construction of the moduli spaces
of vector bundles on € using G.I.T.. Let r > 1 and § be integers. For the fixed point pe C
and for a coherent sheaf F on €, put F(m) =F®o0O(mp), for any m € I, where O = O¢ is
the structure sheaf of . We can choose an integer m, = m,(r, ) such that for any m > m,
and any semistable vector bundle E of rank r and degree § on C, we have HI(E(m)} =0
and E(m) is generated by its global sections. Let ¢ = dim HYE(m)}) = § +r(m +1-g)
and consider the Grothendieck quot scheme @ consisting of coherent sheaves on C which
are quotients of C? @ ¢ with Hilbert polynomial (in the indeterminate v) rv + ¢ (where
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g is the genus of C). The group GL(g,C) operates canonically on @ and the action on
C x @ (with the trivial action on C) lifts to an action of the tautological sheaf £ on C x (.

We denote by R, the GL(g)-invariant open subset of @ consisting of those z € @) such
that £; = £|cx is locallv free and such that the following canonical map is an isomorphism:

Ci = HYCI @c O)HO(E,).

Then R, is smooth and irreducible. We still denote by £ the restriction of the family to
R,.

We obtain a GL{g)-linearized ample line bundle £ on @ by imbedding @ in a suitable
Grassmannian as follows: We choose an integer k, = k,(m) such that for k 2 k, the
composite map

C? ®c HYOKk)) — HY(E,) ®c HY(OK)) — HYE, (k)

is surjective for all z € @, and such that the morphism @ — Grass (taking z v H°(£:(k)))
is a closed imbedding, where O(k) := O(kp) and Grass denotes the Grassmannian of
§ 41— g+r(m+k) dimensional quotient spaces of C1 ®@c H°(O(k)). We define the ample
line bundle £ on @ to be the pullback of the natural ample line bundle on Grass, namely,
the determinant of the universal quotient bundle on Grass. The action of GL(g) clearly
lifts to L.

There exists a positive integer m/, with m’, > m, such that for any integer m 2 my, there
is a positive integer ¥, = k(m) > k,(m) with the property that the following conditions
are equivalent (for any & > k)):

(1) A point z € @ is semistable in the sense of G.I.T. for the SL (g)-linearized bundle
£

(2) z € R, (in particular, the sheaf &, is locally free) and the bundle £; is a semistable
vector bundle on C.

We denate by R?2, by abuse of notation, the set of semistable paints (in the sense of
G.LT.) in . By the above equivalent conditions, we have R C R, Now the G.LT.
quotient R2//GL(q) yields the moduli space 9, of wector bundles of rank r and degree &.

(For all this, see [NRa, Appendix A] or |Le].)

(7.4) We note that we can arrange the above construction in such a way that any bounded
family of vector bundles of rank r and degree § occurs in R,. (This observation will be
crucial for us.) More precisely, let V, — C x T, be a family of vector bundles of rank r
and degree § (parametrized by a variety T,). We can find an integer my, such that for
m 2 mr,, we have :

(1) R'pr,, (Vo(m)) =0.

(2) pr., (Vo(m)) is a vector bundle on T; {say of rank ¢).

(3) The canonical map p¥, pr,, (Vo(m)) = Vo(m) is surjective,
where pr, : C x T, — T, is the projection on the second factor, Vo(m) 1= ¥V, Qocyr,
pa0(m), and pc : C x T, — C is the projection on the first factor.
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Choose m > max{mr,,m.), where m! is as in §7.3. Let P, be the frame bundle of
o7T.. (Vo{m)) with the projection m, : P, — T,. Then there exists a canonical] GL{g)-
equivariant morphism ¢,: P, — R, such that the families n3(V,) and 2(E£{~m)) are
isomorphic, where the family £ on R, is s in §7.3, £(—m) := £ ®o,,p, PeO(~m) and
Pe:C x Ry — C is the projection on the first factor.

(7.5) LEMMa. Suppose that § = 0. Let @{F) be the theta bundle (on R,) of the family
F = E(—m} {cf. §3.8). Then there exist positive integers ¢ and f such that

O(F)®* = (£a,)%,
where £ is the ample line bundle on @) defined in §7.3.
PROOF: For any integer £ > 1, we have

Det F(£) = (Det ) @ (det (Fipxn,)) ™
as is seen fromn the exact sequence
0 F = F(€) = F Bocyn, Fe(O/my) — 0,

where m, C O is the sheaf of functions vanishing at p. Observing that £|_1° =~ Det F(k+m)

(where m and & are as in §7.3) and Det F(m) is trivial, we see that £g, > (det(Fxp, ))*
and O(F) = (det(Fjup, )™ 9. (By choosing m large enough in §7.3, we may assume
that m+1—g¢ > 0.) This proves the lemma (Compare [NRa, Proof of Theorem I(B}].) I
(7.6) Remark. One knows that ©(F) g, descends to a line bundle © on M, ([DN], [NRa,
Praof of Theorem 1(A)]). By G.LT. some power of £, descends as an ample line bundle
on 9M,. Using Lemma (7.5), we see that © is an ample line bundle on M,

(7.7) PROPOSITION. Let f, : RS — M, = R://GL(q) be the canonical map. Let o be
a section of ©%° aver M, (for any £ > 1}. Then the section f}(c) over R} of ihe line
bundle f2(0%) ~ (BF)®! extends uniquely as a GL{g)-invariant section of (©F)® over
R,, where, as in Lemma {7.5), F = £(—m).

Proor: By Proposition (7.2), any GL{g)-invariant section of any positive power of L over
RS extends to R,, as R, is smooth. Thus, by Lemma (7.5), some power of fi{o) extends
to R,. Hence, by Lemma {7.1), fi(c) itself extends. Observe that R? # @, as the trivial
G-bundle is semistable, Since R, is irreducible, the extension is unique and invariant. |

{7.8) Moduli of principal G-bundles. Let T be a variety parametrizing a family ¥ of G-
bundles on C. Then there exists a smooth quasi-projective irreducible variety R with an
action of GL(N) (for some N), a family W of G-bundles on € parametrized by R and a
lift of the GL(N )-action to W (as bundle automorphisms) such that the following holds :
[) Let R* := {x € R: W, = W) «,is semistable G — bundle} be the GL{N )-invariant
open subset of R. Then a good quotient R*//GL{N) exists and yields the moduli
space 9 of semistable G-bundles (cf. Theorem 3.4).
II) Moreover, there exists a principal GL{¥N)-bundle = : P — T and a GL{N)-
equivariant morphism ¢ : P — R such that the families »*(W) and #*(V) are
isomorphic. (See [Ra].}
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Now if V is & finite dimensional representation of G, we denote by ©(W(V)} the theta
bundle on R of the family W(V), of vector bundles of rank r and degree 0 {r = dim V)
parametrized by R, obtained from the family W of (principal) G-bundles via the rep-
resentation V. Note that GL{N)} operates on @(W(V)). Let ©(V) be the theta bun-
dle on the moduli space M associated to the representation V of G (cf. §3.8). If
fiR* = R*//GL(N)} = 9 is the canonical map, we have

FHO(V)) = 6(W(V}).

(7.9) PROPOSITION. Any section of @(V)®* over O (for £ > 1), considered as o GL(N)-
invariant section of (B{W(V)))®* over R°, extends uniquely as an invariant section of

(B(W(VI1®! over R.

PROOF: We will prove the proposition by showing that any invariant section of ‘3()”\2('1/))‘aQ
over R* is integral over ®#H°(R, O(W(V})"), and then applying Lemma (7.1):

We will apply the results of §§7.3 and 7.4. With the notation of §7.4, choose for T,
the variety R and for V, the vector bundle W(V) on C x R defined above in §7.8. Let
h = hy : MM — M, be the morphism defined by V, where (as in §7.3) 9, is the moduli
space of rank r and degree 0 vector bundies on C. We have h*(8) ~ ©(V), where © is the
theta bundle on 9, {see Remark 7.6 and §3.8).

Since © is ample and k is a projective morphism, we see that SH(W, O(V)®") iz a
module of finite type over @H(9M,, @%"). In particular, the former ring is integral over
the latter.

Let o be a section of O(V)®! over M. Then ¢ satisfies an equation

c? fag_ 108 4 dajo 4 =0,

where a; € @H(0N,, O%™). Let f,: B2 — R://GL(g} = MM, be the canonical map (as in

Proposition 7.7). If {;;}: are the homogeneous components of g;, nsing Proposition (7.7},
we can extend f(h;;) to an invariant section (say) g; of some power of @(F) over R,,
where F = £(—m) (as in §7.5). Pulling back o;; via ¢,: Py = R, (¢f. §7.4) and descending
them (via the projection n, : P, — R, cf. §7.4) to sections of sonic appropriate power of

B(W(V)) over R (cf. Lernma 7.5), we see that f*(«) is integral over ®H(R, @(W(V))®"),

where f: R® — 9 is the canonical map as in §7.8. (Observe that o, maps 7 !(R*) into
R}

Finally we prove Proposition {6.5) and thus complete the proof of Theorem (6.6).

(7.10) Proof of Proposition (6.5). Let & be a -invariant section of $H{O(V))®¢ on X*.
By Proposition (6.4), there is a section ¢ of @(V}®¢ over % such that $*{r) = . Let Xn
be a Schubert variety. With the notation of §7.8, we construct R, where we take for T' the
variety Xy, and for V the restriction of the family & (Proposition 2.8) to Xy. Now ¢ can
be viewed as an invariant section of O(W(V})®? aver R* and hence (by Proposition 7.9)
extends to an invariant section ¢’ of @(W(V))®?¢ over R. Pulling back ¢ via ¢ : P— R
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{cf. §7.8) and descending via 7 : P-s T = X, we obtain a section of (8(H(V)x, ))®?
which extends the section &|xs. Moreover this extension is unique as X7, # @ (cf. §6.1).
Varying Xn, we see that & extends to a section of ©(U(V)) over X. This completes the
proof of the proposition. f§
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