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Abstract. Let X be a smooth itreducible projective variety over an algebraically closed field -

* K and E a vector bundle on X. We prove that, if dim X > 1, there exist a smooth irreducible
projective variety Z over K, a surjective separable morphism f:Z — X which is finite outside
an algebraic subset of codimension > 3 in X and a line bundle L on X such that the direct
image of L by f is isomorphic to E. When X is a curve, we show that Z, J» L can be so
chosen that f is finite and the canonical map :

HY(Z,0)- H'(X,End E)
is surjective.

Keywords. Projective variety; algebraic vector bundle; line bundle; direct image; finite
morphism. .

1. Introduction

Let X be a smooth irreducible projective variety over an algebraically closed field
and E a vector bundle on X. We prove in this paper first that, if dim X > 1, E is the
direct image of a line bundle L on a smooth irreducible projective variety Z by a
morphism f:Z — X which is finite outside an algebraic subset of codimension > 3 in
X. Moreover one can choose the morphism f to be separable and to have the property
that all higher direct images of L by f are zero [Theorem 4.2].

In particular if dim X <2 the morphism f may be chosen to be finite. In the case
of surfaces this result has been proved by R.L.E. Schwarzenberger for rank two vector
bundles [5, Theorem 3]. We also give an example of a vector bundle on P, which
cannot be obtained as the direct image of a line bundle on a smooth variety by a
finite morphism. ;

In the second part of the paper we consider the case when X is a curve. We prove
in this case that Z, L and f can be so chosen that the canonical homomorphism
(see 5.1) ' :

H'(Z,0,)— H'(X, End E)

is surjective (Theorem 6.4). This result was proved for a “very stable” vector bundle
E by Beauville-Narasimhan-Ramanan in the case of a curve over C by using the
Hitchin map [3]. (For the significance of this result see Remark 6.5).
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192 A Hirschowitz and M S Narasimhan

Let m:P(E)— X be the projective bundle associated to E. The variety Z is
constructed as the subscheme (of P(E)) of zeros of a generic section of the tangent
bundle along the fibres of n twisted by a suitable ample line bundle on X pulled up
to P(E); the line bundle L is simply taken to be the restriction of Op (1) to Z.

The scheme Z is essentially the scheme of ‘eigenstates’ of a generic twisted
endomorphism of E. However, in general, Z is not the spectral variety of the twisted

endomorphism; the canonical map from the spectral variety into X is always a finite
morphism.

2. Sections of the tangent bundle of a projective space

Let V be a finite dimensional vector space of dimension > 2 over an algebraically

closed field K and P = P(V) the projective space of hyperplanes in V. We have the
exact sequences of vector bundles on P(E).

0-QN1)> Vp-0(1)-0
and
0-0p— VE®O(1)~0 0,

where ® denotes the tangent bundle of P and V* the dual of V. We obtain an exact
sequence of vector spaces

0-K = V*® V- H°(P,®)—0.

If End®(V):= End(V)/(Scalar endomorphisms) we have End°(V) = H°(P, ©).

If an endomorphism T of V leaves a hyperplane ¢ invariant, T induces an endo-
morphism of the one dimensional space V/&. The subspace (V/€)* of V* is an eigen-
space of the transpose of T. If sy is the section of ® defined by T, we have s;(£)=0
if and only if T'(£) < £. Thus we can view the subscheme Z = Z, of zeros of sy as the
scheme of “eigenstates™ of T. Moreover the “eigenvalue” of T is a section of 0y; in

fact it is the section of ¢, corresponding to the morphism (,(1)— O,(1) induced by
T from:

0-Q1)— Vp—-0(1)—0
T
V= 0(1)—0.

Observe that the scheme Z; has dimension > 1 if and only if the transpose of T has
an eigenspace of dimension >2 corresponding to some eigenvalue.

PROPOSITION 2.1

Consider the exact sequence of vector bundles

- 0> F—>End®(V)p—0-0

(F being defined as the kernel of homomorphism End®(V)p — ®). Let p:F — End°(V)
be the restriction to F of the projection End®(V) x P — End®(V). Then there exists an

open subset Q in End®(V), whose complement is of codimension >3, such that the
morphism p:p~*(Q)—Q is finite.

.
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Proof. Consider the commutative diagram

0 0
! !
Kp Kp
! ! .
0 - F' - End(Vp - © - 0
| ! Il
0 - F - End®(V)p - ©® - 0
1A l
0 0

Let g:F' - End(V) be the projection. We shall show that there exists an open set U
of End(V) which is saturated for the map End(¥)— End®(V) and whose complement
is of codimension > 3 such that the morphism gq:q~*(U)— U is finite. This will prove
the proposition.

For each subspace W of dimension k > 2 of V*, consider the subspace of End(V*)
consisting of those endomorphisms whose restriction to W is a scalar endomorphism
of W. The dimension of this space is 1+ (r —k)* + k(r — k). Varying W over the
Grassmannian G(r, k) we get a vector bundle W(r, k) over G(r, k) and the dimension
of the total space of this bundle is

1+ —k?+k(r—k)+k(r—k)=1+r>—k%

We have a natural morphism =,: W(r, k) > End(V) which maps an endomorphism
to its transpose. If S,:=m,(W(r, k)), we have dim S; < (1 +r*> —k?) and codim S, >
k*—1>3. Let S= () S, and U=End(V)—S. We have codim §>3 and S is-

2L5kLr
saturated for the map End(¥)— End®( V). The fibres of g:q~*(U)— U are finite and
q is proper. Hence g is a finite morphism. -

3. Sections of the (twisted) relative tmigent bundle of a projective bundle

Let E be a vector bundle of rank r > 2 on a smooth irreducible projective variety X
of dimension > 1 over K. Let m:P(E)— X be the associated projective bundle. We
have the exact sequences on P(E):

0-Q (1) 7*(E) > Opg, (1) >0
and 7
0 Op = 1*(E*)@0(1) > 0,0

where @, (resp. Q}) denotes the relative tangent (resp. cotangent) bundle along the
fibres of m. Let EndO(E) denote the vector bundle End(E)/0y. We have an exact
sequence of vector bundles on P(E):

" 0 F-n*(End®(E)) - 0, —0.
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Let M be a line bundle on X. We obtain the exact sequence:

0— F®n*(M) - n*(End®(E)@ M) > 0, ®@ n*(M) -0

PROPOSITION 3.1

Let p:F @ n*(M)— End®(E) ® M be the canonical morphism (of total spaces of geometric
vector bundles over P(E) and X respectively). Then there exists an open subset Q of
End°(E)® M whose complement is of codimension >3 such that the morphism
p:p” M)~ Q is finite.

Proof. This follows from Proposition 2.1.

~ PROPOSITION 3.2

There exists an ample line bundle M on X such that a generic section s of @ @ n*(M)
(i.e. for s in a non-empty open subset of H°(P(E),®, ® n*(M))) satisfies the following
conditions: ‘

a) The scheme Z of zeros of s is smooth and irreducible.
(b) The morphism n|Z:Z — X is surjective and separable.
(¢) There exists a closed subset S of X of codimension >3 such that the morphism

n:Z\n " (S)—»X\S

is finite.

Proof. Let ¢ be an ample line bundle on X. Then the line bundle n*(&*)® 0(1) is
very ample on P(E) for k > k,. [4, 11, Prop. 7.10, p. 161]. We may also assume that
for k> ko, the bundle £*® E* is generated by its sections. Let M = &2, Since the
sections of the very ample line bundle n*(£)* ® (1) generate its first order jet bundle
and 7*((*®E*) is generated by its sections, we see that the sections of
(M ®E*)®0(1) generate its first order jet bundle [7, Lemma S5]. Since
0, ®n*(M) is a quotient bundle of n*(M ® E*)® (1), the sections of @, ® n*(M)
generate its first order jet bundle. Now by [7, Theorem 1] the zero scheme Z of a
generic section s of ®,® n*(M) is smooth. We will prove in the next proposition
(Proposition 4.1) that Z is irreducible. *

Let xoeX and S:=n"1(x,) the fibre over x,. Let W be the image of the homo-
morphism :

H(P(E), 0, n*(M))— HO(S, ®, ® *(M)|S).

- (We may even assume that W = H(S, ®,® n*(M)|S), by choosing k large enough).

Then the first order jets of elements of W generate the first order jet bundle of
0, ® n*(M)|S; hence, again by [7, Theorem 1], for a generic element ¢ of W, the
zero subscheme (of S) defined by ¢ is smooth. Thus we see that for a generic section
of ®, ®n*(M) the zero scheme Z is smooth and irreducible and Z intersects S
transversally. It follows that there exists a point z,eZ S such that the differential
of | Z at z, is an isomorphism. This proves that | Z:Z — X is surjective and (assuming
Z to be irreducible) separable. (Observe that Z intersects every fibre 7~ (x), x€X, -
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for otherwise the tangent bundle of the projective space ™! (x) would contain a trivial
line bundle.)

Let := H°(P(E), n*(M)® ©,)

=H'(X,M®7,(0,))
= H°(X, M ® End°(E)).

Consider the morphisms

9% x X - M ®End®(E)

IpPx
X.

where the evaluation map ¢ is a smooth morphism, being a surjection of vector
bundles. Let Q be the open subset of M ® End°(E) defined in Proposition 3.1 and
N its complement. Then

dim ¢~} (N) < dimZ + dim X — 3.

By considering py:¢~'(N)— X we see that for a generic section s of M ® End°(E)
we have

dim(p "} (N)n{s x X})<(dim X)—3.
“Let S < X be defined to be py(¢ "(N)n {s x X}). Then dim S < (dim X) — 3 and
n|Z:Z\n"1(§)-» X\S '

is finite. 4
Thus for a generic section s of ©, ® n*(M) all the conditions a), b) and c) are satisfied.

4. Koszul resolution of the zero scheme Z
Proof of Theorem 4.2

PROPOSITION 4.1

Let s be a section of ®,® n*(M) over P(E) such that the zero scheme Z of s is smooth.
We then have _
a) Ty (07 ® Op (1)) ~ E and Rim, (0,(1)) =0 for i> 1.
b) n,(0;) has a filtration
0=FycF,cF,c...cF,c...cF, =n,0;)
such that Fi/F, | =M~ V(:=(M*)®¢=1) for 1 <i<r (In particular F, ~ 0y).
.€) Z is irreducible (if dimX > 1 and M is ample).

Proof. Using our assumption on Z, we have a Koszul resolution for @, on P(E): [1,
Ch 1, Lemma 4.2 and Ch. III, Propositions 4.10 and 4.11] _

r—1 2
(4) 0> A (Qi@r;*(M*))—»--~—>A(Q;®n*(M*))—>Q; ®n*(M*)—>(9P(E)—->@z—>0




196 AH iarschowitz and M S Narasimhan -

and also a resolutipn of @,(1):
(B) 0 Q' @(m*(M*)Y "1 @ 0(1) = -+ — QL@ T*(M*) ® O(1) - 0(1) > O(1)|, 0
Now we have, for the projective space P, the Bott vanishing theorem:

H(P,Q"(1))=0 for p>1 and all i [6, Thebréme 1].

Hence we have
Rin Q2@ m*(M*)®)@0(1))=0

for p>1 and all i. Splitting B into short exact sequences we deduce that
Ty (02(1)) = 7y (Oppy(1)) = E

and R'n,(0,(1))=0 for i > 0.
For proving (b) we observe that Rin, (QF) =0 for p # g and

R"n*(ﬂ;’t)= Ox for0<p<(r—1) [6].

Splitting (A) into short exact sequences we obtain b). -
To prove c), since dim X > 1 and M is ample we have HO(X, M ") =0 for k>0.
Using the filtration of =, (0;) given in b), we see that

H%(Z,05)= H°(X,,(0;)) = H(X, Ox) = K.

Since Z is smooth it follows that Z is irreducible.
Theorem 4.2 Let X be a smooth irreducible projective variety of dimension > 1 over
an algebraically closed field K. Let E be a vector bundle on X. Then there exist a

smooth irreducible projective variety Z over K, a line bundle L on Z and a surjective
separable morphism f:Z — X having in addition the following properties:

1) there exists a closed subset S in X of codimension >3 such that the morphism
[1Z\f7H(S) - X\S
is finite.

| 2) we have f,(L)~E and R'f (L)=0 for i> 0.

Proof. We may assume that E is of rank > 2. Choose an ample line bundle M on X
satisfying the conditions of Proposition 3.2. Let L be the restriction of Opg(1) to Z
and f be the restriction of n:P(E)— X to Z. Then by Proposition 4.1(a) we have

f«(L)~E and R'f,(L)=0 for i > 0.

5. The map D

Letf:Z — X be a morphism and L a line bundle on Z such that J«(L)=E is a vector
bundle of rank r on X. The morphism f*(f, (L))~ L gives rise to a morphism

| f*(@z)®E"’f*(L)=E
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which may be viewed as a morphism
D:f,(0;)~>E*QE.

(D gives the canonical f,,(0z)-module structure on f,(L)).
Suppose that f:Z— X is a finite surjective morphism of smooth varieties. Then f
is flat [1, Ch. V, Cor. 3.6]. We have

HY(Z,0;) = H'(X,f,(02)).
The homomorphism
D, :HY(Z,0;)~H"(X,End E) ' ' (5.1)

induced by D is the inﬁnitesimai deformation map (at L) for the variation of the
direct image bundles as L deforms as a line bundle on X [2, Lemma 1.3.1].
Since f is finite, the map f*(E)— L is surjective and we have an exact sequence

0—-»N- f*(E)— L-0
of vector bundles on Z. From this we get an exact sequence of vector bundles.
00, f*(E*)® L>N*® L—0.

Since [ is flat and finite, f, (0z) is a vector bundle on X of rank r and [ (N*® L)
is a vector bundle. So we have an exact sequence of vector bundles on X:

0 f,(07)— E*®E— f,(N*® L) 0.
Observe that f,(0;)/0x is a vector subbundle of rank (r— 1) of the vector bundle
End(E)/0x = End®(E). Thus we have

Lemma 5.2 Let f:Z — X be a finite morphism of smooth varieties and L a line bundle
onZ.If E:= f,(L)is a vector bundle of rankr, then the vector bundle End®(E) contains
a vector subbundle of rank (r — 1). . :

Let us get back to the situation in § 3 and §4.

“PROPOSITION 5.3

Let s be a section of ©,® n*(M) and Z the zero subscheme of s with the property that
the canonical map E = m,(Op g, (1)) — £(@4(1)) is an isomorphism, where f = n|Z. Suppose
that T is a section of End(E)® M such that the image of T in H°(P(E), ©,® n*(M))
is s. Then there is a homomorphism u:M~* - f,(0) and a commutative diagram

: D

DN

where D is defined at the beginning of this section (§5).
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Proof. Consider the diagram
0 - QM) - TEIM ) - ONETM ) - 0
\T | 4
0— o B o() — 0 |

where T is induced by T The homomorphism go Toi:ﬂi@M 1 0(1) gives the
section s of ®, @ n*(M). So T'induces on Z a homomorphism A:0,(1)® f*(M~1)—
(0,(1) and we have a commutative diagram

n*(E)®1c*(M‘1) @: 0z(l)®1r*(M"1) .
| T 1A
7*(E) = 0,(1)

Considering A as a section of 0, ® n*(M) we obtain the section T, () of M@ 7, (0;) R
which we view as a homomorphism y:M~! - f,(0;). Since by assumption E -7, =
(04(1)) is an isomorphism, it follows, from the above diagram, that T corresponds

tox,(4): M~' ® E— E. But by the definitions of D and u we see that 7, (A) corresponds

to Dop. This means that T=Doyp.

6. Vector bundles on curves

Lemma 6.1. Let X be a smooth, projective irreducible curve over K and F a vector
bundle of rank >2 on X. Let ¢ be an ample line bundle on X. Then there exists an
integer l, such that for 1> 1,,&™" is a subbundle of F and the induced homomorphism
HY (X, &Y — HY (X, F) is surjective.

Proof. Let first F be of rank 2. Sinc,e for all large I, & ® F* contains a trivial line i
subbundle, we get an exact sequence =2

0-+¢7' > F-> ¢ @det F—0.

Choose ! large enough so that H*(X, & @ det F) =0.

Now suppose that F is a vector bundle of rank > 3. Then we can find a filtration
of F by subbundles

OCFl CFZ"‘CFiC"'Fr—]_ =F
such that rank (F;) =i + 1 (in particular rank F; = 2) and such that H!(X, Fi/F,:,)=0,

for i > 2. Now choose a line subbundle ¢~ of F, with H*(F, /£™")=0. We see easily,
by induction on i, that H(X, F/¢~")=0. o

Remark 6.2 Note that H (X, &) H' (X, F)is surjective if and only if H(F/& ") =0, s
as H*(X, ¢ =0. '
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COROLLARY 6.3

Let F be a vector bundle on X. Then there exists an integer l, such that, for 1> I,,
for ageneric section o of &' ® F themap H* (X, £~")— H' (X, F) induced by o is surjective.

Theorem 6.4 Let X be a smooth projective irreducible curve over an algebraically closed
field K and let E be a vector bundle on X. Then there exist a smooth projective irreducible
curve Z over K, a line bundle L on Z and a finite surjective separable morphism f:Z — X
such that

1) fi(L)~E
2) and the homomorphism (defined in 5.1)

HY(Z,0,)~ H*(X,End E)

is surjective.

Proof. Choose an ample line bundle M as in the proof of Theorem 4.2. We may also
choose M to have the further properties: '

a) HY(X,M)=0
and ‘
b) a generic section ¢ of H°(X,End EQM) verifies the condition that the
homomorphism :

H'(X,M~!)~H'(X,End E)

is surjective (use Corollary 6.3). |
By condition a) the map

H°(X,End E® M)-H°(X,End°EQ® M)
is surjective. .

Now a generic section s of HO(P(E),®,® n*(M))=H’(X, End"(E)@M) is the
image of a section T of End(E)® M with the property that the homomorphism

HY(X,M~')—H'(X,End E)

induced by T is surjective and satisfies conditions a), b) and ¢) of Proposition 3.2.
Choose Z, L,f as in the proof of Theorem 4.2. Then f,(L)=E.
To prove 2), observe that the factorisation, given in Proposition 5.3,

D
f«(©z) —> EndE

N e T

induces a commutative diagram:

' D+ : ;
H'(Z,0;) = H'(X, f,(0z)) —%H" (X, End E)
. T*
H'(X,M™%)

Since, by choice, T, is surjective, the homomorphism D, is forced to be surjective.
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Remark 6.5 If E is a stable bundle on X and if Z, f and L are chosen as in Theorem 6.4,
we see that f, gives a dominant separable rational morphism from an appropriate
component of Pic(Z) into the moduli space of vector bundles on X of rank r =rkE
and degree d = degree E (compare [3]). We thus obtain ‘most’ stable bundles of a
given rank and degree as direct images of line bundles on a fixed covering Z of X.

7. The example

We now give an example of a rank 2 vector bundle on the projective space P,(C)
which cannot be obtained as the direct image of a line bundle by a finite morphism
[:Z —-P4(C), with Z smooth. '

Let E be a stable vector bundle of rank 2 on P4(C) with ¢,(E)=0 and c,(E) > 0.
If E were the direct image of a line bundle by f:Z — X, with Z smoeth and f finite,
the bundle End®(E) would contain a line subbundle L by Lemma 5.2. If £ = L™, we
would have

¢5(E @ End®E) = 0. We have
¢3(E®@ End®E) = 4c, (&), (E) + ¢ (&>

But the bundle L and hence £, is non-trivial, since h°(P,, End®E) = 0, E being stable.
So ¢, (¢) # 0 and we would have

¢1()(4c2(E)+¢,(£)*) =0,

a contradiction.
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