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GRANULATION AND SUPERGRANULATION AS
CONVECTIVE MODES IN THE SOLAR ENVELOPE
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Abstract. The stability of linear convective modes in the solar convection zone is investigated by
incorporating the mechanical and thermal effects of turbulence through the eddy transport coefficients.
The inclusion of turbulent thermal conductivity and viscosity, calculated in the framework of the mixing
length approximation, is demonstrated to have a profound influence on the convective growth rates. The
solar envelope model of Spruit (1977) is used to show that that most rapidly growing fundamental mode
and the first harmonic are in reasonable accord with the observed features of granulation and super-
granulation, respectively.

1. Introduction

The velocity fields observed at the solar surface are characterized by a non-
oscillatory component which is believed to be a manifestation of the convective
motions in the subphotospheric layers of the Sun. The resolved motions can be
ordered into three distinct classes. The granules with a characteristic cell size
~2000 km have an average life-time of the order of 8-10 min (Bahng and Schwarz-
schild, 1961; Namba and Diemel, 1969; Beckers and Canfield, 1976). The super-
granular motions have an average diameter of ~30 000 km and life time of about 1-2
days (Simon and Leighton, 1964). Besides these two motions giant cells which are
comparable in size to the total thickness of the solar convection zone have been
detected (Bumba, 1970; Howard, 1971). However, the convective nature of these
cells is not well established.

In an effort to understand the observed length scale and life time of granulation,
Bohm (1963, 1967) calculated the growth rates of linear convective modes by
perturbing the equilibrium convection zone model constructed with the mixing
length formalism of BOhm—Vitense (1958). The resulting growth rates were found to
increase monotonically with the decreasing length-scale well past the observed
cut-off. Thus, the size distribution of cells could not be explained on the basis of
Bohm’s calculations. Nelson and Musman (1978) attempted to explain the absence
of granules with short length-scales by invoking the damping of temperature
fluctuation due to efficient horizontal radiative exchange at the surface. On the other
hand, it is well known that in an optically thick medium when the radiative exchange
is included, there is always a preferred length-scale for which the convective mode
has a maximum growth rate (Chitre and Gokhale, 1973). Since the solar convection
zone is optically thick, it is rather surprising that Bohm was not able to obtain a
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maximum growth rate and the associated preferred length-scale from his compu-
tations. We attribute this to the neglect of the turbulent conductivity in Bohm’s work.
In the convection zone most of the flux is carried by convective transport and the
radiative conductivity is very small as compared to the turbulent heat conductivity.
The turbulence is therefore expected to have a significant influence both in the way it
modulates the heat flux and by the direct effect of the Reynolds stress (Spiegel,
1967). With only the radiative conductivity included in the calculation we find that
the maximum growth rate (0.012 s ') is attained for a length-scale of =400 km,
which is much shorter than the observed granular size.

The motivation of the present study is to extend Bohm’s work by including in a
crude manner the mechanical and thermal effects of turbulence in the governing
hydrodynamical equations. In the absence of a satisfactory time-dependent theory of
convection, we follow the prescription of Unno (1961, 1967) and parameterize the
effects of turbulence through the coefficient of turbulent heat conductivity in the
energy equation and through the coefficient of turbulent viscosity in the momentum
equation, assuming that both are determined to a satisfactory approximation, by the
mean convective velocity and the mixing length. In the solar convection zone the
effect of viscosity was included by Vickers (1975) and Vandakurov (1975) while
investigating the convective modes. But these model calculations were somewhat
idealized and no definitive conclusions could be drawn from these studies. In his later
work Bohm (1976) has attempted to incorporate the effects of turbulent heat
conductivity and turbulent viscosity on convective modes in the solar convection
zone. However, this study is restricted to the problem of the onset of instability. The
work showed that the fundamental mode has a wavelength A ~ 1500 km, while the
wavelength corresponding to the first harmonic is around 39 000 km and these two
modes were respectively identified by Bohm to represent granulation and super-
granulation.

We shall attempt to account for the non-oscillatory motions observed on the solar
surface in terms of the linear convective modes excited in the subsurface convection
zone. Clearly, as emphasized by Simon and Weiss (1968) any satisfactory theory
must explain why the distribution of cell sizes shows two distinct peaks at ~2000 km
and ~30000km. The linear stability analysis should yield preferred length-
scales corresponding to granulation and supergranulation, and we explore the
possibility of relating these to the most unstable fundamental mode and the
first harmonic.

For the present investigation we adopt for the equilibrium state the solar con-
vection zone model of Spruit (1977) which is based on usual mixing length approxi-
mation to calculate the convective flux. It is found that the turbulent coefficients have
a profound influence on the convective modes. Thus, when only the effects of
turbulent heat conductivity are taken into account, the preferred length scale for the
fundamental mode comes out to be ~1500 km and the corresponding e-folding time
of the order of 4 min. But, in addition, if the turbulent viscosity is included in the
computations, depending on the choice of the turbulent Prandtl number, the
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preferred sizes fall in the range 2000-3000 km with the associated e-folding time-
scales varying between 5 and 10 min for the most unstable fundamental mode.
Furthermore, for the same choice of parameters, the preferred diameters and the
e-folding times corresponding to the first harmonic lie respectively in the range
11 000-20 000 km and 7-50 hr. It is therefore tempting to identify the fundamental
mode and the first harmonic respectively with the solar granulation and super-
granulation.

The plan of the paper is as follows. The mathematical formulation and the
equilibrium model are set out in Section 2, and the results of the numerical
computation are given in Section 3. Finally, the results are compared with the
observations in Section 4.

2. Mathematical Formulation

A. BASIC EQUATIONS

We shall adopt the usual hydrodynamical equations for the conservation of mass,
momentum and energy as being applicable to a viscous thermally conducting fluid.
These equations in the dyadic notation take the following form:

Mass conservation:

ap

+V- =0;
o V-(pv)=0;

momentum conservation:

ov

+p(v-V)v=
o p(v-V)v

P

=pg—VP-3uV(V-v)-3(V - v)Vu + V- [u(Vv+VV)]; (1)
energy conservation:

01 T/oP
[_+ -V _Va _(_+ . )] - Y.
pC, Y (v- V)1 d o\ 57 (v-V)P V-F+ @,

where @ is the rate of viscous dissipation,
& =31 (Vv+vV) - (Vv +vV) —35u(V - v)>.

Here u is the coefficient of dynamic viscosity, C, the specific heat at constant
pressure, V,q4 is the logarithmic adiabatic gradient (3 In 7/9 In P),g4, F is the total heat
flux composed of the radiative flux, F® and the convective flux, F€ and other symbols
have their usual meaning. These equations must be supplemented by the equation of
state. For this purpose we treat the medium as a perfect gas undergoing ionization
and we also include contribution due to radiation pressure (cf. Cox and Giuli, 1968).
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We have adopted the same chemical composition as used by Spruit (1977) and have
included all stages of ionization for various elements by using Saha’s ionization
equations.

In order to compute the radiative flux we have used the Eddington approximation
(cf. Ando and Osaki, 1975). It has been demonstrated by Unno and Spiegel (1966)
that this approximation reduces to the exact solution of the equation of radiative
transfer in the limits of large as well as small optical thickness. For the convective flux
we adopt the expression given by Unno (1961) which is based on the mixing length
formalism used to generate the solar equilibrium model. Thus we have

4
FR=—VJ,
3xp

T
FC = —K,(VT _ VadFVP) ,

and so the total flux is given by

4 T
F:—* _K —_ —
3kp V7 '(VT VadeP) ’ (2)
where
) Cp[aT T<aP )]
- Sl (v V)T =V =+ (v- V)P) |. 3
J=0T Ly at+(v WT = (v-V)P (3)

Here « is the mean Rosseland opacity, J the intensity of radiation, K, the
coefficient of turbulent conductivity, and o is the Stefan-Boltzmann constant. In
Equation (3) if the second term on the right-hand side is neglected, the equation will
reduce to an equation in the diffusion approximation, with the radiative conductivity
Kz =160T?/(3kp). The diffusion approximation is quite good in regions well below
the photosphere. However in atmospheric regions where the second term becomes
comparable with the first term, the diffusion approximation is not so satisfactory.

We shall adopt the spherical geometry and as usual we assume that any physical
quantity in the perturbed state can be expressed as

f(r’ 0’ d), t)=f0(r)+f1(r)Y;n(09 ¢) ewt,

where fo(r) is the value in the unperturbed state, (7, 6, ¢) are the spherical polar
coordinates with origin at the center of the Sun, Y|" are the spherical harmonics, and
o the growth rate. We linearize the basic equations (1)-(3) by neglecting the higher
order terms in perturbed quantities to get the following equations:

: @:+&_[8_m pd(+1) 4 due Jos
M2 4 132 r? 3r dz | PoefYr

[su, 4dp,,]dv, z<1+1)[2 du: 7 ]
+|—0——= — o] v —

3r 3dzldz  r L3dz 3¢
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l(l + 1) doy, (ap) ap
o (0) () 1,
3r dZ & oP T 178 oT P !

d’vs [1 dus 8#:] e do,
Mt = -t

dz? lrdz 37 3r dz

41041 1du 2 1
+[ o = wpo]vh+[ £ d—“‘]d”" =P,

f—— ——+ -——
3 7 ® r dz dz1ldz r

T() dP1 dT1 4 dJl
~KV. +K—1+ —1_
edpdz T 'dz | 3kepo dz

1 ok 1 /0p 1 /0K 1 /0dp
e[ L), 2 I (), ) I
O[Ko aPT Po oP ! 0 Ko an Po oT !

dF,  gTopsC, To[
—= V—-V.dv, C,+
iz P =——( AUy — wap | “P0 b+

l(l+1)K,]P

l(l+1) I(1+1) 4
r* 3kopo

1 dpo 2) do, I(I+1) (ap) (ap)
—— v, +—+ - Pi—— T,.=0,
(po dz r v dz r On po \oP ! po\oT !

+[wp0Cp+ K,] T, -—F + 1,

gToPOC wToC,
V—-V.av,+V,
4KOP0 ( d)v d4 0P0

C,
P,— (4T3 +‘: ) T,+J,=0. (4)

Here FX =(160T3/3kopo)(dTo/dz) is the radiative flux in the steady state,
=(dIn T/d In P), and z is the depth below the level r =1. We have assumed the
velocity perturbation in the form

1
V0, 6,8, )= 0,0), (r)%, on(r) = f;) Y7 (6, ¢) e 5)
and the perturbation F; in the form
R, 6,6, = (E(0), Fh<r>ai Fu(r )—5 a%) Y76, 6) ™. 6)

In deriving these equations we have neglected perturbations in turbulent conduc-
tivity K, turbulent viscosity u,, and adiabatic gradient [V,4(7/P)] as well as the
perturbation of the gravitation field, g. These assumptions are made to simplify the
equations and we shall argue later that this is of no great consequence for convective
growth rates. However, we have considered the perturbation in opacity due to
fluctuations in the temperature and pressure in order to incorporate the effects
arising from the kappa mechanism. It can be seen that the system of equations can be
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written as six first order differential equations together with two auxiliary equations.
The detailed derivation of these equations is given in Appendix I. For u, =0 and
K, =0 this system of equations would be equivalent to the equations derived by
Bohm (1963), provided the radiative transfer is treated in the diffusion approxima-
tion.

B. EQUILIBRIUM SOLAR MODEL

Since the convective modes are trapped in the convection zone it is sufficient to
consider only the outer layers of the Sun. We have used the solar convection zone
model given by Spruit (1977) which extends to approximately half the solar radius.
This model is based on the usual mixing length approximation, with the mixing length
L =z +459 km, and the convective flux given by

T,
F€ =apoC,LW(V —v')ﬁ" , (7)

p

where the mean convective velocity W is given by
1/2
W= [BiLz(V—v')] ; ®)
H,

H, is the pressure scale height, and V' refers to the logarithmic gradient
(dIn T/d In P) inside the convective element. In Spruit’s model « =%and B = %. For
the atmosphere we have used the model which is obtained by using the empirical
temperature-optical depth (T — 7) relation given by Vernazza et al. (1976). We have
chosen the upper boundary a little below the temperature minimum at a level with
7=7%x10"* (T =4180 K), while the lower boundary is chosen at a depth of =4 x
10° km (T =4.8 x 10° K). Most of the quantities required in the equations are tabu-
lated by Spruit. However, the partial derivatives (dp/dP)r, (0p/dT)p were calculated
by using the equation of state for a perfect gas undergoing ionization with the
radiation pressure included (cf. Cox and Giuli, 1968). For this purpose we have used
the standard chemical composition and all ionization stages of every element were
included by using Saha’s ionization equations. The derivatives were calculated by
explicit differentiation of the equation of state. The partial derivatives of opacity
(0x/dP)r and (dx/0T)p were calculated making use of the opacity tables of Cox and
Stewart (1970), where an interpolation to Spruit’s composition (X =0.706, Y =
0.280, and Z = 0.013) was necessary.
Following Unno (1961) we take the turbulent heat conductivity in the form

K, =ap,C,WL. 9)
For turbulent dynamic viscosity we use the expression

[.L,=Ptap0"VL, (10)
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where P, is the turbulent Prandtl number and is treated as a free parameter which
should be of the order of unity. The molecular viscosity is several orders of
magnitude smaller than the turbulent viscosity and hence is neglected in the problem.
However, the convective velocity does not drop abruptly to zero at the boundaries of
the convection zone due to penetration of convective elements into the neighbouring
stable layers. In an attempt to include this effect we assume that the coefficient of
turbulent dynamic viscosity . drops exponentially with height in regions beyond the
convection zone. The scale height for the exponential decrease in . is treated as
another parameter in the problem. We have taken three values of scale height 50 km,
25 km and 10 km. This applies to the region above the convection zone where
penetration is appreciable. In regions below the convection zone we assume the
coefficient of turbulent viscosity to have a constant value. This is good enough since
the penetration of convective modes in the region below the convection zone is
negligible and hence this assumption is of little consequence.

For the overlying atmospheric regions we calculated the radiative flux in the
Eddington approximation, but whenever treating special cases with the diffusion
approximation for these regions we have replaced the thermal conductivity K, by an
effective value obtained by assuming the radiative flux to be constant, that is, we have
taken

Lo

dT,\’
4rr* —)
( mr dz

KR=

where Lo is the total energy radiated by the Sun, which is clearly a gross under-
estimate. This adjustment is, however, necessary since due to a steep decrease in
density and opacity in the outer regions the usual value of the radiative conductivity
Kz = 160T3/3kopo increases steeply with height which overestimates the heat fiux.
Further, in these layers we have neglected the perturbation to the radiative conduc-
tivity. These modifications are of minor importance because the amplitude of
convective modes is not appreciable in these layers.

C. BOUNDARY CONDITIONS

Since we have applied boundary conditions a little beyond the convection zone, the
exact conditions are not very important for convective growth rates, because the
amplitude of these modes falls off rapidly outside the convection zone. As will be
seen from the results in the following section the boundary conditions at the lower
boundary have no effect at all on the convective growth rates since the eigenfunctions
decay exponentially with depth in these regions, and the existence of this boundary is
not at all felt by the convective modes. However, there is a considerable penetration
in the overlying region and as a result the upper boundary conditions have some
effect on convective growth rates. In order to investigate the sensitivity of our results
to various boundary conditions we have considered the following sets of boundary
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conditions. Since the total system of equations governing the perturbations are of the
sixth order we require three boundary conditions at each interface:

(I) Rigid boundaries with no momentum flux across them and maintained at
constant temperature:

v,=0, vp,=0, and T,=0.
(IT) Rigid boundaries with no momentum flux across and with the energy flux
maintained constant:
v, =0, vp,=0, and F,=0.

(III) Free boundary conditions in which the Lagrangian perturbation in pressure
vanishes at the outer boundary and further the tangential components of viscous
stress tensor are assumed to vanish at the boundary:

wP,—gpov, =0,
dl)h

= r——— 1, =0.

v rdZ Up

The condition on the energy flux is that its Lagrangian perturbation vanishes, i.e.,

2FE%
wF,—2224.=0.
r

At the lower boundary the rigid conditions as in (I) are assumed.
(IV) Free boundary conditions with the thermal boundary condition demanding
that the radiation does not come in from infinity. This gives

Ur[4 dTo 2] ]1 Fr

T, dz rl oTy F&

0.
Ty dz r

w
Other conditions are same as in (III). The conditions are the same as in (I) at the
lower boundary.

D. NUMERICAL TECHNIQUE

The system of Equations (4) along with the appropriate boundary conditions defines
a generalized eigenvalue problem where the eigenvalue w is to be determined for a
given value of I For solving these equations we have used a finite difference method
with explicit calculation of first order difference corrections (cf. Antia, 1979). The
eigenfunctions are calculated by using an inverse iteration method. The difference
correction gives an estimate of the truncation error involved in the difference
approximation and was found to be very small. The convective modes have real
eigenvalues and they could be easily located by looking for sign changes in the
determinant of the difference equations. More accurate eigenvalues were obtained
by the secant iteration method, the iteration being continued until the eigenvalue
converged to 1 part in 10°. To avoid errors due to interpolation we selected the grid
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points such that we can directly use the values given in the Spruit’s table. A total of
139 mesh points were used for this purpose, 92 of these mesh points were inside the
convection zone while 29 points were used to cover the atmospheric region. For
numerical computation we used Schwarzschild’s dimensionless variables (cf. Cox
and Giuli, 1968) to avoid the occurrence of very small and large numbers. The
computations were carried out on DEC system 1077 employing single precision
arithmetic.

3. Numerical Results

The convective modes are trapped inside the convection zone in a region with
o < we, Where w,, is the critical growth rate (which is just the absolute value of the
imaginary Brunt—Viisila frequency) given by

_ _za_p> _ ]”2
wcr_g[ P(GT p(V Vad) .

For w < w, the convective modes will have (spatially) oscillatory character, while for
w > w. the modes will be evanescent and the amplitude will drop exponentially with
distance. Figure 1 displays w., as a function of depth and it can be seen that w, decays

10

-1
w,, (sec’)
A

|O-6 1 : 1 L ] 1 |
3-0 3-5 4-0 4-5 5-0 5-5 6-0

log (z +1-4x10 km)

Fig. 1. The spatial variation of the critical growth rate w., = g[—(T/P)(3p/dT), (V -V.)1"? ™Y in the
solar convection zone.
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very fast with depth. Thus for any reasonable value of w the modes will be evanescent
in the lower part of the convection zone and hence their amplitude will be very small
at the base of the convection zone. These modes will not penetrate appreciably
beyond the convection zone. This can be verified from the behaviour of the
eigenfunctions. On the other hand w., is very large in upper regions of the convection
zone and hence all modes will have propagating (oscillatory) character in the upper
part of the convection zone. As a result these modes will penetrate appreciably into
the overlying stable layers (where w,, is imaginary). It should be emphasised that
these considerations regarding the trapping of the modes apply strictly to a situation
when there is no dissipation, that is, Kg =0, K; =0, and u,=0. For a dissipative
atmosphere the condition should not be essentially different.

We have computed the growth rate o as a function of horizontal harmonic number
l. The value of / determines the horizontal wavelength of the corresponding mode,

A __27T__ 27lec

ke Y1+

where kg is the horizontal wave number and R is the solar radius. For each value of
I we get a series of values of eigenvalue w. The highest eigenvalue, the fundamental
mode, is referred to as Cl-mode, while the successive harmonics are referred to as
C2,C3,.... For a given value of / only a finite number of modes will have positive
growth rate. The negative growth rates correspond to damped modes and are of no
interest to us, and we will consider only real positive eigenvalues of the system of
Equations (4).

First let us consider the simplest case without any dissipative processes, that is
Kr =0, K, =0, and u,=0. Here the system of Equations (4) reduces to a second
order differential equation and we require only two boundary conditions which we
select to be v, = 0 at both the boundaries. In this case it is found that the eigenvalues
of all the harmonics increase monotonically with / as shown in Figure 2 (marked A)
for the fundamental (C1) mode. Further, as / increases the eigenvalues will asymp-
totically reach the maximum value of w.. over the whole layer.

We shall now include only radiative conductivity Kg, but neglect the turbulent
coeflicients, that is set K, = 0, u, = 0 and treat the thermal dissipation in the diffusion
approximation (cf. BOhm, 1963). In this case the system of Equations (4) is of the
fourth order and we require two boundary conditions at each bounding surface.
These we take to be

v,=0 and T;=0

at both the boundaries to solve the resulting eigenvalue problem.

The results are shown by a curve marked B in Figure 2 for C1-mode. In this case
the growth rate attains a maximum value of =~0.012 s~ (e-folding time =~1.4 min) for
[=10 000 (A =400 km). This is owing to the fact that the thermal dissipation is more
effective for smaller horizontal length-scales and hence the growth rate comes down
at higher /. However, as noted earlier, the maximum occurs at a very small
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Fig.2. Thegrowthrate w (s™) of the fundamental mode is shown as a function of log [ for various cases:

(A) Non-dissipative case with Kg =0, K, = 0, u, = 0; (B) Bohm’s case with K, = 0, u, = 0; and (C) with the

neglect of turbulent viscosity, that is K, # 0, u, = 0. The other two curves refer to the fundmental mode for

the turbulent Prandtl number P, =0.1 and 1.0 respectively. The horizontal wave number k; in Mm™!
(logarithmic scale) is given at the bottom.

length-scale and e-folding time as compared to the observed values for solar
granulation. Bohm (1963) believes that his growth rate gives a lower limit to the
actual growth rate since he has overestimated the radiative dissipation in upper
layers. However, we find that his growth rates yield an upper limit to the actual
growth rates, since in the first place he has neglected the perturbation in convective
flux which would provide an additional damping in the convection zone. Secondly, he
has used the diffusion approximation which may be reasonable in the convection
zone itself, but in the overlying stable layers it overestimates the thermal dissipation.

Next we include the effect of turbulent conductivity but neglect the mechanical
effects due to viscosity (u, = 0, or P, = 0). In this case the governing equations are of
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fourth order and we use the same set of boundary conditions, as used for the
preceding case. The convective growth rate for C1-mode is shown by a curve marked
C in Figure 2. In this situation we get the maximum growth rate at [ =3000 (i.e.
A =1500 km, and the corresponding e-folding time is =4.2 min. This clearly
demonstrates the importance of turbulent conductivity in determining the length-
and time-scales of convective modes. It can be seen that for lower values the effect of
K; is not very pronounced, although, it affects the growth rates at higher values of /
significantly.

We shall now consider the effect of turbulent viscosity on the convective growth
rates. Figure 2 also shows the results for turbulent Prandtl number P, =0.1 and 1.0,
for viscosity scale height = 10 km and with boundary conditions (I) in the Eddington

0-003 r—

0-002

o
o
(72]
3
0-00!|
0-0 P JHAY | ] ] ] |
(0] 500 1000 1500 2000 2500 3000
L | | t I | ]
0-0 -0 2-0 3-0 4-0
kH ( M m" )

Fig. 3. The growth rate » (s_') is shown as a function of the horizontal harmonic number / for the
turbulent Prandtl number P, = 1.0 for three values of viscosity scale heights in the overlying stable regions
10 km, 25 km, and 50 km. The scale at the bottom gives horizontal wave number kg in units of Mm™*.
The full curves refer to the fundamental mode (C1), while the broken curve refers to the first harmonic

(C2).
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approximation. It can be clearly seen that the preferred wavelength as well as the
corresponding e-folding time increase with the turbulent Prandtl number. An
important change produced due to viscosity is that at higher values of / the growth
rates become negative and hence the modes are highly damped. Further, for a given
value of /, only one or two of the highest modes have positive growth rates, while the
higher modes are effectively damped. Figure 3 displays convective growth rates as a
function of / for P,=1.0 and three values of the viscosity scale height for the
fundamental mode with the boundary conditions (I). It is clear from this figure, as we
increase the viscosity scale height the viscous damping in the overlying layer will
increase and hence growth rates are reduced. We also notice that the damping effect
is more pronounced for larger / and higher harmonics, viz. the C2 mode is damped
for viscosity scale height =25 km and 50 km. For the rest of our numerical compu-
tation we have chosen the viscosity scale height in the overlying layers to be 10 km.

0-004
0-003 I~
TU Pf'O'l
()]
v 0002}
3
IO c|
2:0
0-00! |- 30 cl
7 SS\R-o
// \\cz
~
=|. Cl Cl AN
g S | | ] 1 |
0 1000 2000 3000 4000 5000 6000
l 1 1 1 1 | | | | ]
0-0 -0 2:0 3-0 4-0 5-0 6-0 7-0 80

Ky (Mm™)

Fig. 4a. The growth rate w (s™Y) of the fundamental mode (C1), shown by the full curves, and the first
harmonic (C2), shown by the broken curves, is plotted against / for the turbulent Prandtl number P, =0.1,
1.0, and 2.0. The horizontal wave number kg in units of Mm™" is given at the bottom.
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Fig. 4b. The growth rate » (s~ ') of the fundamental mode is plotted as a function of ! for the turbulent
Prandtl number P,=1.0, 1.2, 1.4, 1.6, 1.8, and 2.0.

We have mentioned in Section 2B that the turbulent Prandtl number P, which
determines the relative importance of turbulent viscosity over the turbulent conduc-
tivity is treated as a free parameter in the present investigation. The results for a
number of values of P, for C1 and C2 modes are displayed in Figures 4 (a, b) and 5,
for the first set of boundary conditions in the Eddington approximation. From these
results we infer that the C2-mode has much larger horizontal wavelength and
e-folding time as compared to the Cl-mode. We also find the C2-mode to be far
more sensitive to the turbulent Prandtl number, than the C1-mode. For example, for
P, =2.0 while the C2-mode is damped, the C1-mode is still a growing mode and has a
growth rate, at the maximum, somewhat smaller than it has for P, = 1.0.

Let us consider the behaviour of the eigenfunctions. The eigenfunction for the
Cl-mode has no node in the radial velocity v, and one node in the pressure
perturbation Py, while that for C2-mode has one node in v, and two nodes in P;. This
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Fig. 5. The growth rate w (s™") of the first harmonic is plotted against the horizontal harmonic number /
for the turbulent Prandtl number P, = 1.2, 1.4, 1.6, and 1.8. The horizontal wave number kz; in units of
Mm™' is given at the bottom.

behdviour is, however, not true for all the cases especially at higher / (=2000). For
the sake of illustration, the radial velocity eigenfunctions for few cases are shown in
Figures 6 to 8. All the eigenfunctions show appreciable penetration in the stable
layers above the convection zone. The eigenfunctions for C1-mode near the maxi-
mum are localized in the upper few thousand kilometers of the convection zone (see
Figure 8). This is because of the rather large value of the growth rate w for these
modes, which exceeds w.; over most of the lower region of the convection zone. The
eigenfunctions for Cl-mode or C2-mode, for a moderate value of [/ (=100),
however, extend to a larger depth because of the smaller value of w. The eigen-
functions for very small values of /(=<10) extend right up to the base of the
convection zone as seen from the behaviour of the eigenfunction for C1-mode
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Fig. 6. The normalized radial velocity eigenfunction v, for the fundamental mode is plotted against the

geometrical depth z (km) for /=10. The full curve refers to the non-adiabatic, viscous case for the

turbulent Prandtl number P, = 1.0, while the broken curve refers to the adiabatic, inviscid layer with
Kr=0,K,=0, u,=0.
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Fig. 7. The normalized radial velocity eigenfunction v, for the fundamental mode is plotted against the
geometrical depth z (km) for ! =100 and turbulent Prandtl number P, = 1.0.
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Fig. 8. The normalized radial velocity eigenfunction v, for the fundamental mode is plotted against the
geometrical depth z (km) for / = 1500 and the turbulent Prandtl number P, =1.0.

exhibited in Fig. 6. It may be noted that the adiabatic inviscid eigenfunction for radial
velocity v,, (shown by the broken curve in Fig. 6), peaks just below the top of the
convection zone while if the dissipative processes like the turbulent heat conductivity
and viscosity are included (shown by the full curve in Figure 6), the peak occurs in the
deeper regions of the convective zone z =50 000 km). Perhaps this can resolve the
problem of maintaining the convective flux in the lower regions of the convection
zone by a superposition of the linear modes (cf. Hart, 1973).

We shall now examine the sensitivity of our results to various approximations.
Firstly, we consider the effect of neglecting perturbation in the gravitational potential
Y (g=—V¢). If the perturbation in ¢ is included the order of governing equations
increases by two and we require an additional boundary condition at each boundary
which for simplicity we take to be y; = 0. We found that the inclusion of perturbation
in ¢ has hardly any influence on convective growth rates and thus the neglect of ¢ is
justified in our computations.

Let us consider the influence of various boundary conditions on the convective
growth rates. It is found that the convective growth rates are insensitive to the lower
boundary conditions. As we have already seen the amplitudes of eigenfunctions
become extremely small in the deeper regions and hence the growth rates show no
change with respect to the boundary conditions at the lower boundary within the
limits of numerical accuracy. However, the boundary conditions at the upper
boundary have a small but noticeable influence on the results. Table I summarizes
the results for the four sets of boundary conditions specified earlier, for /= 100,
1500, and 3000. It is clear that the results are not critically affected by the boundary
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TABLE I

Growth rates (in s_l) of the fundamental mode for various boun-
dary conditions (I)-(IV), for P, = 1.0 in the Eddington approxima-

tion
=100 1500 3000
00} 4.45E-5 2.12E-3 5.15E4
I1) 4.38E-5 2.14E-3 5.17E4
(I1I) 4.39E-5 2.04E-3 5.15E-4
1\%) 4.46E-5 2.14E-3 5.16E—4

conditions and therefore for the most part we have restricted the computations to the
set of boundary conditions (I).

The radiative transfer of perturbations is treated using the Eddington approxima-
tion which is applicable to both the optically thick and thin disturbances. As
emphasised by Unno and Spiegel (1966) the Eddington approximation is better
suited to model the heat transport since in the optically thin region above the
convection zone the diffusion approximation will overestimate the radiative transfer.
However, since the upper layer is stable to convection this will result in an
overestimate of the growth rate rather than an underestimate as one might think (cf.
Pandey et al., 1979). This is because of the fact that efficient thermal dissipation in the
stable layer will damp out the stabilizing influence of the buoyancy forces. This can be
clearly seen from Table II where we compare the results obtained with Eddington
approximation with those obtained by the diffusion approximation. The diffusion
approximation overestimates the growth rates although the difference in the results
obtained with the two approximations is not very much except possibly at large /.

TABLE 1II

Growth rates (in s~') of the fundamental mode in diffusion and Eddington approxima-
tions for P, = 1.0 and boundary conditions (I)

=100 1500 3000
Diffusion approximation 4 44E-5 2.34E-3 8.33E4
Eddigton approximation 4 45E-5 2.12E-3 5.15E-4

In these calculations we have neglected perturbations in the coefficient of dynamic
viscosity u,, turbulent conductivity K,, and adiabatic temperature gradient.
However, we have included the perturbation in the radiative conductivity, when
radiative transfer is treated in the diffusion approximation. To bring out the influence
of perturbation in the radiative conductivity we neglect other dissipative processes
(i.e. K, =0, u,=0). Table III gives convective growth rates for / =100, 1000, and
10 000 for both the cases with and without the perturbation in radiative conductivity.
It is clear that the convective growth rates are not critically affected by the
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TABLE III

Convective growth rates (in s ') in the absence of turbulent coefficients
(A) with and (B) without the perturbation of radiative conductivity in the
diffusion approximation for the set of boundary conditions (I)

/=100 1000 10000
C1 5.78E+4 4.49E-3 1.22E-2
(A) C2 2.66E+4 2.31E-3 8.41E-3
C3 1.72E4 1.55E-3 6.61E-3
C4 9.58E-5 1.16E-3 5.48E-3
C1 4.41E-4 4.13E-3 1.16E-2
(B) C2 2.33E4 2.19E-3 8.18E-3
C3 1.59E+4 1.49E-3 6.47E-3
C4 1.19E4 1.12E-3 5.39E-3

perturbation in radiative conductivity. This can be understood by examining the
linearized energy equation (cf. Equations (4)). It is clear that the turnover in the
growth rate at high / is due to the term [/(I + 1)/r*1(4/ /3kopo)J1 (or [1(1 + 1)/ r*1K& T;
in the diffusion approximation). The perturbation in radiative conductivity on the
other hand does not contain any /-dependent term and therefore will not contribute
appreciably to / dependence of the growth rate. In the same manner perturbations in
K., u: and adiabatic gradient will not contribute any /-dependent terms and hence
they are unlikely to affect the convective modes significantly.

4. Conclusions

We have investigated the instability of linear convective modes for a realistic model
of the solar convection zone by incorporating the mechanical and thermal effects of
turbulence using the eddy transport coefficients. Admittedly, the effects of turbu-
lence on the mean flow are taken into account very crudely by calculating in the
mixing length approximation, the turbulent heat conductivity and turbulent
viscosity. Nevertheless, it is hoped that such an approach would serve as a first step in
our understanding of the preferred length-scales observed on the solar surface.

As a typical example we first computed the convective growth rates using the solar
envelope model worked out by Spruit (1977). In Table IV we have summarized the
approximate values of the most unstable convective modes for a range of turbulent
Prandtl number between 0.1 and 2.0. For this choice of the parameters the e-folding
times and horizontal wavelengths for the most unstable fundamental mode (C1) lie,
respectively, in the range 5-11 min and 2000-3300 km. The fundamental mode does
not appear to be too sensitive to the variation of the parameters, but the first
harmonic (C2 mode) shows a wide variation with the e-folding times and the related
wavelengths ranging between ~0.4-50 hr, and ~3000-20 000 km, respectively.
Clearly the C2 mode is very sensitive to the choice of the turbulent Prandtl number.
It is tempting to identify the Prandtl number P, around 1.5 as giving the timescale and
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TABLE IV

Approximate e-folding times and preferred horizontal wavelengths for the fastest growing fundamental
mode (C1) and first harmonic (C2) for the set of boundary conditions (I) with Eddington approximation
based on Spruit’s model

Fundamental mode (C1) First harmonic (C2)
e-folding Preferred e-folding Preferred
P, time (min) horizontal time (hr) horizontal
wavelength wavelength
(km) (km)
0.1 4.90 1900 0.43 2900
1.0 7.84 2730 6.50 10900
1.2 8.50 2910 11.70 12 500
1.4 9.10 3035 25.25 15600
1.5 9.40 3060 34.70 17 500
1.6 9.63 3120 50.50 19 400
2:0 11-10 3260 - -

the associated wavelength of the most unstable fundamental mode in reasonable
agreement with the observed life-times and cell sizes of granules. For the same value
of P,, the most unstable first harmonic has e-folding time ~ 35 hr which is in
accordance with the typical observed life-time for supergranules, but the related
wavelength ~18 000 km is somewhat smaller compared to the usually quoted value
for the horizontal scale of ~30 000 km for supergranulation.

With a view to test the sensitivity of the growth rates to the choice of the model for
the convection zone we selected in the expression (7) for the convective flux, value of
the parameter a to be equal to 1 and also the parameter 8 in the expression (8) for
the mean convective velocity W was taken to be unity (in Spruit’s model, a =3,
B =3). We have chosen the value of the mixing length L equal to the pressure scale
height H,=(dz/dIn P). The e-folding times and the associated horizontal
wavelengths for the most rapidly growing fundamental mode and the first harmonic
are set out in Table V for three sample values of the turbulent Prandtl number P, =1,
0, 1.5, and 2.0. The granular time-scale and the cell size, corresponding to P,=1.5,
come out to be somewhat larger for this choice of parameters compared to the
corresponding values yielded by using Spruit’s model, while the supergranular time
scale and wavelength are found to be smaller.

It is worthwhile to point out that the linear stability analysis of the solar convection
zone models adopted in this investigation neglects the contribution of the turbulent
pressure. In order to examine the effect of turbulent pressure on the stability of
convective modes we generated a model taking into account the contribution of
isotropic turbulence to the pressure. The resulting convective growth rates for the
fundmental mode and the first harmonic are slightly reduced with the inclusion of
turbulent pressure which thus stabilizes the convective modes. However, the effect
on the growth rates is not enough to alter the numerical results in a significant
manner.
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TABLE V

Approximate e-folding times and preferred horizontal wavelengths for the fastest growing fundamental
model (C1) and first harmonic (C2) for the set of boundary conditions (I) with Eddington approximation
based on model of the solar convection zone witha=1,8=1,L=H,

Fundamental mode (C1) First harmonic (C2)
e-folding Preferred e-folding Preferred
P, time (min) horizontal time (hr) horizontal
wavelength wavelenegth
(km) (km)
1.0 11.30 3360 4.00 8730
1.5 14.31 3640 18.80 12 540
2.0 16.70 3880 - -

In conclusion it may be stated that for the turbulent Prandtl number of the order of
unity, the e-folding time and the preferred horizontal size of the most unstable
fundamental mode are in good agreement respectively with the observed life-time
and length-scale of granulation. For the same value of the Prandtl number, the
e-folding time and the corresponding horizontal wavelength of the preferred first
harmonic are in reasonable accord with the observed life-time and scale of super-
granulation. Keeping in mind the uncertainties in observations as well as in the
mixing length theory our results seem to provide a natural explanation valid both for
granulation and supergranulation.
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Appendix I

We linearize the system of Equations (1) to get the following equations governing the
perturbations:

wp1+V + (pov)=0, (A1)
wpov=p1g—V P — %M:V(V TV)—
(V- V)V +V - [ulVv+vV)], (A2)
T
poColwT1 + (v - V)To—vad;"(wm +(v+V)P)]=-V-Fy, (A3)
0
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_ 4 RK1 . RP1 T,
Fi=- VJ1—-Fo——Fo——K(VT1—Va—VPy), (A4)
3kopo Ko Po Po
where
(6N Ty
Ji 4(T7H0]dl+'4 [0)71_4‘(V ‘7)7}) 0D}31+‘(V "7)190)],
P,
(AS)
oK oK
= (aP) P+ (a_T)pTl’
and
2), P+ (37)
=(—=) Pi+(— : A6
P1 (BP TP1 3T PT1 (A6)

Here subscripts 0 and 1 respectively refer to the equilibrium and perturbed quan-
tities. We choose the velocity perturbation v(r, 6, ¢) and flux perturbation Fi(r, 6, ¢)
to be of the following form:

| 1
V0, 6,8) = (0,0), 0u() = ()= %) Y76, ), (A8)

Fi(r 6,6) = (F.(0), Fh(r> Fuln= ) Y0, ). (A9)

06(15

Further, we adopt the well-known relation for spherical harmonics, viz.

1 9 ) 1 9°
6 ) ] Y (6, p)=
[sm 7] 80( sin 06/ sin’ 0 a¢ "6, )=

==I(I+1)Y]"(6, &), (A10)

to eliminate Y/" (6, ¢) from the perturbation Equations (A1-A7).
Using relations (A7), (A8), and (A10), Equation (A1) can be rewritten as

2 1 r
v,[—+—%]+dv+ <£’1) P+
r po dr dr po\oP/r

1U+1
+3(3p—) =MD o0 an)
po\oT/p r

Consider now Equation (A2) which can be written as

wpov = p1g—VP; +3V(V - V) =3V -v)Vu, +
+uVv+Vu, - (Vv+vV). (A12)
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Here (Vv+vV) is a dyadic, which in spherical polar coordinates has the following
form:

(Vy+vV) = 2a, a,+2 [19@#’]
r 08 r

1 dvs v,
+2a, —+— +—cot0 as+
rsin@ o¢p r

+’1 av,+ a(vg)]( + )+
- — a aea,
L r 060 or o o

1 av, d
+

+ (v )]( + )+
| rsin@d¢  or re T Golr
1 Jdve sin@ 9 [ vy )]
+ 9 SING 9 + Al
L rsin@ o r 96 (sin 0 @0y +asa0), (A13)

where (v,, v, U4) are the components of v and (a,, ag, a,) those of a unit vector a in
spherical geometry. \
The product Vu, - (Vv+vV), using (A13) and remembering that the dynamic
viscosity w, is a function of r only, can be written as
du, dv,

e (Vv+vV)=2——qg,+
ue s (Vv+vy) 3 o ”

du.[1 dv,
+——”—t[— al+r i (UH)] ag+
drLr 06 or

+—|————+r Al
dr Lrsin @ d¢ ar o (A14)

Using (A7), (A8), (A10), and (A14), Equation (A12) can be separated into its radial
and horizontal components, which after simplification, can be cast as follows:
(i) The radial component:

4 i’%_&_[i 4 du ’_(’+_1)+ ]
3”4 dr* dr 3r2“' 3r dr po®
[8 4 dp,,] dv,
Mot
3r 3 drldr
7 1(I+1) 2 dp,, l(l+1)]
——t= +
[3"‘ 23 dr Oh
1 I(I+1) do, (6p> (ap)
—u——+ +gl—) T,, Al
3“ r dr § oP Pite oT/ p ! (A15)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System



. 67A

.70..

1981SoPh. .

90 H. M. ANTIA ET AL.

and (ii) the horizontal component:

don_ [8 ld_#r] _1 do
M2 =37 ard ey
4 10+1) 1du, ]
+| —p——a—+= -
3T 7 g, TPtk
2 d,u,]dv;, 1
B e o] oL L Al6
_’_“‘t dr 1 d rPI ( )

We now consider the energy flux Equations (A3-AS). Using the expression (A9)
for F; we can write

1d
-V -Fi=- r (F)

LED (A17)

Further, Equation (A4) can be separated into its radial and horizontal components to
get

4 dJ1 RrRK1 RrRP1 (dTl To dP1>
F,=— ——Fo——Fy;——K, —V.a Al8
3K0p0 dr 0 Ko 0 Po dr Po d‘}’ ( )
and
4 J T T, P
F=—— K-V 2T, (A19)
3kopo T r po T

neglecting the perturbation in the turbulent conductivity K, and the adiabatic
gradient V,4(T/P). Using (A17) and (A19) and Equation (A3), we obtain the
following equation:

dF, I(1+1
d—_pOCpg S(V=V.av, — [‘(—'z—)K +poC, w] T+
Il+1 2 4 [+1
[ ( )K + Opr] P1 F,- - ( )Jl (A20)
r 3K0p0 r

Equation (A18) can be further simplified by using the expressions for «; (using
(A6)) and p; (using (A7)) and can be expressed as

dT To dPl 4 dJl
K——KJV, — —=
dr ! dPo dr  3kopo dr

1 ok 1 /0p
il b () B v M L
OKOaPTpoaPTl

r[1 <6K) 1 (ap) ]
~FR[=(Z) +=(%8) |1.-F.
FO [Ko oT P Po at P- ! (A21)
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The relation connecting J; and T; is provided by Equation (AS5), which on
simplification reduces to

3 pr] Co_ Ty
- +—2— Ty + 2=V, 4—P;+
J1 [40'T0 4K0 T1 4K0 dPo 1
S LIJ-LL R W (A22)

4K()P0

Thus, finally equations governing the perturbations are (A11), (A15), (A16), (A20),
(A21), and (A22), with r as the independent variable. On employing the trans-
formation r = (R — z) we recover the system of Equations (4) given in Section 2 with
z as the independent variable.
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