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Abstract, Mandelstam’s argument that PCAC follows from assigning Lorentz quan-
tum number M=1 to the massless pion is examined in the context of multiparticle
dual resonance model. We construct a factorisable dual model for pions which
is formulated operatorially on the harmonic oscillator Fock space along the lines
of Neveu-Schwarz model. The model has both m~ and ma as arbitrary parameters
unconstrained by the duality requirement. Adler self-consistency condition is
satisfied if and only if the condition ms? —ma? =} is imposed, in which case the
model reduces to the chiral dual pion model of Neveu and Thorn, and Schwarz,
The Lorentz quantum number of the pion in the dual model is shown to be M =0,
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pion model; Adler zeros. ‘

1. Introduction

The hypothesis of partially conserved axial-vector current (PCAC) and current
algebra lead to strong restrictions on the hadron scattering amplitudes involving
pions, usually expressed in the form of low energy theorems. Notable among
them is the well-known Adler self-consistency condition which essentially states
that hadron scattering amplitudes involving soft pions should vanish. It is of
considerable interest to investigate whether these soft-pion theorems can be derived in
the S-matrix theory without introducing weak interaction currents. Mandelstam
(1968) made the first attempt in this direction and made a significant advance by
showing that the Adler self-consistency condition alone is sufficient to obtain most
of the consequences of current algebra and PCAC hypothesis for the hadron scatter-
ing amplitudes. In other words, if one can construct arguments within the S-matrix
framework to derive the Adler self-consistency condition, then most of the restric-
tions which current algebra placed on hadron scattering amplitudes ought to follow.

Mandelstam (1968) argued that constraints on the couplings at zero four mom-
entum could follow from the conspiracy theory of Regge trajectories and residues.
In particular vanishing of the soft pion amplitude follows as a mathematical conse-
quence of the assignment of the Lorentz quantum number (Toller 1965, 1968;
Sciarrino and Toller 1967) M =1 to the pion trajectory. However, as noted by
himself and discussed in detail by Arbab and Jackson (1968) for the M =1 pion
factorisation implies the smallness of both soft pion and hard pion amplitudes. In
fact, in the discussion of two-body processes there have been many arguments

_ against assigning M = 1 to the pion but favouring the assignment M = 0 (see, e.g.

Capella 1970; Mueller 1969; Sawyer 1968; Wang and Wang 1970).
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In the dual resonance model (DRM), the == scattering amplitude of Lovelace

(1968) and Shapiro (1969) (LS amplitude) has Adler zeros when the leading p-tra-

jectory is constrained to lie half a unit above the = trajectory, that is by imposing
the condition*

a, —a, =% or m2—m?2=1[2d _ )

where o’ & 1(GeV)™ is the universal slope of the Regge trajectories. This trajectory
splitting condition, eq. (1) occurs naturally as a requirement of duality in the operator
formulation of the chiral invariant dual multipion model of Neveu and Thorn (1971)
and Schwarz (1972). In this model the Adler condition is satisfied by a mechanism
originally discovered by Brower (1971); that is, when the four momentum of one of
the pions tends to zero, the N point function can be shown to contain a vanishing
beta-function (Neveu and Thorn 1971; Schwarz 1972).

- In this paper we investigate whether there is a connection between PCAC and the
Lorentz quantum number of the pion in the dual resonance model. (We use the
term PCAC to mean existence of Adler zeros in the amplitude). The material of
this paper is organised as follows. In section 2 we construct a factorizable dual
pion model along the lines of Neveu and Schwarz (1971), Neveu and Thorn (1971)
and Halpern and Thorn (1971) which. is formulated using boson and fermion oscilla-
tors. The model has masses of both p and 7 arbitrary, but still satisfies the require-
ment of duality unlike the hitherto existing dual pion models. It is shown that Adler
self-consistency condition is satisfied if and only if the trajectory splitting condition
m,® —m.? =1/24" is imposed. In section 3 we consider the pion pole in the six
point function and using Mandelstam’s (1968) argument and Arbab and Jackson’s
(1968) result on the factorisation of Regge residue we show that the pion pole belongs

to the class with Lorentz quantum number M=0. In section 4 we state our con-
clusions.

2. PCAC in dual pion model and Lorentz quantum number of the pion

2.1. General remarks

The dual pion model of Neveu and Thorn (1971) and Schwarz (1972) (NTS model)
is known to possess Adler zeros and reduce (Schwarz and Wallace 1972) to the non-
linear o-model in the zero-slope limit, that is in the limit «'->0. Let us consider the
six-point function in this model, A¢ (P, Ps, Ps, Py, Ps» Pg) and look at the residue of the
pion-pole in a three pion channel, say at (p;+ps+py)?=m,2. We shall assume
m,=0. In the limit of the four-momentum Q=p,+p,+p;— 0, following Mandels-
tam’s argument (which uses only the properties of the groups O (3, 1) and O (2, 1))
the residue of the pion pole will vanish if the pion belongs to the class with Lorentz
quantum number M = 1. On the other hand by the property of factorisation, in
dual resonance model, the residue is a product of two four-pion amplitudes and will

*As pointed out by Brower (1971) the Adler condition may also be satisfied by imposing a
condition different from eq. (1). However there has been no operator for mulation of Brower’s
model so far; so it lacks fundamental significance,
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again vanish in the above Limit (@ 0) if the amplitude possesses Adler zeros due to
condition like eq.(1). This situation tends to mask the difference, if any, between
the two hypotheses. Any possible difference between the two is however likely to
emerge more distinctly in a situation where one of them is made to hold only appro-
ximately. Since the PCAC hypothesis is of an approximate nature it.is instructive
to investigate the Lorentz quantum number of the pion in a model in which there is
a small departure from the Adler self-consistency condition but the departure can be
made arbitrarily small. To this end we construct a dual pion model which has a
continuously variable parameter, in a certain limit of which, the model satisfies the
Adler self-consistency condition. In the model which we describe below such a
parameter turns out to be d2 = (1/2a") + m,2 — m,% The Adler zeros appear only
in the limit d%~ 0. '

2.2. Dual pion model with two mass variables

Fubini and Veneziano (1971) (FV) pointed out that in the conventional dual reso-
nance model, the trajectory intercepts in different channels can be varied by introduc-

.ing an extra space-like component, the so-called ° fifth component ’, of the momenta

and a corresponding set of oscillators without destroying duality properties and still
preserving the full gauge group. Adopting the same procedure for the dual pion
model of Neveu and Schwarz (1971) (NS model) Halpern and Thorn (1971) (HT)
shifted the pion mass by an arbitrary amount (to make m,2>0) from its value m,*=
—3 in the original NS model. However, to preserve duality p was still massless
as in the original NS model. WNeveu and Thorn (1971) (NT) adopted this technique
of introducing extra components to the momenta and oscillators, to obtain another
variation of the original NS model. In their model all masses are shifted equally
from their values in the NS model. This also allows us to vary only one mass, say
m,2, and masses of all other particles are constrained in relation to this variable.
For example the mass-of the p is still constrained by m,> —m,* =}, a trajectory -
splitting condition which endows Adler zeros to the model. The aw—m7 amplitude
in this model is the well-known Lovelace-Shapiro amplitude. Schwartz (1972) used
a slightly different operator formulation to obtain the same model as Neveu and
Thorn.

A useful distinction exists between the FV or HT way of introducing extra compo- -
nents and the NT way. The fifth component of FV and HT is introduced indepen-
dent of the number of external particles N and hence the preservation of the factorisa-
tion property is obvious. In the NT way the number of extra dimensions depends
on N, yet the extra components of momenta are assigned in such a way that there is
only nearest neighbour coupling of the extra components, so that only one set of
oscillators contribute at any pole (Neveu and Thorn 1971). This mechanism of
nearest neighbour coupling preserves the factorisation property and is closely related
to the implementation of Adler’s self consistency condition. The introduction of a
fifth component along the lines of HT results in shifting only the masses in the odd-G
channels, that too by an equal amount from their values in the original NS model,
whereas Neveu-Thorn’s method of introducing extra components results in shifting
all masses equally. ' '

It is easy to combine the NTS model and HT model to construct yet another modi-
fication of the NS model in which both m,2 and m,? can be varied independently.
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Introducing the fifth component of momenta as in the Halpern-Thorn (1971) model
as well as the N extra space-like components as in the Neveu-Thorn (1971) model we
write

ki = (ky, —d, ¢[/2, —¢|v2,0,0 ..., 0,0)

ky = (kg +4,0,¢/4/2, —¢[+/3,0 ..., 0,0)
ki = (b (=1 4,0,...¢/+/3, —¢//2, 0 ..., 0, 0)

k-1 = (ky—1, —4,0,0 ... 0, ¢/2/3, —c|+/3)

kn == (k, +4d, —¢[/2,0 ..., 0, c[+/3) )

where ky, Ky, ..., k) are the four-momenta of the particles 1,2, 3, ..., N respect-
ively. The model can now be easily written down by replacmg thc momenta and
oscillators in the original Neveu-Schwarz model by the above (N 5)-dimensional
momenta and the corresponding (N+-5)-dimensional set of operators. We briefly
describe below the construction of the N-point function, The (N-+ 5)-analogues
of the usual harmonic oscillator operators satisfy the algebra

3":, &:;1] = —ng“" Sm -m | (3)

(b, B} = g5 - @

Al .

[ % b ] : )]
where the indices p and v run over the (N+35) components. In addition we also

have the momentum operator a'(; = 4/2 p* and its canonical conjugate (position)

operator XV satisfying
(@ ] = —vaigw. - ©

In analogy with the standard procedure (Neveu and SchWarz 1971; Schwarz 1973)
the vertex operator is given by

Vi) = k- AVB) 0

where

V0 = exp (ik - %) exp (v/2k - Y” [ Buln)

X exp (—4/3k - Zle_&,./n) . ®



) i%«&gﬁ‘@ -

5

S T A

PCAC in S-matrix theory : ' 541
and
A 0 A . .
Hbt = nz_wb';, n=+1,4+%5,.. )]

In addition we define

~ S

Ly=—18y Gg— 2 a_”.a,,‘-win:%nb - b,. (10)

gl ™

In terms of these operators, the N-point function (in the original F;-space formula- |

tion of NS model (Neveu and Schwarz 1971)) is given by
~ AT A A A A e A A
Ay = 0, —ky | ky* by Viks) (Ly— 1)1 Viky). ...
L= PR o By 10, oy | (1)

The extra components of momenta are constrained by the requirement of conformal
symmetry k> = —%, that is

m2 — ¢ —d?= — 3. (12)
The trajectory functions in the even and odd G-parity channels are

a, (8) =14 (s—c?) foi even-G chanﬁels : (13a)
and
a, (§) =} + (s—c2—d? for odd-G channels (13b)

from which it follows that
m,? = cz;’ my? —m? =% — d ' (14
The amplitude given by eq. (11) has the properties of duality, factorisations and in-

corporates the tachyon killing mechanism of the Neveu-Schwarz model. The latter
is apparent when we rewrite eq. (11) in the F,-formulation (Neveu et al 1971) as

= (0,- Ty | V(o) @o— Ht ik ... 0 3)7 V (k) 0, k. (15)
Using the standard technique of writing the propagator as
A w1 1 7 '
Lo—d —fodxx 0
we have the following integral representatioﬁ of the N-point function

1 ‘ A A
= ['mV T dux Pt x L (xR
0 , d<i<j< N—1

% 0] k2 H(l)ks H(xz) k H(x2x3) Ky H(x2x3x4 xy-2)[0) (16)
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where

By = (by eyt ..k H(z) = 5, by 2

Adler zeros: If we now set d = 0 the above model reduces to the NTS model,
which is known to possess Adler zeros. In d = 0 case it can be easily shown (Neveu
and Thorn 1971) from eq. (16) that for example when kp ~ 0

Ay f2 ax, R (I

1
x | [o dadliy_s F g, %oy, 17)
The first factor in eq. (17) is
1 —1+¢ —1-c
JLan gt a-x T = By =0, (18)

" This is the Brower mechanism (Brower 1971) for implementing the Adler self-consis-
tency condition. This depends crucially on the fact that when d = 0 in eq. (16) the

product iéiic} =k k; except for the nearest neighbours, so that as the four vector
ko0, ky'k;— 0 for j#1,3. For d+0 the latter circumstance does not hold so that
the amplitude given by eq. (16) does not reduce to the form given by eq. (17) when

I~ 0. Therefore the factorisable dual model constructed by us [eq. (11) or eq. (15)
or eq. (16)] does not possess Adler zeros in general unless d =0,

3. The pion pole and its Lorentz quantum number

Let us now look at the pion pole in the six-point function of the present model.
Following standard procedure we obtain from eq. (11) the six-point function with
external momenta ordered cyclically,

' -1
As (kls k?,s kg, kg, ks, kﬁ) = f du12 du13 dll14
) 0 (1 _u12 u13) (l_ula u14)

—ap (S12) o (513)—1 w ap(s1) y o (s23) o (s35)

uz—;a" (Szi)_l u3—4ap (S“) ua—'san (SSG)—‘I A (jc\, Il) ) . (19)

where sy = (k; + kg + ... +k5)* and wy’s are the usual Chan variables, and
Z (k, u) is given by S L -

A A A a)

Z ko) = { [(ky ko by key ?\;5 . ;26) (yg tgy 1)t - P, (1)]

+ [ (hy ko by * kg kg + k) gy (4 1y5)™ +P, (2)]



e

i
}
!
|
}
|

Y o

PCAC in S-matrix theory 543
=L kaky' ks key - k) uy ”1_21 + P (3]

A ‘A

+ [(kl ‘ k4 k2 * ks k3 ¢ ka u13 u24 + Pc (2)]
— (ky kg ey * kg kg + Koy tg 1y tig5) } (20)

where the symbol P (n) means one must add the » independent terms obtained by
cyclic permutation of the preceding expression. Computing the residue -of 4,
(Fey,keq,keq,k 4,k 5,k 6) at the pion pole corresponding to e.(s;5)=0 we get the pion pole
residue in the factorised form

[y - 0+24%) B (1—agy, 1—agg)] [(—2ks - O+24%) B (1—ayg, 1—ag5)]

= A4 (kl, kza ks, - Q) A4 (Q’ k4: ks: ks) (21)

where O=k,+ky+k, and B(x, y) is the Buler beta-function and A4, is the four-point
function, '

Ay (kys Kys Ky, __Q) = (2 ky* Q +2d%) B (1—agy 1—ay;)
= (1 '—alz"aza) B (1—ay,, 1—‘123) (22)

which is the canonical Lovelace-Shapiro four-point function. It is evident from
eq. (22) that our dual model has Adler zeros if and only if d2=0.

The M quantum number: Returning to the six point function given by eq. (19) one
can perform an O(3,1) analysis (Toller 1965, 1968) corresponding to @y =(k;+ky-+k;)
= —(ky+ks+kg)y =0 to find the M quantum number of pion. However without
going through the mathematics we can show that pion belongs to M =0 representa-
tion as follows. We can vary the parameters ¢ and d without destroying duality
and factorisation so that we can choose

d#0but m?=—3%+c?+4d*=0.

We have seen that when d 0 our model does not possess an Adler zero and must
belong to M =0 representation as otherwise there will be a contradiction with Mandel-
stam’s argument that if | M| >1, Adler zeros are present. Although by continuity,
we expect that as we vary the parameter d in our model the pion will continue to
have M=0, it remains to be checked that the M value does not abruptly change, for
example to M =1 as d becomes zero. This latter fact can be established, using the
results of Arbab and Jackson (1968) who showed that if pion has M=1, then by
factorization even the hard pion amplitudes should vanish linearly as /@2, Ou

being the pion four momentum. Returningto eq. (21) and setting d=0, we see that
the pion residue does not vanish even if 0=0 unless the four momentum Q@ also
vanishes.
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4, Discussion

We are thus led to conclude that for all values of d2 in our model, the pion has the
Lorentz quantum number M=0. The Adler self consistency conditon is satisfied :
if and only if the trajectory splitting condition eq. (1) is satisfied. Our model does
not suffer from the defect of requiring that hard pion amplitudes also vanish if
0%=0 (but Q,+#0), which would be the case if pion had M=1. Since our model i
satisfies the requirement of duality and factorisation for all values of m,% and m,?,
many other interesting questions like the spectrum of physical states, the field theory
corresponding to the zero slope limit of the model, should be investigated.
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