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We study the failure properties of fiber bundles when continuous rupture goes on due
to the application of external load on the bundles. We take the two extreme models:
equal load sharing model (democratic fiber bundles) and local load sharing model. The
strength of the fibers are assumed to be distributed randomly within a finite interval.
The democratic fiber bundles show a solvable phase transition at a critical stress (load
per fiber). The dynamic critical behavior is obtained analytically near the critical point
and the critical exponents are found to be universal. This model also shows elastic-plastic
like nonlinear deformation behavior when the fiber strength distribution has a lower cut-
off. We solve analytically the fatigue-failure in a democratic bundle, and the behavior
qualitatively agrees with the experimental observations. The strength of the local load
sharing bundles is obtained numerically and compared with the existing results. Finally
we map the failure phenomena of fiber bundles in terms of magnetic model (Ising model)
which may resolve the ambiguity of studying the failure properties of fiber bundles in
higher dimensions.
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1. Introduction

Fracture processes in heterogeneous media, initiated by external loading has rich

physical and mathematical aspects1. Since past decades, people are trying to study

this fracture phenomena through different models as well as through direct experi-

ments. The knowledge of the strength of a disordered solid and prior knowledge of

its failure properties are of extreme importance in architectural engineering, textile

engineering and in construction of any mechanical structure. This knowledge is also

required to design material microstructures which can be used to construct highly

reliable components. In the context of geophysics the dynamical aspects of fracture

process is useful to explain the earthquake phenomena. Some theoretical models

like lattice models in various dimensions have been proposed to analyse the details

of the fracture phenomena; among these the fiber bundle model is the earliest and

the simplest one.

A loaded bundle of fibers represents the various aspects of fracture process

through its self-organised dynamics. The fiber bundle model study was initiated

by Peirce2 in the context of testing the strength of cotton yarns. Since then this

1
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model has been studied from various points of view. Fiber bundles are of two classes

with respect to the time dependence of fiber strength: The ‘static’ bundles contain

fibers whose strengths are independent of time, whereas the ‘dynamic’ bundles are

assumed to have time dependent elements to capture the creep rupture and fatigue

behaviors. According to the load sharing rule, fiber bundles are being classified into

two groups: Equal load-sharing (ELS) bundles or democratic bundles and local load-

sharing (LLS) bundles. In democratic bundles intact fibers bear the applied load

equally and in local load-sharing bundles the terminal load of the failed fiber is given

equally to all the intact neighbors. The classic work of Daniels3 on the strength of

the static fiber bundles under equal load sharing (ELS) assumption initiated the

probabilistic analysis of the model4−15. The distribution of burst avalanches during

fracture process is a marked feature of the fracture dynamics and can be observed

in ultrasonic emissions during the fracture process. It helps characterizing different

physical systems along with the possibility to predict the large avalanches. From a

nontrivial probabilistic analysis, Hemmer and Hansen5 got power law distribution

of avalanches for static ELS bundles, whereas the power law exponent observed nu-

merically for static LLS bundles differs significantly. This observation induces the

possibility of presenting loaded fiber bundles as earthquake models6. The recent

mean field estimate of the ‘avalanches’ in the ELS bundles8,11, gives a new power

law11. The phase transition7,8 and dynamic critical behavior of the fracture process

in such bundles has been established through recursive formulation9,10,11,12 of the

failure dynamics. The exact solutions10,11,12 of the recursion relations suggest uni-

versal values of the exponents involved. Attempt has also been made13 to study the

ELS ans LLS bundles from a single framework introducing a ‘range of interaction’

parameter which determines the load transfer rule.

Coleman14 started working on time dependent bundles under ELS to obtain their

life time with steady load. Later, subsequent generalization was made by Phoenix15

where both ELS and LLS were considered. Some recent developments16−22 show

fatigue behavior of ELS bundles considering fluctuation in applied load. Also, in-

troducing noise-induced failure probability of fibers, fatigue behavior is achieved17

in a homogeneous fiber bundle under ELS with steady load.

In this report, we give a brief summary of the exactly solvable10,11,12 static

fiber bundle models under ELS assumptions. This gives the mean field behavior of

the failure dynamics, its critical behavior and its universality. An analytic study of

fatigue-failure in homogeneous bundle under ELS17 is also discussed. Some mod-

ifications and discussions have been added here to correlate the sequential devel-

opments. We also show numerically that critical strength of such linear bundles

under LLS, vanishes in the large chain limit. This is basically a confirmation of

earlier observations22,23. A brief magnetic mapping model of fiber bundles is also

discussed later.
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2. Equal load sharing (ELS) bundles

 

 

δ

F

Fig. 1: The fiber bundle consists initially of N fibers attached in parallel to a fixed plate at the

top and a movable plate from which a load F is suspended at the bottom. In the ELS model the

load F is equally shared by all the intact fibers.

The fiber bundle consists of N fibers, each having identical spring constant κ. The

bundle supports a load F = Nσ and the breaking threshold (σth)i of the fibers

are assumed to be different for different fiber (i). ELS model assumes equal load

sharing, i.e., the intact fibers share the applied load F = Nσ equally where σ is

the initial applied stress (load per fiber). The strength of each of the fiber (σth)i

in the bundle is given by the stress value it can bear, and beyond which it fails.

The strength of the fibers are taken from a randomly distributed normalised density

ρ(σth) within the interval 0 and 1 such that
∫ 1

0

ρ(σth)dσth = 1. (1)

The equal load sharing assumption neglects ‘local’ fluctuations in stress (and its

redistribution) and renders the model as a mean-field one.

2.1. Breaking dynamics of the ELS models

The breaking dynamics starts when an initial stress σ (load per fiber) is applied on

the bundle. The fibers having strength less than σ fail instantly. Due to this rupture,

total number of intact fibers decreases and rest of the (intact) fibers have to bear

the applied load on the bundle. Hence effective stress on the fibers increases and
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this compels some more fibers to break. These two sequential operations, the stress

redistribution and further breaking of fibers continue till an equilibrium is reached,

where either the surviving fibers are strong enough to bear the applied load on the

bundle or all fibers fail.

This self organised breaking dynamics can be represented by recursion relations

in discrete time steps. Let Ut be the fraction of fibers in the initial bundle that

survive after time step t, where time step indicates the number of occurrence of

stress redistribution. Then the redistributed load per fiber after t time step becomes

σt =
σ

Ut
; (2)

and after t + 1 time steps the surviving fraction of fiber is

Ut+1 = 1 − P (σt); (3)

where P (σt) is the cumulative distribution of the corresponding density ρ(σth):

P (σt) =

∫ σt

0

ρ(σth)dσth. (4)

Now using Eq. (2) and Eq. (3) we can write the recursion relations which show how

σt and Ut evolve in discrete time:

σt+1 =
σ

1 − P (σt)
; σ0 = σ (5)

and

Ut+1 = 1 − P (σ/Ut); U0 = 1. (6)

The recursion relations (5) and (6) represent the basic dynamics of failure in

equal load sharing models. At the equilibrium or steady state Ut+1 = Ut ≡ U∗ and

σt+1 = σt ≡ σ∗. This is a fixed point of the recursive dynamics. Eq. (5) and Eq.

(6) can be solved at the fixed point for some particular form of ρ(σth) and these

solutions near U∗ (or σ∗) give the detail features of the failure dynamics of the

bundle.
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2.2. Phase transition and critical behavior for uniform

distribution of fiber strength

0

1

1.5

0 1 1.5

ρ
(σ

)

σth

 t
h

Fig. 2: The simplest model considered here assumes uniform density ρ(σth) of the fiber strength

distribution up to a cutoff strength.

We choose the uniform density of fiber strength distribution to solve the recursive

failure dynamics of democratic bundle. Here, the cumulative distribution becomes

P (σt) =

∫ σt

0

ρ(σth)dσth =

∫ σt

0

dσth = σt. (7)

Therefore Ut follows a simple recursion relation (following Eq. (6))

Ut+1 = 1 −
σ

Ut
. (8)

At the equilibrium state (Ut+1 = Ut = U∗), the above relation takes a quadratic

form of U∗ :

U∗
2

− U∗ + σ = 0. (9)

The solution is

U∗(σ) =
1

2
± (σc − σ)1/2; σc =

1

4
. (10)

Here σc is the critical value of initial applied stress beyond which the bundle fails

completely. The solution with (+) sign is the stable one, whereas the one with (−)

sign gives unstable solution11,12. The quantity U∗(σ) must be real valued as it has

a physical meaning: it is the fraction of the original bundle that remains intact

under a fixed applied stress σ when the applied stress lies in the range 0 ≤ σ ≤ σc.

Clearly, U∗(σc) = 1/2 (putting σ = σc in Eq. 10). Therefore the stable solution can

be written as

U∗(σ) = U∗(σc) + (σc − σ)1/2; σc =
1

4
. (11)
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For σ > σc we can not get a real-valued fixed point as the dynamics never stops

until Ut = 0 when the bundle breaks completely. It may be noted that the quantity

U∗(σ) − U∗(σc) behaves like an order parameter that determines a transition from

a state of partial failure (σ ≤ σc) to a state of total failure (σ > σc)
11,12:

O ≡ U∗(σ) − U∗(σc) = (σc − σ)β ; β =
1

2
. (12)

(a) At σ < σc

To study the dynamics away from criticality (σ → σc from below), we replace the

recursion relation (8) by a differential equation

−
dU

dt
=

U2 − U + σ

U
. (13)

Close to the fixed point we write Ut(σ) = U∗(σ) + ǫ (where ǫ → 0). This, following

Eq. (10), gives10,11

ǫ = Ut(σ) − U∗(σ) ≈ exp(−t/τ), (14)

where τ = 1

2

[
1

2
(σc − σ)−1/2 + 1

]
. Near the critical point we can write

τ ∝ (σc − σ)−α; α =
1

2
. (15)

Therefore the relaxation time diverges following a power-law as σ → σc from

below10,11.

One can also consider the breakdown susceptibility χ, defined as the change of

U∗(σ) due to an infinitesimal increment of the applied stress σ10,11,12

χ =

∣∣∣∣
dU∗(σ)

dσ

∣∣∣∣ =
1

2
(σc − σ)−γ ; γ =

1

2
(16)

from equation (10). Hence the susceptibility diverges as the applied stress σ ap-

proaches the critical value σc = 1

4
. Such a divergence in χ had already been observed

in the numerical studies7,9.

(b) At σ = σc

At the critical point (σ = σc), we observe a dynamic critical behavior in the relax-

ation of the failure process to the fixed point. From the recursion relation (8) it can

be shown that decay of the fraction Ut(σc) of unbroken fibers that remain intact at

time t follows a simple power-law11,12:

Ut =
1

2
(1 +

1

t + 1
), (17)

starting from U0 = 1. For large t (t → ∞), this reduces to Ut − 1/2 ∝ t−δ; δ = 1; a

strict power law which is a robust characterization of the critical state.
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2.3. Universality class of the model

To check the universality class of the model we have taken two other types of fiber

strength distributions: linearly increasing density distribution and linearly decreas-

ing density distribution within the limit 0 and 1. We solve the recursion equations

(5) and (6) in these two cases. We show that while σc changes with different strength

distributions, the critical behavior remains unchanged: α = 1/2 = β = γ, δ = 1.

(a) Linearly increasing density of fiber strength

0

2

2.5

0 1 1.5

ρ
(σ

)

σ
th

th

Fig. 3: The linearly increasing density ρ(σth) of the fiber strength distribution up to a
cutoff strength.

Here, the cumulative distribution becomes

P (σt) =

∫ σt

0

ρ(σth)dσth = 2

∫ σt

0

σthdσth = σ2
t . (18)

Therefore Ut follows a recursion relation (following Eq. (6))

Ut+1 = 1 −

(
σ

Ut

)2

. (19)

At the fixed point (Ut+1 = Ut = U∗), the above recursion relation can be represented

by a cubic equation of U∗

(U∗)3 − (U∗)2 + σ2 = 0. (20)

Solving the above equation we get the value of critical stress σc =
√

4/2712

which is the strength of the bundle for the above fiber strength distribution. Here,

the order parameter can be defined as U∗(σ) − U∗(σc) and this goes as

O ∝ (σc − σ)β ; β =
1

2
. (21)
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The susceptibility diverges as the critical point is approached from below:

χ =

∣∣∣∣
dU∗(σ)

dσ

∣∣∣∣ ∝ (σc − σ)−γ ; γ =
1

2
. (22)

We can also show that for any σ < σc

Ut(σ) − U∗(σ) ≈ exp(−t/τ), (23)

with

τ ∝ (σc − σ)−α; α =
1

2
. (24)

and at σ = σc

Ut − U∗(σc) ∝ t−δ; δ = 1. (25)

(b) Linearly decreasing density of fiber strength

0

2

2.5

0 1 1.5

ρ
(σ

)

σ
th

th

Fig. 4: The linearly decreasing density ρ(σth) of the fiber strength distribution up to a cutoff
strength.

In this case, the cumulative distribution becomes

P (σt) =

∫ σt

0

ρ(σth)dσth = 2

∫ σt

0

(1 − σth)dσth = 2σt − σ2
t (26)

and Ut follows a recursion relation (following Eq. (6))

Ut+1 = 1 − 2
σ

Ut
+

(
σ

Ut

)2

. (27)

At the fixed point (Ut+1 = Ut = U∗), the above recursion relation can be represented

by a cubic equation of U∗

(U∗)3 − (U∗)2 + 2σU∗ − σ2 = 0. (28)
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Solution of the above equation suggests the value of critical stress σc = 4/2712

which is the strength of the bundle for the above fiber strength distribution. Also,

the order parameter goes as

O ≡ [U∗(σ) − U∗(σc)] ∝ (σc − σ)β ; β =
1

2
(29)

and the susceptibility diverges with the similar power law as in Eqs. (16 and 22)

when the critical point is approached from below:

χ =

∣∣∣∣
dU∗(σ)

dσ

∣∣∣∣ ∝ (σc − σ)−γ ; γ =
1

2
. (30)

Here also for any σ < σc

Ut(σ) − U∗(σ) ≈ exp(−t/τ), (31)

where

τ ∝ (σc − σ)−α; α =
1

2
. (32)

and at σ = σc

Ut − U∗(σc) ∝ t−δ; δ = 1. (33)

Thus the democratic fiber bundles (for different fiber strength distributions)

show phase transition with a well defined order parameter which shows similar power

law variation on the way the critical point is approached. The susceptibility and

relaxation time also diverge with same power exponent for all the cases. Therefore,

failure of democratic fiber bundles belong to a universality class characterized by

the universal values of the associated exponents (α, β, γ and δ).

2.4. Nonlinear stress-strain relation

One can now consider a slightly modified strength distribution of the democratic

fiber bundle, showing nonlinear deformation characteristics3,6,11. For this, we con-

sider an uniform density distribution of fiber strength, having a lower cutoff. Until

failure of any of the fibers (due to this lower cutoff), the bundle shows linear elastic

behavior. As soon as the fibers start failing, the stress-strain relationship becomes

nonlinear. The dynamic critical behavior remains essentially the same and the static

(fixed point) behavior shows elastic-plastic like deformation before rupture of the

bundle.

Here the fibers are elastic in nature having identical force constant κ and the

random fiber strengths distributed uniformly in the interval [σL, 1] with σL > 0;

the normalised distribution of the threshold stress of the fibers thus has the form

(see Fig. 5):

ρ(σth) =

{
0, 0 ≤ σth ≤ σL
1

1−σL

, σL < σth ≤ 1
. (34)
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Fig. 5: The fiber breaking strength distribution ρ(σth) considered for studying elastic-plastic type

nonlinear deformation behavior of the ELS model.

For an applied stress σ ≤ σL none of the fibers break, though they are elongated

by an amount δ = σ/κ. The dynamics of breaking starts when applied stress σ

becomes greater than σL. Now, for σ > σL the fraction of unbroken fibers follows a

recursion relation (for ρ(σth) as in Fig. 5):

Ut+1 = 1 −

[
F

NUt
− σL

]
1

1 − σL
=

1

1 − σL

[
1 −

σ

Ut

]
, (35)

which has stable fixed points:

U∗(σ) =
1

2(1 − σL)

[
1 +

(
1 −

σ

σc

)1/2
]

; σc =
1

4(1 − σL)
. (36)

The model now has a critical point σc = 1/[4(1 − σL)] beyond which total failure

of the bundle takes place. The above equation also requires that σL ≤ 1/2 (to keep

the fraction U∗ ≤ 1). As one can easily see, the dynamics of Ut for σ < σc and also

at σ = σc remains the same as discussed in the earlier section. At each fixed point

there will be an equilibrium elongation δ(σ) and a corresponding stress S = U∗κδ(σ)

develops in the system (bundle). This δ(σ) can be easily expressed in terms of U∗(σ).

This requires the evaluation of σ∗, the internal stress per fiber developed at the fixed

point, corresponding to the initial (external) stress σ (= F/N) per fiber applied on

the bundle when all the fibers were intact. From the first part of Eq. (36), one then

gets (for σ > σL)

U∗(σ) = 1 −
σ∗ − σL

(1 − σL)
=

1 − σ∗

1 − σL
. (37)

Consequently,

κδ(σ) = σ∗ = 1 − (1 − σL)U∗(σ). (38)
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It may be noted that the internal stress σ∗

c (= σc/U∗(σc) from (2)) is universally

equal to 1/2 (independent of σL;from (36)) at the failure point σ = σc of the bundle.

This finally gives the stress-strain relation for the ELS model :

S =





κδ, 0 ≤ σ ≤ σL

κδ(1 − κδ)/(1 − σL), σL ≤ σ ≤ σc

0, σ > σc

. (39)

Fig. 6: Schematic stress (S)-strain (δ) curve of the bundle (shown by the solid line), following Eq.

(39), with the fiber strength distribution (34) (as shown in Fig. 5).

This stress-strain relation is schematically shown in Fig. 6, where the initial linear

region has slope κ (the force constant of each fiber). This Hooke’s region for stress S

continues up to the strain value δ = σL/κ, until which no fibers break (U∗(σ) = 1).

After this, nonlinearity appears due to the failure of a few of the fibers and the

consequent decrease of U∗(σ) (from unity). It finally drops to zero discontinuously

by an amount σ∗

cU∗(σc) = 1/[4(1 − σL)] = σc at the breaking point σ = σc or

δ = σ∗

c/κ = 1/2κ for the bundle. This indicates that the stress drop at the final

failure point of the bundle is related to the extent (σL) of the linear region of the

stress-strain curve of the same bundle.
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2.5. Fatigue-failure in a homogeneous fiber bundle

Fatigue in fiber bundle model was first studied by Coleman in 195814. Thermally

activated failures of fiber have recently been considered and approximate fatigue

behavior has been studied16. We consider here a very simple fiber bundle model

with noise-induced activated failure, for which the dynamics can be analytically

solved.

Let us consider a homogeneous bundle of N fibers under load F (= Nσ), each

having identical failure strength σth which is the strength (σc) of the bundle also.

Without any noise (T̃ = 0), the model is trivial: the bundle does not fail (failure

time τ is infinity) for stress σ < σc and it fails immediately (τ = 0) for σ ≥ σc. We

now assume that each such fiber has a finite probability p(σ, T̃ ) of failure at any

stress σ induced by a non-zero noise T̃ :

p(σ, T̃ ) =

{
σ
σc

exp
[
− 1

T̃

(
σc

σ − 1
)]

, 0 ≤ σ ≤ σc

1, σ > σc

(40)

As one can see, each fiber now has got a non-vanishing probability p(σ, T̃ ) to fail

under a stress σ < σc at any non-zero noise parameter T̃ . p(σ, T̃ ) increases as T̃

increases and for σ ≥ σc, p(σ, T̃ ) = 1. Unlike at T̃ = 0, the bundle therefore fails at

σ < σc after a finite time τ . Here we assume each fiber to have unique threshold,

while their breaking probability at any σ (< σc) is due to noise-activated hopping

over the barrier height (σc − σ). This differs from the earlier model studies14,16

where the load distribution is noise induced.

Failure time

At T̃ 6= 0 and under any stress σ (< σc), some fibers fail due to noise and the load

gets shared among the surviving fibers, which in turn enhances their stress value,

inducing further failure. Denoting the fraction of fibers to the initial bundle that

remains intact at time t by Ut, a discrete time recursion relation17 can be written

as

Ut+1 = Ut

[
1 − p

(
σ

Ut
, T̃

)]
, (41)

where σ/Ut = F/(NUt) is the redistributed load per fiber among the NUt surviving

fibers at time t. In the continuum limit, we can write the above recursion relation

in a differential form

−
dU

dt
=

σ

σc
exp

[
−

1

T̃

(σc

σ
U − 1

)]
, (42)

The failure time τ is defined as τ = t when Ut = 0. Integrating Eq. (42) within

proper limits we get

τ =

∫ τ

0

dt =
σc

σ
exp

(
−

1

T̃

) ∫ 1

0

exp

[
1

T̃

(σc

σ

)
U

]
dU (43)



February 2, 2008 3:14 WSPC/INSTRUCTION FILE chennai-pap

Failure properties of fiber bundle models 13

or17

τ = T̃ exp

(
−

1

T̃

) [
exp

(
σc

σT̃

)
− 1

]
, (44)

for σ < σc. For σ ≥ σc, starting from Ut = 1 at t = 0, one gets Ut+1 = 0 from Eq.

(41), giving τ = 0.

For small T̃ and as σ → σc, τ ≃ T̃ exp
[
(σc/σ − 1) /T̃

]
. This failure time τ

therefore approaches infinity as T̃ → 0. For σ < σc, one gets finite failure time τ

which decreases exponentially as σ approaches σc or as T̃ increases and τ = 0 for

σ ≥ σc. This last feature is absent in the earlier formulations16. However, all these

features are very desirable and are in qualitative agreement with the recent ex-

perimental observations19. Our numerical study confirms the above analytic results

[obtained using the continuum version of the recursion relation (41) (see Fig. 7) well.
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Fig. 7. The simulation results showing variation of average failure time τ against (a) stress σ and

(b) against noise T̃ , for a bundle containing N = 105 fibers. The theoretical results are shown by

dotted and dashed lines [from Eq. (44)]. The insets show the simulation results for the variation

of the fraction U of unbroken fibers with time t for different T̃ values [1.2 (cross) and 1.0 (plus)]

in (a) and σ values [0.15 (cross) and 0.12 (plus)] in (b). The dotted and dashed lines represent the

theoretical results [Eq. (42)].

3. Strength of the local load sharing (LLS) fiber bundles

The strength of a bundle of fibers plays important role in the failure dynamics

of the bundle when external load is applied. By a probabilistic approach Daniel3

pioneered the study of finding the strength distribution of a bundle in terms of

strength of the constituent fibers. Daniel assumed equal sharing of applied load

(ELS). Later, this work has been expanded in the context of material science4.

This type of model shows (both analytically and numerically) existence of a critical
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strength (non zero σc) of the bundle6,10,11,12 beyond which it collapses instantly. The

other extreme model, i,e., the local load sharing (LLS) model has been proved to be

difficult to tackle analytically20. However some approximate asymptotic methods21

have been developed to tackle the problem in one dimension. Recently Pacheco

et. al.22 introduced and solved the one sided load transfer model analytically. It is

basically a simplification of the conventional (both sided) LLS model. Considering

Weibull distribution of fiber strength, they obtained the system size dependence of

the strength (σc) of the bundle as

lim
N→∞

1

σc
= const + as log2 N. (45)

The subscript s indicates the shape factor or Weibull index of the fiber strength

distribution. This clearly shows σc → 0 as N → ∞. Smith23 conjectured a similar

logarithmic dependence for LLS bundles from numerical results.

Here, we have simulated the above two types of LLS models: the one sided load

transfer model and the conventional both sided load transfer model considering

uniform distribution (random) of fiber strengths [Fig. 8]. We can not use the strictly

uniform distrinution (as in Fig. 2), to avoid the increasing sequence of fiber strength

arrangement which is fatal in case of LLS bundles though it does not matter in case

of ELS bundles.

0

1

1.5

0 1 1.5

ρ
(σ

)

σ
th

 t
h

Fig. 8: The uniform (random) fiber strength distribution ρ(σth) considered to study the LLS
models.
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We observe the 1/ logN dependence of the bundle’s strength (σc) for both the cases

[Fig. 9] which confirms the non existence of any critical strength (non zero σc) of

the bundle in one dimension.
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15
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/σ
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One sided load transfer

Both sided load transfer

c

Fig. 9: The system size dependence of strength of the bundle (σc) in LLS models. The results are

obtained after averaging over 5 × 103configurations.

4. Magnetic mapping of the fiber bundle models

We can map the fiber bundle problem in terms of a magnetic model or specifically

an Ising model. The state of the fibers represent different states of the spins. We

introduce a variable ui(t) to indicate the status of the i-th fiber at the time step t

such that ui(t) = 1 for intact fibers and 0 for broken fibers. The corresponding spin

variable si(t) = 2ui(t)− 1 can then take two values ±1, which can represent the up

and down states of the Ising spin at i-th site. The strength threshold (σth)i of the

i-th fiber represents a random field at the i-th site (fiber) favoring si = +1 state (or

ui = 1) and the stress σi(t) on the i-th fiber represents a competing field at each

site favoring the state si = −1 (or ui = 0). The value of si(t) or ui(t) depends on

the strength of the resultant field hi(t):

si(t) = sgn [hi(t)] ; (46)

hi(t) = (σth)i − σi(t); ui(t) =
1

2
[si(t) + 1] . (47)

The only restriction on the competing fields is

N∑

i=1

ui(t)σi(t) =
1

2
[si(t) + 1]σi(t) = F ; (48)
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F is the applied force (load) on the bundle. σi(t), and hence hi(t), evolves with time

t following the above relation. This is a general restriction for both, equal and local

load sharing cases. The average magnetization at time t can be defined as

m(t) =
1

N

N∑

i=1

si(t). (49)

This non-interacting spin model is somewhat special as the zero-temperature dy-

namics of the spins here is determined by the strength of the effective feild hi at

that site (46), where one part (σi(t)) of hi evolves with time following (48). The

stable manetization m (= 1 at σ = 0) decreases continuously with σ until it reaches

a value mc = 2U∗ − 1, where

U∗ =
1

N

N∑

i=1

ui(t → ∞), (50)

at σ = σc, beyond which m drops to −1 discontinuously.

For equal load sharing case, the above equation becomes

σ(t)

N∑

i=1

ui(t) = F = σN ; (51)

σ being the initial applied stress (F/N). For uniform fiber strength distribution we

have U∗(σc) = 1/2 (from (10)). Here, mc = 0 and m decreases continuously from

unity (at σ = 0) to m = mc = 0 at σ = σc and then abruptly crosses over to

m = −1 at σ > σc.

5. Discussions

The inherent mean-field nature of the ELS models enables to construct recursion

relations (Eqs. 5 and 6) which captures essentially all the intriguing features of the

failure dynamics. Though we have identified O ≡ U∗(σ) − U∗(σc) ∝ (σc − σ)β as

the order parameter (with exponent β = 1/2) for the continuous transition in the

ELS models, unlike in the conventional phase transitions it does not have a real-

valued existence for σ > σc. The ‘type’ of phase transition in ELS models is still

a controversial issue. Earlier7 it was suggested to be a first order phase transition,

because the the surviving fraction of fibers has a discontinuity at the breakdown

point of the bundles. However, as the susceptibility shows divergence (χ ∝ (σc −

σ)−γ ; γ = 1/2) at the breakdown point, the transition has been later identified

to be of second order8,9,11,12. The dynamic critical behavior of the ELS models

and the universality of the exponent values are straightforward. Here, divergence of

relaxation time (τ) at the critical point (τ ∝ (σc −σ)−α; α = 1/2) indicates ‘critical

slowing’ of the dynamics which is characteristic of conventional critical phenomena.

At the critical point, one observes power law decay of the surviving fraction in time
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(Ut(σc) ∝ t−δ;δ = 1). We demonstrated the universality of the failure behavior

near σ = σc, for three different distributions: uniform (Fig. 2), linearly increasing

(Fig. 3) and linearly decreasing (Fig. 4) distributions of fiber strength. The critical

strengths of the bundles differ in each case: σc = 1/4,
√

4/27 and 4/27 respectively

for these three distributions. However, the critical behavior of the order parameter

O, susceptibility χ, relaxation time τ and of the time decay at σc, as given by the

exponents β, γ, α and δ remain unchanged: α = 1/2 = β = γ and δ = 1 for all three

distributions.

The ELS model also shows realistic nonlinear deformation behavior with a

shifted (by σL, away from the origin) uniform distribution of fiber strengths. The

stress-strain curve for the model clearly shows three different regions: elastic or

linear part (Hooke’s region) when none of the fibers break (U∗(σ) = 1), plastic

or nonlinear part due to the successive failure of the fibers (U∗(σ) < 1) and then

finally the stress drops suddenly (due to the discontinuous drop in the fraction of

surviving fibers from U∗(σc) to zero) at the failure point σc = 1/[4(1 − σL)].

The fatigue study in a homogeneous fiber bundle suggests if the each fiber has a

finite probability of failure (due to noise T̃ as in (40)) below its normal strength, then

the failure time of the bundle decreases exponentially (τ ≃ T̃ exp
[
(σc/σ − 1) /T̃

]
)

as σ approaches σc from below and τ ≃ 0 for σ > σc. These features agree well with

the experimental observations in disordered solids.

The LLS bundles show ‘zero’ critical strength as the bundle size goes to infinity

in one dimension. It is not clear at this stage if, in higher dimensions, LLS bundles

are going to have non-zero critical strength1,24. In any case, the associated dynamics

of failure of these higher dimensional bundles with variable range load transfer13,25

should be interesting.

We believe, the elegance and simplicity of the model, its common-sense appeal,

the exact solubility of its critical behavior in the mean field (ELS) limit, its demon-

strated universality, etc, would promote the model eventually to a level competing

with the Ising model of magnetic critical behavior.
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