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Mounting evidences are being gathered suggesting 
that income and wealth distribution in various countries 
or societies follows a robust pattern, close to the Gibbs 
distribution of energy in an ideal gas in equilibrium, 
but also deviating significantly for high-income groups. 
Application of physical models seems to provide illu-
minating ideas and understanding, complementing the 
observations. 
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WE are all aware of the hard fact: neither wealth nor income 
is ever uniform for us all. Justified or not, they are un-
evenly distributed; few are rich, many are poor! Such 
socio-economic inequalities seem to be a persistent fact 
of life ever since civilization began. Can it be that it only 
reflects a simple natural law, understandable from the ap-
plication of physics? 

Income and wealth distribution in society 

Investigations over more than a century and the recent 
availability of electronic databases of income and wealth 
distribution (ranging from national sample survey of 
household assets to the income tax return data available 
from governmental agencies) have revealed some remar-
kable features. Irrespective of many differences in culture, 
history, social structure, indicators of relative prosperity 
(such as gross domestic product or infant mortality) and, 
to some extent, the economic policies followed in different 
countries, income distribution seems to follow a particu-
lar universal pattern, as does wealth distribution: After an 
initial rise, the number density of people rapidly decays 
with their income, the bulk described by a Gibbs or log-
normal distribution crossing over at the very high income 
range (for 5–10% of the richest members of the popula-
tion) to a power law with an exponent (known as Pareto 
exponent) value between 1 and 3. This seems to be an 
universal feature: from ancient Egyptian society1 through 
nineteenth century Europe2,3 to modern Japan4,5. The 
same is true across the globe today: from the advanced 
capitalist economy of USA4,5 to the developing economy 
of India6. 

 The power-law tail, indicating a much higher fre-
quency of occurrence of very rich individuals (or house-
holds) than would be expected by extrapolating the 
properties of the bulk of the distribution, was first ob-
served by Vilfredo Pareto2 in the 1890s for income distri-
bution of several societies at very different stages of 
economic development. Later, wealth distribution was 
also seen to follow similar behaviour. Subsequently, there 
have been several attempts starting around the 1950s, 
mostly by economists, to explain the genesis of the 
power-law tail (for a review, see Champernowne3). How-
ever, most of these models involved a large number of 
factors that made understanding the essential reason be-
hind the occurrence of inequality difficult. Following this 
period of activity, a relative lull followed in the 70s and 
80s when the field lay dormant, although accurate and ex-
tensive data were accumulated that would eventually 
make possible precise empirical determination of the dis-
tribution properties. This availability of large quantity of 
electronic data and their computational analysis has led to 
a recent resurgence of interest in the problem, specifically 
over the last one and half decades. 
 Although Pareto2 and Gini7 had respectively, identified 
the power-law tail and the log-normal bulk of income dis-
tribution, demonstration of both features in the same dis-
tribution was possibly first by Montroll and Shlesinger8, 
through an analysis of fine-scale income data obtained 
from the US Internal Revenue Service (IRS) for the year 
1935–36. It was observed that while the top 2–3% of the 
population (in terms of income) followed a power law 
with Pareto exponent ν M 1.63, the rest followed a log-
normal distribution. Later work on Japanese personal in-
come data based on detailed records obtained from the 
Japanese National Tax Administration9 indicated that the 
tail of the distribution followed a power law with ν value 
that fluctuated from year to year around the mean value 
of 2. Further work10 showed that the power law region 
described the top 10% or less of the population (in terms 
of income), while the remaining income distribution was 
well described by the log-normal form. While the value 
of ν fluctuated significantly from year to year, it was ob-
served that the parameter describing the log-normal bulk, 
the Gibrat index, remained relatively unchanged. The 
change of income from year to year, i.e. the growth rate 
as measured by the log ratio of the income tax paid in 
successive years, was observed by Fujiwara et al.11 to be 
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also a heavy-tailed distribution, although skewed, and 
centred about zero. Later work on the US income distri-
bution based on data from IRS for the period 1997–98, 
while still indicating a power-law tail (with ν M 1.7), has 
suggested that the lower 95% of the population has in-
come whose distribution may be better described by an 
exponential form12.13. The same observation has been 
made for income distribution in the UK for the period 
1994–99, where the value of ν was found to vary between 
2.0 and 2.3, but the bulk seemed to be well described by 
an exponential decay. 
 It is interesting to note that when one shifts attention 
from the income of individuals to the income of companies, 
one still observes the power-law tail. A study of the income 
distribution of Japanese firms14 concluded that it follows 
a power law with ν M 1, which is also often referred to as 
the Zipf's law. Similar observation has been reported for 
the income distribution of the US companies15. 
 Compared to the empirical work done on income distri-
bution, relatively few studies have looked at the distribu-
tion of wealth, which consists of the net value of assets 
(financial holdings and/or tangible items) owned at a given 
point in time. Lack of an easily available data source for 
measuring wealth, analogous to income tax returns for 
measuring income, means that one has to resort to indi-
rect methods. Levy and Solomon16 used a published list 
of wealthiest people to generate a rank-order distribution, 
from which they inferred the Pareto exponent for wealth 
distribution in USA. An alternative technique was used 
based on adjusted data reported for the purpose of inheri-
tance tax to obtain the Pareto exponent for the UK13,17. 
Another study used tangible asset (namely house area) as 
a measure of wealth to obtain the wealth distribution 
exponent in ancient Egyptian society during the reign of 
Akhenaten (14th century BC)1. More recently, wealth dis-
tribution in India at present has also been observed6 to 
follow a power-law tail with the exponent varying around 
0.9. The general feature observed in the limited empirical 
study of wealth distribution is that of a power-law behav-
iour for the wealthiest 5–10% of the population, and  
exponential or log-normal distribution for the rest of the 
population. The Pareto exponent as measured from  
the wealth distribution is found to be always lower than the 
exponent for income distribution, which is consistent 
with the general observation that, in market economies, 
wealth is much more unequally distributed than income18. 
 The striking regularities (Figure 1) observed in income 
distribution for different countries, have led to several 
new attempts at explaining them on theoretical grounds. 
Much of the current impetus is from physicists’ modelling 
of economic behaviour in analogy with large systems of 
interacting particles, as treated, for example, in the kinetic 
theory of gases. According to physicists working on this 
problem, the regular patterns observed in the income (and 
wealth) distribution may be indicative of a natural law for 

the statistical properties of a many-body dynamical sys-
tem representing the entire set of economic interactions in 
a society, analogous to those previously derived for gases 
and liquids. By viewing the economy as a thermodynamic 
system, one can identify income distribution with the dis-
tribution of energy among particles in a gas. In particular, 
a class of kinetic exchange models have provided a simple 
mechanism for understanding the unequal accumulation 
of assets. Many of these models, while simple from the 
perspective of economics, have the benefit of coming to 
grips with the key factor in socio-economic interactions 
that results in different societies converging to similar 
forms of unequal distribution of resources (see Chatterjee 
et al.4 and Chakrabarti et al.5 for a collection of large 
number of technical papers in this field; see also Hayes19, 
Hogan20 and Ball21 for some popular discussions and also 
criticisms). 
 
 
 
 

Box 1.  Income inequality: Gini coefficient and Pareto 
law. 
 

 
 
a, The Gini coefficient G gives a measure of inequality 
in any income distribution and is defined as the propor-
tional area between the Lorenz curve (I, giving the cu-
mulative fraction of the people with the fraction of 
wealth) and the perfect equality curve (E, where the 
fraction of wealth possessed by any fraction of popula-
tion would be strictly linear): G = 1 –(AI /AE), where AI 
and AE are the areas under curves I and E respectively. 
G = 0 corresponds to perfect equality while G = 1 to 
perfect inequality. b, When one plots the cumulative 
wealth (income) distribution against the wealth (in-
come), almost 90–95% of the population fits the Gibbs 
distribution (indicated by the shaded region in the dis-
tribution; often fitted also to lognormal form) and for the 
rest (very rich) 5–10% of the population in any country, 
the number density falls off with their wealth (income) 
much slowly, following a power law, called the Pareto 
law. The second part of this law, which we do not dis-
cuss here, states that about 40–60% of the total wealth 
of any economy is possessed by 5–10% of the people 
in the Pareto tail. Although this seems to be qualitati-
vely true, we do not have any recent data to support it. 
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Figure 1. a, Cumulative probability (Q(m)) of annual income (m) of the US personal for IRS data of 2001 (from Silva et 
al. in ref. 4), Pareto exponent ν ≈ 1.5 (given by the slope of the solid line). b, Cumulative income distribution in India dur-
ing 1929–30, collected from Income Tax and Super Tax data4. (Inset) Cumulative distribution of employment income for 
the top 422 salaried Indians (Business Standard Survey, 2006) showing a power-law tail with ν = 1.75 ± 0.01 (in spite of the 
best of our efforts in collecting the equivalent data from the Income Tax Department of the Government of India or the Re-
serve Bank of India, we are unable to give or compare with any better data). c, Cumulative probability distribution of Japa-
nese personal income in the year 2000. The power-law region approximately fits to ν = 1.96 (data from Fujiwara et al. in 
ref. 4). d, Cumulative probability distribution of firm size (total assets) in France in the year 2001 for 669,620 firms. The 
power-law region approximately fits to ν = 0.84 (data from Fujiwara et al. in ref. 4). 

 
 
A simple ideal gas-like model 

Think of an exchange game like the following in an 
economy where the different commodities are not being 
explicitly considered, but rather their value in terms of an 
uniform asset (money) is considered. In such an asset ex-
change game, there are N players participating, with each 
player having an initial capital of one unit of money. N is 
very large, and the total money M = N remains fixed over 
the game as does the number of players. 
 (a) In the simplest version, the only allowed move at 
any time is that two of these players are randomly chosen 
and they decide to divide their pooled resources randomly 
among themselves. As no debt is allowed, none of the 
players can end up with a negative amount of assets. As 
one can easily guess, the initial delta function distribution 

of money (with every player having the same amount) 
gets destabilized with such moves and the state of perfect 
equality, where every player has the same amount, disap-
pears quickly. Let us ask, what will be the eventual steady-
state distribution of assets among the players after many 
such moves? The answer is well established in physics 
for more than a century – soon, there will be a stable asset 
distribution and it will be the Gibbs distribution: P(m) ~ 
exp[–m/T], where the parameter T = M/N corresponds to 
the average money owned by an agent12,22,23. 
 (b) Now think of a modified move in this game: each 
player ‘saves’ a fraction λ of his/her total assets during every 
step of the game, from being pooled, and randomly divi-
ded the rest with the other (randomly chosen) player. If eve-
rybody saves the same fraction λ, what is the steady-state 
distribution of assets after a large number of such moves? 
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It becomes Gamma-function like24,25, whose parameters 
depend on λ: P(m) ~ mα exp[–m/T(λ)]; α = 3λ/(1 – λ). 
Angle26,27, utilizing a different stochastic model, arrived 
at somewhat similar (numerical) results, considerably 
earlier. Although qualitative explanation and limiting re-
sults for λ → 0 or λ → 1 are easy to obtain, no exact 
treatment of this problem is available so far. 
 (c) What happens to the steady-state asset distribution 
among these players if λ is not the same for all players, 
but is different for different players? Let the distribution 
ρ(λ) of saving propensity λ among the agents be such 
that ρ(λ) is non-vanishing when λ → 1. The actual asset 
distribution in such a model will depend on the saving 
propensity distribution ρ(λ), but for all of them the asymptotic 
form of distribution will become Pareto-like28–30: P(m) ~ 
m–(1+ν); ν = 1 for m → ∞. This is valid for all such distri-
butions29 (unless ρ(λ) ∝ (1 – λ)δ, when P(m) ~ m–(2+δ)). 
However, for variation of ρ(λ) such that ρ(λ) → 0 for 
λ < λ0, one will get an initial Gamma function form for 
P(m) for small and intermediate values of m, with para-
meters determined by λ0 (≠ 0), and this distribution will 
eventually become Pareto-like for m → ∞ with ν = 1 
(Figure 2; cf. refs 28–30). Analytical understanding is 
now available31,32 and a somewhat rigorous analytical 
treatment of this problem has been given33. 
 It may be mentioned that there are a large number of 
random multiplicative asset exchange models34,35 to ex-
plain the Pareto (power-law) tail of wealth or income dis-
tribution. The advantage of the kind of model discussed 
above is that it can accommodate all the essential features 
of P(m) for the entire range of m, not only the Pareto tail. 
 (d) One can of course argue that the random division of 
pooled assets among players is not a realistic approxima-
tion of actual trading carried out in society. As Hayes19 
points out, in most exchanges between an individual and 
a large company, it is unlikely that the individual will end 
up with a significant fraction of the latter’s assets. Strict 
enforcement of this condition leads to a new type of game, 
the minimum exchange model, where the maximum amount 
that can change hands over a move, is a fraction of the 
poorer player’s assets. Although the change in the rules 
does not seem significant from the simple random ex-
change game, the outcome is astonishingly different: in 
the steady state, one player ends up with all the assets. 
 If we now relax the condition that the richer player 
does not completely dictate the terms of exchange, so that 
the amount exchanged need not be limited by the total asset 
owned by the poorer player, we arrive at a game which is 
asymmetric in the sense of generally favouring the player 
who is richer than the other, but not so much that the 
richer player dominates totally. Just like the previously 
defined savings propensity for a player, one can now define 
‘thrift’ τ, which measures the ability of a player to exploit 
its advantage over a poorer player4. For the two extreme 
cases of minimum (τ = 0) and maximum (τ = 1) thrift, 
one gets back the random asset exchange and minimum 

asset exchange models respectively. However, close to 
the maximum limit, at the transition between the two very 
different steady-state distributions given by the two models, 
we see a power-law distribution! As in the case of λ, we 
can now consider the case when instead of having the 
same τ, different players are endowed with different thrift 
abilities. For such heterogeneous thrift assignment in the 
population, where τ for each player is chosen from a ran-
dom distribution, the steady-state distribution reproduces 
the entire range of observed distributions of income (as 
  
 

Box 2. Kinetic theory of ideal gas: Gibbs and Maxwell–
Boltzmann distributions. 
 

 

In a classical ideal gas in thermodynamic equilibrium, 
the state variables like pressure (P), volume (V) and 
the absolute temperature (T) maintains a very simple 
relationship PV = NkT. Here N is the number of basic 
constituents (atoms or molecules; N ~ Avogadro num-
ber ~ 1023) and k is a constant called Boltzmann con-
stant. Statistical mechanics of ideal gas, also called the 
kinetic theory of gas, intends to explain the above gas 
law in terms of the constituents’ mechanics or kinetics. 
According to this picture, for a classical ideal gas, each 
constituent is a Newtonian particle and they undergo 
random elastic collisions (which conserve kinetic en-
ergy E) among themselves and the walls of the con-
tainer. These collisions eventually set up a non-uniform 
(kinetic) energy distribution D(E) among the constituents, 
called the Maxwell–Boltzmann distribution: D(E) = 
f (E)g(E), where g(E) (~ E here for an ideal gas in a 3-
dimensional container) is called the density of states 
and comes from mechanics (of free or noninteracting 
particles of the ideal gas), and f (E) (~exp(–E/kT)) is 
called the Gibbs distribution and comes from the statis-
tical mechanics (result of averages over random scatter-
ing events). Identifying the pressure P as the average 
(over the distribution D(E)) rate of change of momen-
tum of the gas particles on unit area of the container 
(where the energy E is proportional to the square of the 
momentum), and the temperature T as the average (over 
the distribution D(E)) energy, one immediately gets the 
above mentioned gas law (relating P, V and T). 
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Figure 2. a, The trading markets can be easily modelled to be composed of two-body scatterings. The money mi(t) of an agent i at time t 
changes due to trading/scattering with a random agent j in the market; the scattering locally conserves the total money. Each agent saves a 
fraction λi of its money mi(i) at that time t and the same is true for the other, and the rest of the money (1 – λi)mi(t) + (1 – λj)mj(t) is shared 
randomly (ε is a random fraction between 0 and 1). We assume ε to be an annealed variable (changes with trading or time), while λ are 
quenched variables (do not change with time). λi can of course change from agent to agent, given by its distribution ρ(λ). b, For uniform λ, 
a Gamma distribution P(m) for money occurs. c, For a white distribution of λ, a Pareto law P(m) ~ m–2 (i.e. Pareto exponent ν = 1) sets in. 
Asset distribution in the asymmetric asset exchange game where the players have different thrift values (randomly chosen from an uniform 
distribution over the unit interval) also exhibits a power-law tail (d), with Pareto exponent ν M 1.5. In comparing with the cumulative prob-
ability Q(m) in Figure 1, one should note that Q(m) is given by ∫

∞
m P(m) dm. 

 
 
well as wealth) in the society: the tail follows a power 
law, while the bulk is described by an exponential distri-
bution. The tail exponent depends on the distribution of τ, 
with the value of ν = 1.5 suggested originally by Pareto, 
obtained for the simplest case of uniform distribution of τ 
between [0, 1] (Figure 2 d). However, even extremely dif-
ferent distributions of τ (e.g. U-shaped) always produce a 
power-law tailed distribution that is exponentially decay-
ing in the bulk, underlining the robustness of the model in 
explaining inequality. 

An extension 

A major limitation of these asset exchange models consi-
dered earlier (and summarized above) is that it does not 
make any explicit reference to the commodities exchanged 

whose asset values we were considering so far and to the 
constraints they impose. We have also studied36 the effect 
of explicitly introducing a single non-consumable com-
modity (which is bought and sold in terms of money) on 
the asset distributions in the steady state. Here again two 
of the agents are arbitrarily chosen for interaction (or trad-
ing) and the commodity exchanged for money, provided 
of course the two agents have the required amounts of  
commodity and money (since no credit purchases are allo-
wed). Otherwise, no exchange takes place and a new pair 
of agents is chosen. The global price of the commodity 
(ratio of total money to total amount of commodity in the 
market) is normalized but has temporal fluctuations. Here, 
we distinguish between money and wealth; wealth of any 
agent is composed of money and the money equivalent of 
the commodity with the agent. In spite of many signifi-
cant effects, the general feature of Gamma-like form of 
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the asset distributions (for uniform λ) and the power-law 
tails (for random λ) for both money and wealth, with 
identical exponents, are seen to remain unchanged. 
 These studies indicate that the precise studies (theo-
ries) for asset exchange models are extremely useful and 
relevant. Also this helps address the question of identifying 
a money-like asset with wealth in simple asset exchange 
models and suggests that the absurd simplicity can be re-
laxed, yet the quantitative features are not affected. 

Relevance of gas-like models 

All these gas-like models of trading markets are based on 
the assumption of (a) asset conservation (globally in the 
market; as well as locally in any trading) and (b) stochasti-
city. Questions on the validity of these points are natural 
and have been raised4,5,37. We now forward some argu-
ments in their favour. 

Asset conservation 

If we view the trading as scattering processes, one can see 
the equivalence. Of course, in any such ‘asset exchange’ 
trading process, one receives some profit or service from 
the other and this does not appear to be completely random, 
as assumed in the models. However, if we concentrate 
only on the ‘cash’ exchanged (even using bank cards!), 
every trading is an asset conserving one (like the elastic 
scattering process in physics!) As discussed earlier, con-
servation of asset can be extended to that of total wealth 
(including money) and relaxed, as given by the tempo-
rally fluctuating price (effectively allows for slight re-
laxation over this conservation), yet keeping the overall 
distribution same (with unchanged ν value)36. It is also 
important to note that the frequency of asset exchange in 
such models defines a timescale in which total asset in 
the market does not change. In real economies, total asset 
changes much slowly, so that in the timescale of ex-
changes, it is quite reasonable to assume the total asset to 
be conserved in these exchange models. 

Stochasticity 

Is the trading random? Surely not, when looked upon 
from an individual’s point of view. When one maximizes 
his/her utility by money exchange for the pth commodity, 
he/she may choose to go to the qth agent and for the rth 
commodity he/she will go to the sth agent. But since 
p ≠ q ≠ r ≠ s in general, when viewed from a global level, 
these trading/scattering events will all look random (al-
though for individuals this is a defined choice or utility 
maximization). It may be noted in this context that in the 
stochastically formulated ideal gas models in physics (de-
veloped in late 1800/early 1900), physicists already knew 

for more than a hundred years that each of the constituent 
particles (molecules) follows a precise equation of motion, 
namely that due to Newton. The assumption of stochasticity 
in asset-exchange models, even though each agent might 
follow an utility maximizing strategy (like Newton’s 
equation of motion for molecules), is therefore not unusual 
in the context. 

Support from economic data 

Analysis of high-quality income data38 from the UK and 
USA shows peaked Gamma distributions for the low- and 
middle-income ranges, which suggests a strong case in 
favour of models discussed earlier4,24,29. This has already 
been seen in studies of isolated groups of similar indi-
viduals, and has been modelled in a similar fashion26,27. 

Concluding remarks 

The enormous amount of data available on the income 
and wealth distribution of various countries clearly estab-
lishes a robust feature: Gamma (or log-normal) distribu-
tion for the majority (almost 90–95%), followed by a Pareto 
power law (for the richest 5–10% of the population), as 
seen in Figure 1. We show that this ‘natural’ behaviour of 
income inequality comes from a simple ‘scattering picture’ 
of the market (Figure 2 a), when the agent in the market 
has got random saving propensity. Models studied in 
physics (in the kinetic theory of gases) more than a hun-
dred years ago, help in formulating and understanding the 
‘natural’ behaviour of the markets. 
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