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Abstract. The stability of linear convective and acoustic modes in solar envelope models is investigated
by incorporating the thermal and mechanical effects of turbulence through the eddy transport coefficients.
With a reasonable value of the turbulent Prandtl number it is possible to obtain the scales of motion
corresponding to granulation, supergranulation and the five-minute oscillations. Several of the acoustic
modes trapped in the solar convection zone are found to be overstable and the most unstable modes,
spread over a region centred predominantly around a period of 300 s with a wide range of horizontal
length scales, are in reasonable accord with the observed power-spectrum of the five-minute oscillations.
It is demonstrated that these oscillations are driven by a simultaneous action of the «-mechanism and
the radiative and turbulent conduction mechanisms operating in the strongly superadiabatic region in
the hydrogen ionization zone, the turbulent transport being the dominant process in overstabilizing the
acoustic modes.

1. Introduction

A considerable amount of work has been done to study the solar velocity field
which has two main components: convective motions manifesting as granulation
and supergranulation (Beckers and Canfield, 1976), and oscillatory motions amongst
which the five-minute oscillations (Leighton et al,, 1962) are most extensively
documented (Frazier, 1968; Tanenbaum et al., 1969; Deubner, 1972; Fossat et al.,
1974). The work of Deubner (1975) gave a detailed power-spectrum of the five-
minute oscillations which opened up a new field of solar seismology to probe the
solar convection zone. The later observation of the oscillatory power, with improved
resolution, by Rhodes et al. (1977) and Deubner et al. (1979) established that the
five-minute oscillations indeed represent nonradial acoustic modes in the solar
atmosphere. .

A number of proposals had been advanced to account for the five-minute
oscillations and these are reviewed by Stein and Leibacher (1974). The currently
accepted model based on the trapping of the acoustic waves in the subsurface layers
of the Sun was proposed by Ulrich (1970) and Leibacher and Stein (1971). Ulrich
(1970) attributed the overstability of the trapped p-modes to the radiative Cowling—
Spiegel mechanism (Cowling, 1957; Spiegel, 1964) operating in the superadiabatic
region below the photosphere. Ando and Osaki (1975) investigated the stability
of nonradial oscillations for a solar envelope model with full effects of radiative
dissipation included in the calculation, and found many overstable acoustic modes
with their periods centred around 300s and with a wide range of horizontal
wavenumbers. Ando and Osaki claimed that the acoustic waves were overstabilized
largely due to the x-mechanism of the hydrogen ionization zone. However, the
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interaction between turbulent convection and oscillation was completely neglected
in their work. Gabriel et al. (1975) took account of the thermal coupling between
convection and non-radial oscillations to find an appreciable effect of the convective
flux perturbation on the stability characteristics. The stochastic excitation of radial
solar oscillations incorporating the effects of turbulent convection was discussed
by Goldreich and Keeley (1977), but their results were rather sensitively dependent
on the assumptions concerning the turbulent velocities and the spectrum of turbulent
eddies. Berthomieu et al. (1979) considered the interaction between convection
and oscillation to get all the p-modes of degree 200 and 600 to be stable. This
calculation employs a generalized mixing-length formulation (Baker and Gough,
1979) based on the Boussinesq approximation to describe the turbulent fluctuations,
and it is not clear how far the results are sensitive to this assumption since this will
almost certainly affect the phase relationship between the radial velocity and the
pressure fluctuation.

The stability of linear convective modes in the solar convection zone was investi-
gated by Antia ef al. (1981), (hereinafter referred to as Paper I) with the mechanical
and thermal effects of turbulence included in an approximate manner through the
eddy transport coefficients. For a reasonable choice of the turbulent Prandtl number
the most unstable fundamental mode and the first harmonic were found to be in
reasonable accord with the observed characteristics of granulation and supergranu-
lation. Any reasonable theoretical ansatz should provide for the same choice of
the turbulent Prandtl number, not only the most rapidly growing convective modes
corresponding to granulation and supergranulation, but should also reproduce the
acoustic modes closely resembling the observed features of the five-minute oscilla-
tions. We wish to investigate this problem in the present work by taking into account
the interaction between convection and pulsation in an approximate manner through
the turbulent heat conductivity and turbulent viscosity. We find that many of the
acoustic modes trapped in the solar convection zone are overstable and the most
rapidly growing modes occupy a region centred around a period of 300 s and spread
over a wide range of horizontal scales from several thousand to a few tens of
thousand kilometers. The essential conclusion of our work is that the simultaneous
operation of the x-mechanism and the turbulent conduction (convective Cowling)
mechanism (Unno, 1976) is responsible for exciting the five-minute oscillations,
the dominant contribution to the generation of self-excited acoustic waves arising
from the convective Cowling mechanism.

2. Mathematical Formulation

A. GOVERNING EQUATIONS

The governing equations applicable to a viscous thermally conducting fluid layer
are the usual hydrodynamical conservation equations for mass, momentum and

energy. In the notation of Paper I these equations may be written in the following
form:

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System



.77..303A

1982SoPh. .

OVERSTABILITY OF ACOUSTIC MODES 305
Mass conservation:
dp
—+V - (pv)=0;
o (pv)=0;

momentum conservation:

ov

PRl AR V)v=pg—VP—-3uV(V v)—-

P

3V - V)Vu +V - [u(Vv+vV)];

energy conservation:

07 T (0P
[_ V)T -V, _(__ . )} S ,
pC, o +(v- V)T d at-i~(v V)P V-F+@®

where the rate of viscous dissipation
@ =3u(Vv+vV) - (Vv+vV)=3u(V - v)2.

We treat the medium as a perfect gas undergoing ionization and we include in P
the contribution due to the radiation pressure, but neglect that due to the turbulent
pressure. We have adopted the following chemical composition: X =0.706, Y =
0.280, and Z =0.013 and have considered all the stages of ionization for various
elements with the help of Saha’s ionization equations. In the foregoing equations
w is the coefficient of dynamic viscosity, C, is the specific heat at constant pressure,
Vaa is the logarithmic adiabatic gradient, (dIn 7/ 1n P).q and F is the total flux
which is sum of the radiative flux, FX and the convective flux, F<. The radiative

flux is computed in the Eddington approximation by writing (Unno and Spiegel,
1966)

4
Ff=——VvJ,
3kp
where
C,[oT T
J=0'T4+—p[—+v . VT—Vad—<£+v . VP)]
4 Lot P\t

is the intensity of radiation and « the mean Rosseland opacity. In order to compute
the convective flux we adopt the standard mixing length formalism and write

FC=—K,<VT—Vad%VP),

with the coefficient of turbulent heat conductivity taken to be of the form
K:=apC,WL .

In this expression « is the efficiency factor of order unity, L is the mixing length,
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and W the mean convective velocity given by
g 1/2
W=[ = QL* V-V, } :
B H QL*( a)

Here B represents the effect of viscous braking on the convective elements, H,, is
the pressure scale height, and the factor Q = —(T/p)(6p/dT)p makes allowance
for the variation of the degree of ionization in the moving element. The molecular
viscosity is negligible compared to the turbulent viscosity and hence it is not
considered in the present work. For the turbulent dynamic viscosity we adopt the
expression

w:=P.apWL,

where the turbulent Prandtl number P, is treated as a free parameter in the
investigation.

We shall adopt the spherical geometry and assume that any physical quantity in
the perturbed state can be expressed as

f(r’ 0’ ¢s t)sz(r)+f1(r)Y;n(07 ¢) ewt,

where the subscripts 0 and 1 respectively refer to the unperturbed and perturbed
quantities, (r, 8, @) are the spherical polar coordinates with the radial coordinate r
measured from the centre of the Sun, Y[" (6, ¢) are the spherical harmonics and
w = wgr +iwr the complex eigenvalue. The governing equations are linearized by
neglecting the higher order terms in perturbed quantities to get the following system
of equations:

wp1+V  (pov)=0,
wpov=p18— VP —30V(V - V)=3(V - V)V +V - [io(VV+vV)],

T
pOCPO[le + (V . V)TO_Vad P_O (wP1 + (V * V)Po)] = —V . F1 ,
0

4
F, = VI -FRE_FREL

3K0p0 Ko Po

T, T T,
—K,O[vn Va2 VP (Vg —) VPO] K VTo~Vas VPO) ,
P() P 1 PO

C T
Ji=40T3T; 3 P°[wT1 + (v V)To—Vaa ITO (wPy + (v - V)PO)] X
0

Ko
In these equations
&___&_{_Cpl L1 101 1T1

—_— 42—t =-——=—+4+
Ko po CpO Ly 2Qy 2Ty

T
T (5, 1) (g, T) 42
0

1dr \"™PJodr P/ydr
2 dTO T() dP() ’
__Vad____
dr Py dr
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Li_
Lo

for models (A) and (B) discussed in the next subsection, and
P, 1 dP
Py pogo dr

for model (C), while «, p, C,, Q, (V.a(T/P)) being functions of T and P alone their
perturbations can be expressed in the form

i), 2 (), 7

where f can be any one of these quantities, and

160T;
FR=_ b9 oo,
3Kopo

is the radiative flux in the unperturbed state.
We choose the velocity perturbation v(r, 6, ¢) and the flux perturbation Fi(r, 6, ¢)
to have the form

1
v(,6,8) = (0.(0), 04 % on(r) —— %) Y76, ),

9
sin 6 d¢

Fi(s 6,8) = (E), () % Falr) ) Y76, 6).

This enables us to separate the governing equations into radial and horizontal
components, which after some algebraic manipulation, can be cast in the following
form with z measured downwards from the level of optical depth unity:
PRI TR N EL IR
3H04.2" 4z 37 Ho ™2 3r dz
[tn 4 dmolduy 04172 dio 7 po],
3 r 3dzldz r [3dz 3,/

I(I+1) do, g(ép) g(ap)

- —+gl—) Pit+gl—) T

3y Mgz oP/ ! oT/)p "’

dzvh [1 dﬂrto 8/-‘40] M0 do,
—_— e —— vr+___

3r dz

+ pow] v, +

+
r dz 3 7

4 [(1+1 1 du,
+'[—“£——f—2ltﬂ)*“— ﬁLO'F(Upo]vh'+
3 r r dz

2 du,o]dvh 1
+| = o= ——+-P
[r to= g laz "+ 70
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We shall also consider different forms of the viscosity coefficient by varying the
exponent n in the expression

vi=P,aWL for t <P
=P,aWL(P/t,)" for t.»P,
and examine the sensitivity of numerical results to the choice of v..

C. BOUNDARY CONDITIONS

The equations governing the perturbed quantities form a set of six first-order
differential equations, and these are solved as characteristic-value problem with
the complex eigenvalue w, by specifying six boundary conditions, three at each
interface. The eigenvalues were computed with two different sets of boundary
conditions.

(I) Free-boundary conditions at the inner and outer boundaries at which the
Lagrangian pressure perturbation vanishes and also the tangential components of
the viscous stress tensor vanish, that is,

wPyi—gpov, =0,

h
vrtr——uv,=0.
dr §
In addition, the thermal condition requiring the radiation not to come into the
layer from infinity, is imposed at the upper boundary; i.e.

v,(4 dTo 2) L _F._,

_f — _+_ —_— —
w\Ty dr 1) oTs Fg
At the lower boundary we demand the vanishing of Lagrangian perturbation in
flux, i.e. ‘

F, 2,
~ZZ9,

R
FO r w

(IT) The mechanical and thermal conditions adopted by Ando and Osaki (1975)
at the outer boundary along with the vanishing of the viscous stress tensor. In our
notation, the mechanical condition becomes

B—Vg+3)x—(n—Vg)p=0,
where
x=v,/(rw),  p=Pi/(pogr),

I(1+1)

n=- 7 8>
rw

(3, 2) e
¢ [ oP) .+ \aT/), " P, %
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There is an overshoot of motion from the subphotospheric layers into the
bounding region. The variation of the observed velocity field with height given by
Canfield (1976) suggests that the amplitude of granular velocities is an exponentially
decreasing function with an approximate scale-height of 150 km. We estimate the
coefficient of dynamic viscosity in the atmosphere by assuming a Kolmogoroff
spectrum with turbulent velocities proportional to the one-third power of the
scale-length. With the allowance for the almost exponential fall of density with
height, we find that the coefficient of viscosity drops exponentially with a scale
height of 25 km. In the layer below the convection zone the coefficient of viscosity
is taken to have a constant value since the overshoot into the deeper regions is
expected to have a negligible influence on the stability characteristics.

We shall follow the customary approach in fluid mechanics by envisaging the
turbulent flow as a superposition of eddies and represent the effect of turbulence
on large-scale motions through an eddy viscosity. We shall adopt for this purpose
the form for the coefficient of turbulent viscosity given by Goldreich and Keeley
(1977) where the dominant contribution to the excitation of a normal mode is
supposed to arise from those turbulent eddies whose turn-over times #. are compar-
able to the period of oscillation of the mode P. Near the top of the convection
zone the turn-over time t, = L/ W is shorter than the period of oscillation and the
dominant driving comes from the eddies which have characteristic size L and mean
velocity W. For example at a depth of 20 km velocity W =3 km s~', mixing length
L =500 km and hence ¢. = 160 s which is shorter than the typical period of oscillation
(=300 s). In the deeper regions of the convection zone the turnover times are much
longer than the period of oscillation of the normal modes and the turbulent eddies
will cover in such a time distances short compared to the mixing length, thus
lowering the efficiency of turbulent viscosity. Thus most of the excitation is supposed
to arise from the resonant eddies with scale-size A (« WL) for which #, =A/ W, is
comparable with P. We can write the coefficient of turbulent viscosity as

vi=P,aWL for t <P
=P,aW,A for ¢ >»>P.

Assuming the Kolmogoroff scaling to be applicable for turbulent eddies of size A,
we can express the eddy velocity by W, = W(A/ £)'? and the eddy life-time by
t, = t.(A/L)*"® to get the coefficient of eddy viscosity in the form

v, =P,aWL(t,/1.)*.

With the main contribution to the excitation arising from:the eddies that are in
resonance with oscillations, that is, for those with ¢, = P we can express the coefficient
of viscosity as

v,=PaWL for t <P
=P,aWL(P/t.)> for t.»P.
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dF, T [(I+1
pOCpOg (V Vad)vr ~ Vag O<wp0Cp0 ( )KtO) P+
dz Py
I(1+1 2 [(I+1 4
+(wpon0+ ( )KtO) T1 +—Fr+ ( > ) 1,
r r 3K0p0
dT; To dP; T\ dP, dT,
Kt Kt Va K (V > —_+K - -
dz T pydz N\ p)idz T d:
To dPO 4 dJl p1
LKV 2%, Y _F+F ( )
! dPo dz 3K0p0 dz 0 Ko pPo
1d 2 do, [(I+1 ) d
(bt () m2() 7
podz r dz r po\oP po oT
gpoToCyho wToCpo

V—-V.dv,+V,
4KOP() ( d)v d 4KOP0

Thus the system of governing equations can be written as six first order differential
equations along with two auxiliary equations.

C
P1—<40T8+w—p9)T1+11=0.
4K0

B. EQUILIBRIUM SOLAR MODELS

The five-minute oscillations (with w; =0.02 s™") can be analysed as a purely atmos-
pheric phenomenon (Ando and Osaki, 1975). It is, therefore, sufficient to consider
only the convection zone of the sun and the overlying atmospheric layers. We have
adopted three equilibrium solar envelope models for studying the instability of
acoustic modes. The main requirement for the models is that the physical variables
at the base of the convection zone should match with the interior solutions and
they should also be consistent with the evolutionary computation which can generate
the present solar radius and luminosity. We have used Spruit’s (1977) model which
is constructed with the mixing-length parameters a = %, B = t, Q=1,andthe mixing
length L = z +459 km (z being measured downwards from the top of the convection
zone). In addition, we have used the following two solar envelope models as the
basic state for analysing the instability of acoustic modes:

5 B=% Q#1 and L=¢+459km,
L B=%4 Q#1 and L=25H,.

For the atmosphere we have adopted the empirical temperature-optical depth
(T — ) relationship given by Vernazza et al. (1976), with the upper boundary
chosen a little below the temperature minimum at a level where 7 =7 X 107*; the
lower boundary for the layer is fixed at a depth of =4 x10°km (T =5 X 10° K).
The equilibrium run of the physical quantities was generated by integrating the
standard structure equations and the partial derivatives (dp/dP)r, (3p/0T)p were
calculated with the help of the equation of state for a perfect gas undergoing
ionization. The partial derivatives of the opacity, (0kx/0T)p, (dkx/dP)T were computed
making use of the opacity tables given by Cox and Stewart (1970).

1l

(44

o
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B are solutions of the quadratic equation
2

Bz—(A+VG—2)ﬂ+(7]A—r—(§— Ve + VG—I(1+1)—3A—3>

0,
where
ap Tb
A=<—) V—V.) -2 rg.
3T P( d)PO rg

The thermal condition and the condition on the vanishing of the tangential
component of the viscous stress are the same as in (I ), namely,

V(44T 2 S F_
Ty dr r aTg Fg
dv,

V,+r——-V,=0.
rdr h

0,
w

At the lower surface the conditions are the same as in (I).

D. NUMERICAL TECHNIQUE

The system of equations along with the sets of boundary conditions (I) or (II) form
a generalized eigenvalue problem with complex eigenvalues and complex eigenfunc-
tions to be determined for a specified value of the horizontal harmonic number L
In order to solve these equations we have used a finite-difference scheme with
explicit calculation of the first-order corrections (Antia, 1979). The resultant matrix
is solved to obtain complex eigenvalues by the Muller iteration method. The initial
guess for the eigenvalue is made by solving the equations under non-viscous,
adiabatic conditions and the adiabatic eigenvalue is fed as the starting value for
the iteration. The iteration is continued until the complex eigenvalue obtained is
accurate to less than 1 part in 10°. The complex eigenfunction is calculated by
appealing to the inverse iteration method (Wilkinson, 1965). The first-order correc-
tion for the eigenfrequency was found to be less than one percent, while the
correction to the growth rate was at most 5%. We have taken 121 mesh points
inside the convection zone and 30 points covering the atmospheric region. The
computations were performed on DEC system 1077 with single precision arithmetic.

3. Numerical Results

We have solved the system of equations governing viscous non-adiabatic non-radial
oscillations to obtain the complex eigenvalues for a specified value of the horizontal
harmonic number /. The horizontal wavelength of the eigenmode is then given by

A __212__12ﬂ1z@
Tk, VIU+1)

where k;, is the horizontal wave number and R the solar radius. We get a series
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of complex eigenvalues w for each value of /. The p-modes are characterized by
the number of velocity nodes in the radial direction and by the order /, and we
refer to the lowest eigenfrequency, the fundamental mode, as po-mode, and the
successive harmonics pi, p,, ps, . . . .

We shall be concerned with the study of non-radial solar oscillations with periods
predominantly in the neighbourhood of 300s. The bulk of these oscillations are
not expected to penetrate deeper regions of the Sun and at any rate the amplitudes
of the eigenfunctions decay sharply below the depth of a few tens of thousand
kilometers. Consequently the inner boundary conditions do not have an appreciable
effect on the stability characteristics of acoustic modes. However, there is a consider-
able penetration of the p-modes into the overlying layers and the eigenfunctions
in fact approach their peak values in the solar atmosphere. The outer boundary
conditions have, as a result, a significant influence on the growth rates of acoustic
modes.

The main objective of the present investigation is to compare the characteristics
of the most unstable modes excited in a solar envelope model with the observed
features of not only granulation and supergranulation, but also those associated
with the five-minute oscillations. Since the turbulent Prandtl number, P, is treated
as a free parameter in our work, we first examine the stability of convective modes
for the three envelope models, (A), (B), and (C) with a view to fix the values of
P, Table I shows the approximate e-folding times and preferred horizontal
wavelengths corresponding to the most rapidly growing fundamental mode and the
first harmonic for the three models. The turbulent Prandtl number is so chosen in
each case as to reproduce the most reasonable agreement with the granular and
supergranular motions. Thus, for model (A), the choice of P, = 3 yields the e-folding
time and the preferred horizontal wavelength of the most unstable fundamental
mode (C,) and the first harmonic (C,) which are in reasonable accord respectively
with the life-times and length-scales corresponding to granulation and supergranula-

TABLE 1

Approximate e-folding times and preferred horizontal wavelengths corresponding to the most unstable
fundamental mode (C;) and the first harmonic (C,) for the solar envelope models (A), (B), and (C).
The values of physical variable for each model refers to the base of convection zone

Model Mixing length Physical variables Fundamental mode (C,;) First harmonic (C,)
parameters
a B L Depth  pyase Toase P, e-folding Preferred e-folding Preferred
(km) (glem™)} (10° K) time horizontal _time horizontal
(min) wavelength (hr) wavelength
(km) (km)
(A) i 3 z+459km 19600 0.250 2.18 1 9.6 2400 32.0 11000
Q#1
(B) i 3 z+459km 19200 0228 218 3} 8.6 2450 15.0 9000
Q =1 (Spruit)
©) i 3 2.5H, 19800 0272 2.185 2 11.9 3050 34.8 11 400
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tion. Likewise, for models (B) and (C) the values of P, =2 and 3 respectively, produce
the desired results.

We employ these values of the turbulent Prandtl numbers to investigate the
stability of non-radial acoustic modes in the three solar envelope models. First, let
us examine the standard case considered by Ando and Osaki (1975) and by Ulrich
and Rhodes (1977), and neglect the interaction between convection and oscillation,
that is, we take K;o =0, w0 =0, and consider only the effect due to the radiative
conductivity. The resulting system of equations is then equivalent to that given by
Ando and Osaki. We use model (A) for the basic state and adopt the set of boundary
conditions (I) without the requirement of the vanishing of the viscous stress tensor.
The results are summarized in Table II showing (i) harmonic number /, (ii) horizontal
wave number k, Mm™ '), (iii) the mode number, (iv) the period of oscillation,
P=2m/w; (s), (v) the frequency of oscillation, w; (s™"), and (vi) the stability
coefficient, n = wr/wr. The numerical results are in satisfactory agreement with
those obtained by Ando and Osaki (1975) and also with those by Ulrich and Rhodes
(1977). The growth rates are found to be larger than those obtained by Ando and
Osaki, but not as large as indicated by Ulrich and Rhodes. The difference of some
few percent in the growth rates may be attributed to the choice of the solar envelope
model employed to describe the equilibrium state. In fact even our equations are
slightly different, since Ando and Osaki have neglected the Lagrangian perturbation
in convective flux, while we neglect the Eulerian perturbation. Our results repro-
duce the pattern of instability showing a long mountain-range like structure. For
each harmonic number /, there exists a maximum value of the stability coefficient
n with its associated frequency, (w;)max. The locus of the (w;)max runs horizontally
along a line with a period around 300 s upto / =200 turning upwards for large /.

Next, we consider thermal coupling between convection and oscillation by includ-
ing the effects of turbulent heat conductivity, but neglect the mechanical effects
arising from the turbulent viscosity, that is we take Ko # 0, but set u,0=0 (P,=0).
In this case the system of equations is of the fourth order and we adopt the set of
boundary conditions (I) without the condition of vanishing of the viscous stress
tensor. The n values for this case are shown in the last column of Table II. The
period of oscillation is practically unaffected and hence is not shown separately.

The remarkable feature is that the strength of the instability is pronouncedly
increased; all the modes are seen to be overstabilized. The growth rate for [ =200,
for most unstable acoustic mode, P, for example, is larger by nearly a factor of 4
over the corresponding growth rate without turbulent conductivity. This clearly
demonstrates the influence of turbulent heat conductivity, K, in rendering the
acoustic modes unstable. We shall return to the discussion of the driving mechanism
due to the turbulent conduction later in the next section.

Let us now consider the effect of turbulent viscosity on the stability of acoustic
modes. Table III summarizes the numerical results for the horizontal harmonic
number / ranging from 100 to 1000. It is at once clear, from a comparison of the
stability coefficient shown in Tables II and III, that the turbulent viscosity has a

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System



.77..303A

1982SoPh.

314 H. M. ANTIA ET AL.

TABLE II

Stability coefficients and eigenfrequencies of nonradial acoustic modes for the solar

envelope model (A) for the inviscid case. The values of i in column (a) are obtained by

neglecting the turbulent heat conductivity (K;) while those in column (b) are obtained by
taking into account K,

l k, Mm™") Mode  Period(s) w;(s™}) n(a) n(b)
100  0.14 PO 985 6.377(-3) —2.039(=7) 2.258(=6)
P1 669 9.388 (—3) —7.033(—6)  5.719 (-5)
P2 541 1.162(-2) —8.149(=6)  2.959 (—4)
P3 461 1.362(—=2)  2.453(=5) 7.147(-4)
P4 408 1.542(-2)  1.131(-4) 1.326(-3)
P5 366 1.714(=2)  2.267(-4) 1.776 (=3)
P6 335 1.876 (-2)  3.616(—4) 2.161(=3)
P7 309 2.040 (=2)  4.621(-4) 1.963 (=3)
P8 287 2.190 (-2)  5.194(—4) 2.242(-3)
P9 268 2.343(-2)  5.478(-4) 2.303(-3)
P10 252 2.495(=2)  5.052(-4) 2.111(-3)
P11 237 2.647(-2)  3.638(—4) 1.711(-3)
P12 226 2.785(-2)  1.483(-4) 1.362(-3)
P13 215 2.929 (-2) -1.434(-4) 1.023(-3)
200 0.29 PO 702 8954 (~3) —5.042(-7) 6.334(—6)
P1 507 1.239(-2) —4.831(—6) - 7.847 (-4)
P2 413 1.521(-2)  1.171(—4) 1.632(=3)
P3 356 1.766 (-2)  3.632(—4) 2.719(-3)
P4 313 2.010(-2)  4.836(—4) 3.447 (-3)
P5 282 2.232(=2) 7.413(-4) 3.347(=3)
P6 257 2446 (-2) 7.472(-4) 3.144(-3)
P7 237 2.652(-2)  5.373(—4) 2.535(-3)
P8 220 2.885(-2) 1.012(-4) 1.773(-3)
P9 206 3.052(-2) -5.591(-4) 1.019(-3)
400  0.57 PO 499 1.260(=2) —3.005(=7) 2.294 (-5)
P1 385 1.632(=2)  1.807(—4) 2.243(-3)
P2 317 1.985(-2)  7.703(—4)  4.699 (—3)
P3 270 2.330(-2) 1.157(=3) 5.282(-3)
P4 237 2,656 (=2)  9.424(-4) 4.281(-3)
P5 213 2.951(-2)  6.843(—6) 2.136(-3)
600  0.86 PO 408 1.541(=2)  2.194(—6)  4.484 (-5)
P1 322 1.949 (=2)  5.787(—4) 4.176 (-3)
P2 266 2.358 (=2)  1.300(=3)  6.095(-3)
P3 228 2756 (=2)  1.075(-3) 5.160(-3)
P4 201 3.133(=2) —7.007(—4) 2.295(-3)
800 1.14 PO 354 1.777(-2)  6.618(—6)  6.281(=5)
P1 281 2.237(=2)  1.053(=3) 5.691(=3)
P2 233 2,697 (=2)  1.406(=3)  6.206 (—3)
P3 201 3.130(=2) -3.471(-4) 3.204(-3)
1000  1.43 PO 316 1.985(-2)  1.171(-5) 7.329(-5)
P1 250 2.510(-2) 1.462(-3) 6.602(-3)
P2 208 3.024 (-2)  3.192(-4) 5.011(-3)
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TABLE II1

Stability coefficients and eigenfrequencies of nonradial acoustic modes for solar
envelope model (A) with the turbulent heat conductivity and turbulent viscosity

included. Here the turbulent Prandtl number P, = %

I k, Mm™)

Mode

wr (S_l)

Period (s) n

100 0.14 PO 1003 6.262 (—3) —4.497 (-5)
P1 677 9.278 (—3) —1.460 (-5)

P2 546 1.151(-2) 8.478 (-5)

P3 464 1.353 (-2) 3.208 (—4)

P4 411 1.531 (-2) 5.281 (—4)

P5 367 1.711 (-2) 7.736 (—4)

P6 335 1.873 (-2) 9.537 (—4)

P7 310 2.024 (-2) 1.009 (—3)

P8 287 2.186 (—2) 9.891 (—4)

P9 269 2.340 (—4) 9.873 (—4)

P10 252 2.494 (-2) 9.341 (—4)

P11 239 2.633 (-2) 5.663 (—4)

P12 226 2.779 (-2) 3.170(-5)

P13 215 2.921 (-2) —1.145 (-5)

200 0.29 PO 714 8.795 (-3) -1.711 (-4)
P1 513 1.224 (-2) —5.666 (—5)

P2 416 1.509 (-2) 4.330(—4)

P3 357 1.758 (-2) 1.029 (-3)

P4 315 1.996 (-2) 1.499 (-3)

P5 281 2.234 (-2) 1.465 (-3)

P6 257 2.445 (-2) 1.356 (—3)

P7 237 2.646 (-2) 8.171 (—4)

P8 221 2.848 (-2) 1.648 (—4)

P9 206 3.049 (-2) —6.108 (—4)

400 0.57 PO 507 1.239 (-2) -1.259 (-3)
P1 389 1.617 (-2) —5.440 (—4)

P2 318 1.977 (-2) 1.174 (-3)

P3 270 2.324 (-2) 1.781 (-3)

P4 237 2.656 (—2) 1.417 (-3)

P5 213 2.946 (-2) —1.084 (-5)

600 0.86 PO 414 1.518 (—2) —3.886 (—3)
P1 325 1.936 (—2) —1.034 (-3)

P2 267 2.351(=2) 1.246 (—3)

P3 228 2.758 (—2) 1.189 (-3)

P4 201 3.129 (-2) —1.099 (-3)

800 1.14 PO 358 1.755 (-2) —7.749 (-3)
P1 282 2.228 (-2) —1.545 (-3)

P2 233 2.696 (—2) 8.593 (—4)

P3 201 3.126 (-2) —-1.126 (—3)

1000 1.43 PO 320 1.965 (-2) —1.247 (-2)
P1 251 2.507 (-2) —1.760 (-3)

P2 208 3.022 (-2) —4.652 (—5)

315
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damping effect on the acoustic modes which are manifestly stabilized in relation
to the case when the viscosity was absent (P, = 0). Thus, for values of the harmonic
number / upto 400, the stability coefficients are lowered by a factor of nearly 3,
and the damping effect due to viscosity is even more pronounced for higher values
of / and for higher harmonics.

We have also investigated the overstability of acoustic modes of order / ranging
from 100 to 1000 for solar envelope models (B) and (C). For lower values of [
degree of instability corresponding to the most unstable mode is invariably stronger
in model (B) (with P,=3) over those obtained in model (A) (with P, =3), but for
larger values of / the degree of instability is markedly weaker. In the case of
envelope model (C) with the higher Prandtl number required to reproduce the
characteristic granular features, all the acoustic modes are found to be stabilized.
The acoustic modes are highly sensitive to the value of the turbulent Prandtl number
and for a choice of P, =1, in fact, the acoustic modes in all the three models turn
out to be stable. The stabilization of the acoustic modes by the effects of turbulent
viscosity has been noted earlier by Goldreich and Keeley (1977). We attribute the
stability of all the radial p-modes in their work to the uncertainties in the estimate
of turbulent damping; a large value of the turbulent Prandtl number (P,=1) is
inherent in their investigation. In all the three models that we considered the
fundamental mode is always stable which is consistent with its observed low power.
The higher order acoustic modes are presumably stabilized on account of the strong
atmospheric radiative dissipation. However, it is interesting to note that the funda-
mental mode is unstable in the inviscid case (cf. Table II), while it is invariably
damped in the presence of viscosity. This could be attributed to the larger amplitudes
of the velocity eigenfunctions of the po-mode in the deeper regions of the convective
zone compared to those associated with the higher harmonics. The viscous dissipa-
tion is consequently very effective in damping the po-mode which therefore is liable
to be stabilized when the viscosity is included.

With a view to test the sensitivity of the results to the form of the coefficient of
turbulent viscosity adopted in the calculation (v, = PaWL(P/t.)"), we computed the
eigenvalues for the harmonic number / =200 with three values of n, namely n =0,
1, and 2. The results are set out in Table IV, from which it is clearly seen that all
the acoustic modes are stable for n =0 case. This choice is a gross overestimate of
the viscosity coeflicient because, with the period of oscillation small compared to
the turnover time, the turbulent eddies will cover a shorter distance than the
mixing-length within a cycle of oscillation and this will decrease the efficiency of
turbulent viscosity. The acoustic modes become overstable as the exponent n is
increased to 1 and a comparison between n =1 and n =2 reveals that the growth
rates are lower approximately by a factor of 2 in the former case. This results from
the effect of the turbulent viscosity which is lowered with increasing values of the
exponent #n in the expression of v,.

Let us examine the influence of the two sets of boundary conditions: (I) Free
foundary conditions, (II) Ando and Osaki’s mechanical and thermal conditions.
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TABLE IV

Sensitivity of growth rates to the exponent n in the expression v,=
P.aWL(P/t,)" of the viscosity coefficient with [=200 for the solar envelope

model (A)
Mode Period (s) n=wg/wy
n=0 n=1 n=2

PO 714 —-5.23(-3) —5.61 (—4) -1.71 (—4)
P1 513 -5.16 (-3) —6.49 (—4) —5.67 (-95)
P2 416 —5.00 (-3) —3.35(—4) 4.33 (—4)
P3 357 —4.41 (-3) 1.79 (—4) 1.03 (-3)
P4 315 —4.39 (-3) 6.00 (—4) 1.50 (—3)
P5 281 -3.73 (-3) 6.27 (—4) 1.47 (-3)
P6 257 —4.34 (-3) 5.55(—4) 1.36 (—3)
P7 237 —5.07 (-3) 9.78 (-5) 8.17 (—4)
P8 221 —5.42 (-3) —4.79 (—4) 1.65 (—4)
P9 206 —6.46 (—3) -1.22 (-3) —6.11 (—4)

The results for the two cases are summarized in Table V for the p-modes of degree
[=200, with P,=3% and the basic equilibrium model (A). The frequencies are
practically the same and the stability coefficients are not sensibly different in the
two cases except for higher harmonics (beyond ps). It is also found that the results
are not sensitive to the inner boundary conditions where we applied both the rigid
as well as the free boundary conditions to get the same growth rates. This is the
consequence of the amplitudes of the eigen-functions being small in the deeper

TABLE V

The stability coefficients of non-radial acoustic modes for the
solar envelope model (A) for the horizontal harmonic number
1=200 and P,=3 with (I) free boundary conditions, (II)
mechanical and thermal conditions adopted by Ando and Osaki

Mode Period (s) n=wgr/w;r
I II

PO 714 -1.71 (—4) —1.45 (—4)
P1 513 —5.67 (—5) —6.73 (—5)
P2 416 4.33 (—4) 4.17 (—4)
P3 357 1.03 (-3) 9.73 (—4)
P4 315 1.50 (-3) 1.49 (-3)
P5 281 1.47 (-3) 1.63 (—3)
P6 257 1.36 (-3) 1.43 (-3)
P7 237 8.17 (-4) 1.11 (-3)
P8 221 1.65(—4) 5.31 (—4)
P9 206 -6.11 (—4) —4.83 (-9)
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Fig. 1. The frequencies w; (s™*) are plotted against the horizontal wave number, kj (Mm™?) for the

first six p-modes calculated with the solar envelope model (A). The eigenfrequencies are labelled by

the nodal number n. The dashed lines outline the averaged values of the power ridges taken from
Deubner et al. (1979).

regions of the convection zone and as a result the growth rates are not sensibly
altered.

4. Comparison with Observations and Discussion

We have displayed in Figure 1 the eigenfrequency w; (s~') of various modes as a
function of the horizontal wave number k;, (Mm_l). The eigenfrequencies are
labelled by p,, where the nodal number in the radial direction, n, refers to the
successive harmonics starting with the fundamental mode po. The power of the
five-minute oscillations is concentrated in several distinct ridges in the (k;, — w)-plot.
The averaged values of the ridges taken from the recent work of Deubner et al.
(1979) is shown by the dashed lines. The observed ridges are seen to be in
satisfactory agreement with the positions of theoretical nonradial p-modes in the
solar envelope model. The overall accordance between the general pattern of
observed power ridges and the theoretical power contours is reasonably clear. The
theoretical eigenfrequencies of the fundamental mode are in striking agreement
with the observed po-ridge, but there are noticeable departures between theoreti-
cally computed frequencies and observed power spectrum for higher harmonics.
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The discrepancies may be attributed to the choice of the solar envelope model and
also to the effects arising from the neglect of turbulent pressure and viscous
dissipation. The latter would certainly become effective for higher values of / and
for higher harmonics. The frequencies of nonradial oscillations calculated in our
work, which includes the damping effects due to turbulent viscosity do indeed come
out to be lower than the frequencies obtained by Ando and Osaki (1975).
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Fig. 2. The diagnostic (k; —w)-diagram showing a contour map of equal stability coefficients n =
wgr/wr ; the stable modes are indicated by crosses and unstable by open circles. The dashed rectangle
indicates the region of observed power (Deubner, 1975).

In Figure 2 we have the diagnostic diagram showing a contour map of equal
stability coefficients 7 = wr/w;, where the stable modes are indicated by crosses
and unstable ones by open circles. The region of observed power taken from the
work of Deubner (1975) is indicated by a dashed rectangle in the plot. The numbers
with parentheses indicating the power of ten denote the values of the stability
coefficients. For a given value of /, the growth rate increases with the order of the
modes, attains a maximum for a value of the frequency between 0.02 and 0.025
(s™") and then decreases. This is exhibited by the behaviour of the contour maps
of equal n where the locus of (w)max runs horizontally along a line with a period
centred around 300 s upto / =400\(kh =0.5 Mm‘l)\and then it moves upwards for
higher values of .. We have graphed in the companion Figure 3 the plot of the
growth rates wr (s~') against the frequency w; (s ') for values of the harmonic
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Fig. 3. The growth rate wg (s™) is graphed as a function of the frequency w; (s™*) for values of / = 100,
200, 400, and 600.

number /=100, 200, 400, and 600. There is a pronounced preferred maximum
for wgr with respect to / around the harmonic number / = 400. The overriding value
of the maximum stability coefficient, 7y = 1.8 %1072 for (wr)max=0.023s7! is
situated almost near the central region of the observed rectangle. Clearly its exact
location will be influenced by our assumption concerning the form of the viscosity
coefficient. The influence of turbulent viscosity is to produce an overall preferred
maximum around /=400 because of the increased viscous damping for higher
values of the horizontal harmonic number. This feature is absent in the work of
Ando and Osaki where because of the neglect of turbulent viscosity, the growth
rate of the most unstable mode keeps increasing with /.

In Figure 4 are graphed the cumulative contributions to the normalized kinetic
energy of oscillation E\;, for po, p3, and ps-modes of degree / =200. The bumps
in the plots of p; and ps-modes result from the nodes in the velocity eigenfunctions,
v, which are shown in Figure 5. The motions associated with the fundamental
mode are spread over a large portion of the outer convection zone penetrating
well below the hydrogen ionization zone upto a depth of 30 000 km while those
corresponding to the higher order p; and ps-modes are largely concentrated in the
surface regions, but the energy of oscillation of these modes is provided by much
wider region than for the po-mode. In order to understand the mechanisms respon-
sible for destabilization and damping of the solar p-mode oscillations, we display
in Figure 6 the normalized rate of change of thermal energy, Eu, and the rate of
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Fig. 4. The cumulative contribution from the bottom of the convection zone to the normalized
oscillation energy for py, ps, and ps-modes, is shown against the logarithm of the pressure. The bumps
result from the nodes of velocity eigenfunctions.
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Fig. 5. The radial velocity eigenfunction, v, is plotted against the logarithm of the pressure for pg, ps,
and pg-modes. The velocity is normalized to have a value unity at the outer boundary.
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Fig. 6. The normalized rate of change of thermal energy E,;, and the rate of viscous dissipation E.;
are displayed as a function of log P for pg, p3, and ps-modes.

viscous dissipation, E. as a function of log P for the po, ps, and ps-modes of
degree [ =200. The expressions for Ey, and E.; are derived in the Appendix.
The slope of these curves determine the contribution to driving or damping of
oscillations at a given depth. Clearly the driving of the nonradial oscillations occurs
mainly in the sub-photospheric layers where the temperature gradient is strongly
superadiabatic. For the case of [ =200, the destabilization region extends upto a
depth of ~650km (P =1.5%10°dyn cm ) for the p;-mode, and upto =500 km
(P=10° dyn cm>) for the ps-mode. The viscous dissipation is spread throughout,
although it is more pronounced in the upper portion of the convection zone where
the oscillatory velocity field tends to have a large value.

It is clear from the foregoing considerations that the acoustic modes trapped in
the solar convection zone are destabilized mainly in the strongly superadiabatic
region of the sub-photospheric layers. Two possible mechanisms which have been
discussed for the excitation of p-modes in the solar envelope are x-mechanism and
Cowling-Spiegel mechanism operating in the hydrogen ionization zone. It has been
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argued by Ando and Osaki (1975) that the «-mechanism is mainly responsible in
driving the five-minute oscillations, although Graff (1976) has pointed out that the
Cowling—Spiegel mechanism makes a non-negligible contribution to the generation
of acoustic oscillations. The point of view taken by Antia et al. (1977) is that a
simultaneous action of the x -mechansim and the Cowling-Spiegel mechanism works
to destabilize the solar oscillations, although it was recognized that the radiative
Cowling-Spiegel mechanism is a weaker process compared to the x-mechanism.
Unno (1976) was the first to stress the importance of turbulent conduction as an
effective mechanism to overstabilize the acoustic modes in the solar envelope.
Both the radiative and convective Cowling mechanisms arise on account of the
strong superadiabaticity prevailing in the sub-surface regions. But the efficiency
of the convective Cowling mechanism turns out to be larger by a factor
(F€/F®)(V/(V —V,4)) compared to the radiative Cowling—Spiegel mechanism. We
have incorporated the turbulent conduction (convective Cowling) mechanism
through the modulation of the convective flux in the energy equation and have of
course included the x-mechanism and the radiative Cowling-Spiegel mechanism
to find that the dominant contribution to the destabilization arises from the turbulent
conduction.

This is borne out by our numerical computations. In an attempt to isolate the
mechanism responsbile for destabilizing the five-minute oscillations we have shown
in Table VI(a, b) the results obtained for nonviscous and viscous layers for the
most unstable modes of degree / =200 for two cases: (i) with only the terms arising
from the x-mechanism are retained, while those resulting from the modulation of
convective flux are suppressed, (ii) with the x-mechanism and the full effects of

TABLE VI (a)

The growth rates of non-radial non-viscous accoustic modes
for the solar envelope model (A) corresponding to /=200
when (a) only the x-mechanism is present and the convective
Cowling mechanism is suppressed, (b) when both the «-
mechanism and the convective Cowling mechanism operate

Mode Period (s) mn=wg/w;
(a) (b)

PO 702 -5.04 (=7) 6.33 (—6)
P1 507 —4.83 (—6) 7.85(—4)
P2 413 1.17 (—4) 1.63 (-3)
P3 356 3.63 (—4) 2.72 (-3)
P4 313 4.84 (—4) 3.45(-3)
P5 282 7.41(-4) 3.35(-5)
P6 257 7.47 (—4) 3.14 (-3)
P7 237 5.37 (—4) 2.53(-3)
P8 220 1.01 (—4) 1.77 (-3)
P9 206 —5.59 (—4) 1.02 (-3)
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TABLE VI (b)

The growth rates of non-radial viscous acoustic modes for the

solar envelope model (A) for /=200, with P,=3 when (a) only

the k-mechanism operates and the convective Cowling

mechanism is suppressed, (b) both k-mechanism and the con-
vective Cowling mechanism operate

Mode Period (s) n=wr/wr
(a) (b)

PO 714 —3.25(—4) -1.71 (-4)
P1 513 —4.83 (—4) —5.67 (-5)
P2 416 -1.03 (-3) 4.33 (—4)
P3 357 ~1.11(-3) 1.03 (-3)
P4 315 —1.34 (-3) 1.50 (-3)
P5 281 —1.48 (-3) 1.47 (-3)
P6 257 —1.66 (-3) 1.36 (—3)
P7 237 —-1.72 (-3) 8.17 (—-4)
P8 221 -1.78 (-3) 1.65(—4)
P9 206 —2.54 (-3) —6.11 (—4)

radiative and turbulent diffusion are included. An inspection of the numerical
results immediately reveals that the acoustic modes which are stable for the viscous
case when only the k-mechanism is present, are significantly destabilized when the
turbulent diffusion (Cowling) mechanism is included. Likewise, for the non-viscous
case the degree of instability of acoustic modes is stronger by a factor of nearly
four when the full effects of radiative and turbulent diffusion mechanism are present
over the case when only the «-mechanism operates. We therefore conclude that
the five-minute oscillations are driven by a combination of the x-mechanism and
the radiative and turbulent diffusion mechanism the dominant contribution, as
measured by the degree of instability, arising from the convective Cowling
mechanism.

5. Conclusions

We have investigated the instability of acoustic modes trapped in the solar convec-
tion zone by solving the fluid mechanical equations applicable to non-radial,
non-adiabatic viscous oscillations in the framework of the linearized theory. The
thermodynamic coupling between convection and oscillation is taken into account
through the inclusion of the convective flux in the energy equation, while the
mechanical effects of turbulence are estimated by introducing an approximate form
of turbulent viscosity calculated with the mixing-length approximation. This is
admittedly a somewhat simplified prescription for the time-dependent compressible
convection. Only a fully non-linear theory can provide a proper framework for this
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complex problem, while we have approximated the non-linear effects of the tur-
bulent convection through the eddy diffusivities.

We have treated the turbulent Prandtl number as a free parameter in our work
and have attempted to demonstrate that, for the same choice of P, it is possible
to obtain in a solar envelope model the most unstable convective modes correspond-
ing to granulation and supergranulation and the acoustic modes corresponding to
the five-minute oscillations. Considering the uncertainties in the mixing-length
formalism, our numerical results are in reasonable accord with the observed scales
of motion. It may be noted that the typical scale of supergranulation (=30 000 km)
is substantially larger than the values given in Table I. These seem to fit better to
what has recently been named ‘mesogranulation’ (cf. November et al., 1981).
However, it should be pointed out that the growth rates of C,-modes are fairly
sensitive to various parameters and hence no definite conclusion can be drawn. In
this investigation we have neglected the effects of the turbulent pressure; also the
viscous dissipation, which is a second-order effect, is absent in the energy equation.
This will almost certainly affect the growth rates and the frequencies for large
values of the harmonic number

We find several acoustic modes trapped in the solar convection zone to be
overstable and the most rapidly growing modes occupy a region centred pre-
dominantly around a period of 300 s with a wide range of horizontal length scales.
The turbulent viscosity has a damping effect on the stability characteristics of the
acoustic modes which are sensitively affected by the form of the coefficient of
turbulent viscosity.

The essential conclusion of our work is that the turbulent diffusion or convective
Cowling mechanism is the physical process that makes a dominant contribution to
the generation of self-excited acoustic waves in the solar envelope. This mechanism
must be considered in any study of pulsating stars which have convection zones
with strongly superadiabatic regions. It is indeed desirable to explore the role of
this instability in the context of pulsating stars and especially examine the effect
of turbulent viscosity on the red edge of the instability strip.

Appendix
Following Eckart (1960) and Unno et al. (1979) we obtain the following equation:

&+ Pi—c*p, ]
P, TOpOCporl(Vad_V) ’

d
- (PEw)+V Fy=vV @~V Fl[Vad

where

2 2 2
szl[v2+(P1) L8 P, P1> ];

2 poc/  N2\I''Py po
1
Fw = Pyv, I’1=(a nP) ;
alrlp ad
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I\p
c?=—2"is the square of the sound speed;
Po
1 dl s
N?>=-— dinpo_ 1 _n_}_’g) is the square of Brunt-Viisila frequency;
dr Fl dr

P = u(Vv+vV)—3uV - vI is the viscous stress tensor,

I being the unit second rank tensor.

Here, Ew and Fyw can be treated as the energy density and the energy flux
respectively. Taking the time average over a period of oscillation and integrating
over the volume of a sphere of radius r we get

. 9 . .
Eo(r, t)= o Eose(r, 1) = Ew(r, t) + Eyis(r, t) + Wy(r, t)+ W, (1, t) .

Here
Eosc(r, t) =<J. EW dV> ’
\%
. P; P1_Czp1
E r,t=<I—V-F[Va —+ ]dV>,
w7, ) ! dPo TOPOCPOFI(Vad_V)
\%
Evis(rs t)=<I _¢dV> ’
\'4
W, (r, t)=<I—FW-dS>, W, (r, t)=<J'9’-vdS>,
s s
where

D = 3u:0(VV+VV) - (Vv +vV) =30V - v)?

is the rate of viscous dissipation per unit volume.
After using the orthogonality and recurrence relations satisfied by the spherical
harmonics, we get the following expressions for the various quantities:

r

2

Eactr, 0=+ [ Parpo [lo 41001 o+ | 2]+ £ P21
osc\lb I)=— | r ar ’ = =2 ,
4] ol TNPITP, T o

0
: 1 Pl P1—czp1
Euw(r, t)=-R J‘ >dr(-V - F¥ [Va —+ ]’
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0
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. 21 dyoN l(I+1) |
E,s(r,t)=—Re J- fior” dr[— 1r—<£) +(——) Un
N 31 dr\r r
0
1 v, dvh2
+= I+ )| —+—| —
2 ( ) r dr
_1(1+1)<LI |2+lg| ST gdu;"v)]
r \2r M T2 T T3 ey
7'2
Wp(r, f)=-— ERC (PTU,) .
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