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ABSTRACT

We derive the spatial statistical distribution function for quasi-equilibrium gravitational clustering in an
expanding universe from more general assumptions than before, without needing an earlier Ansatz. Then we
show how this statistical distribution is related to the kinetic development of the BBGKY hierarchy and how
to obtain an analytic description for the time evolution of an initial Poisson distribution. From general prin-
ciples, we also derive an analytic velocity distribution function for quasi-equilibrium gravitational clustering. It
has no free parameters. Comparison with N-body experiments shows excellent agreement.

Subject headings: cosmology — galaxies: clustering — galaxies: formation — gravitation — hydrodynamics

I. INTRODUCTION AND BASIC RESULTS

In seeking to understand the distribution of galaxies, it seems natural to explore the role of gravitation. As a cause of large-scale
clustering, gravity is ubiquitous, efficient, and dissipative: ubiquitous in its dominance of all known intergalactic forces, efficient in
changing random chaos into clusters during just one or two Hubble expansion times, and dissipative in destroying the memory of
nongravitational initial conditions. These properties combine to predict unique features of gravitational clustering which may be
compared with observations.

Completely objective descriptions of observations which are related to the dynamics of gravitational clustering are best suited for
this comparison. Descriptions which contain more information are likely to be more useful. Correlation functions have been the
most popular description. Many studies of the two-point correlation function (summarized, for example, in Peebles 1980; Saslaw
1985a) have shown how it can be derived theoretically from the gravitational BBGKY hierarchy in the linear regime and from
thermodynamic arguments and N-body simulations in the nonlinear regime. It can be measured objectively in a system whose
conditional density is homogeneous (Coleman, Pietronero, and Sanders 1988). Its information content, however, is limited and
describes the galaxy distribution inadequately. If all the higher order correlation functions were known, they would provide a
complete description of the distribution. Even at the level of the three-point correlation function, however, they become very difficult
to measure accurately and cannot be calculated dynamically from first principles, even in the linear regime, without powerful
constraining assumptions. Other recent objective measures of clustering, such as its fractal nature (e.g., Pietronero 1987) or its
topology (e.g., Gott et al. 1989), contain more information with different emphases than the two-point correlation function. These
promising new descriptions are still insufficiently related to the underlying dynamics, although N-body simulations have provided
very useful experimental examples.

In this paper we examine an objective description of clustering, which contains much more information than the low-order
correlation functions, which can be derived theoretically from gravitational dynamics, and which can be measured easily: the
distribution function. Historically, this is the oldest measure of galaxy clustering, having been used by Herschel (1785), who
speculated on its gravitational origin long before anyone understood the nature of the nebulae. The full distribution function f(N, v)
is just the probability that a region of a given volume, V, or of a given area on the sky contains N galaxies with peculiar velocities
(relative to the Hubble expansion) between v and v + dv. This does not contain complete information about the individual positions
and velocities of each galaxy; it is a statistical description at the same level as the Maxwell-Boltzmann distribution for a perfect gas.
We are interested here in the gravitational analogue of the Maxwell-Boltzmann distribution for a system of interacting galaxies in
the expanding universe.

Most previous work on f(N, v) has been concerned with the spatial distribution function of galaxies, f(N) = [ f(N, v)dv. Under
certain assumptions, to be discussed shortly, the theory of gravitational clustering predicted (Saslaw and Hamilton 1984) that

(1-b)
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! Operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation.
2 On leave of absence from TIFR, Bombay.
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where
N=nV 2
is the expected number of galaxies in a volume V for average number density n, and
W 2rGm®n [
b=—-—= T,rrd
P L &on, T, Mrdr ©)

is the ratio of gravitational correlation energy to the kinetic energy of peculiar velocities. Here ¢ is the two-point correlation
function, which may generally contain a time-dependent scale length, and

K=3NT =%} my} 4

is the kinetic energy of peculiar motions of the N galaxies in the volume V. Subsequently, this distribution was found to give a good
description of galaxies in the Zwicky catalog (where the value of b = 0.70 + 0.05; Crane and Saslaw 1986), of the galaxies in the Cf4
slice (where the value of b is also 0.7; Crane and Saslaw 1988), of the Abell clusters (for which b = 0.3 + 0.1; Coleman and Saslaw
1990), and of N-body simulations for a range of initial conditions, masses, and values of Q, (Saslaw and Hamilton 1984; Saslaw
1985b; Itoh et al. 1988, 1990). When gravity is ineffective, b = 0 and f(N) reduces to a Poisson distribution which has the
Maxwell-Boltzmann form in the limit of large N.

We now extend this approach by: (a) strengthening the thermodynamic derivation of equation (1), showing that a major
assumption used previously is not needed but follows from more fundamental properties; (b) deriving the early kinetic nonequilib-
rium evolution of the gravitational distribution, showing how it makes a transition from a Poisson distribution with b =0 (a
Maxwell-Boltzmann “ gas ) to a distribution of the form of equation (1) with nonzero b; and (c) obtaining the velocity distribution
f(v) consistent with equation (1), comparing it with N-body simulations and with properties of the gravitational Fokker-Planck
equation. These are the basic results of § II-IV. To help put our new results in perspective, we next discuss the assumptions which
led to the derivation of equation (1).

Assumptions used to derive equation (1) describe either general properties of the distribution or constitutive properties of the
system. The general assumptions, which could be true of many distributions, are statistical homogeneity and scale invariance. The
constitutive assumptions, which apply specifically to the gravitational interaction and cosmological conditions, are the pairwise
interaction of galaxies as mass points, the quasi-equilibrium evolution of the distribution, and the particular form of b(n, T). This
last assumption was originally an independent Ansatz of the theory, based on mathematical simplicity. We now show, in § II, that
the same form of b(n, T) assumed originally can be determined uniquely by more fundamental properties of the theory, thus
removing it as an independent Ansatz. First, we comment on each of these assumptions in turn.

Statistical homogeneity requires that f(N) and f(N, v) measured using any large number of volumes will be independent (within
the noise uncertainty) of which volumes are actually sampled. That is to say, any sufficiently large number of volumes provides a
“fair sample.” These volumes may be drawn from an ensemble of statistically independent (uncorrelated) microscopic realizations of
the macroscopic systems, if available. In the case of our universe, with only one system available to measure, we must assume that
samples can be drawn from statistically independent regions, which are not connected by large-scale structures. These regions may,
however, contain large-scale correlations, provided that every point or galaxy is equivalent with regard to these correlations. In
other words, all the correlation functions depend only on relative positions, not on absolute coordinates. Statistical homogeneity
may exist on some scales, but not on others. It can be a property of an infinite or unbounded gravitating system, but not of a finite
bounded one.

Scale invariance may apply to volumes over which homogeneity exists. On these scales, the value of b is independent of scale:
b(Ar) = b(r) with A, a scalar multiple. Equation (1) was originally derived with the idealized assumption that scale invariance holds
on all scales. Although this will not rigorously apply to a kinetic system in which the correlation length scale increases with time, the
N-body simulations (Itoh et al. 1988) show that scale invariance applies for a wide range of conditions to those scales which have
had time to relax, and equation (1) is adequately satisfied. Scale-free initial conditions relax most rapidly, especially for larger values
of the cosmic density parameter, Q,, but even structured initial conditions are gradually dissipated on increasing scales. These
results do not depend strongly on the masses of the galaxies (Saslaw 1985b; Itoh et al. 1990), since most of the later relaxation arises
from collective interactions.

Pairwise gravitational interaction of galaxies as point masses is a constitutive assumption which helps define the specific
properties of galaxy clustering. It applies if most of the clustering occurs after galaxies have become well-defined dynamical entities
separated by distances much greater than their individual sizes. (A small fraction of colliding or merging galaxies, however, will not
affect these statistics significantly.) The pairwise interaction leads to a specific form of the equation of state (Saslaw and Hamilton
1984) in which the internal energy, U, and pressure, P, are linear functions of b which depend directly on only the two-point
correlation function. Thermodynamic quantities can then be defined in a system, or an ensemble of systems, over scales which are
statistically homogeneous and scale invariant. They can also be generalized for systems where these properties vary slowly over the
entire system (Saslaw 1989).

Quasi-equilibrium evolution may seem, at first sight, to be an unpromising assumption. We know that Newtonian point
gravitating systems have no rigorous equilibrium state since the gravitational force does not saturate. Quasi-equilibrium evolution,
which takes place through a sequence of equilibrium states whose properties change with time, is the next most simple description.
It occurs, in the context of galaxy clustering, essentially because the expansion of the universe implicitly removes the effect of the
mean gravitational field and inhibits the growth of gravitational instabilities. This is a situation where we can turn the lack of an
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exponentially growing Jeans instability (a disadvantage for galaxy formation) to an advantage for obtaining a theoretical descrip-
tion of galaxy clustering. Computer N-body experiments confirm the applicability of the idea of quasi-equilibrium evolution to
galaxy clustering (Itoh et al. 1988), and theoretical arguments (Saslaw 1986; Zhan 1989; Zhan and Dyer 1989) support it further.
The relaxation processes which drive the clustering through these quasi-equilibrium states are quite different from the hard
collisions familiar in the case of a perfect atomic gas. Evolution from a Poisson initial state begins with the large mutual deflections
of near neighbors to form small groups, followed by the collective interactions of these small groups to form larger groups and
clusters. Larger length scales tend to cluster on longer time scales. After a short transition period of one or two Hubble expansion
time scales, f(N) is described by equation (1) with b(t) changing more slowly than the Hubble expansion. Since b(t) [along with the
average number density 7(t), whose change amounts to just a renormalization of f(N)] describes the changing thermodynamic
properties of the system, these properties can evolve consistently in a quasi-equilibrium manner.

Even for some cases of unrelaxed, nonequilibrium gravitational clustering, numerical experiments (Suto, Itoh, and Inagaki 1990)
show that equation (1) can still describe the distribution, provided that b is allowed to vary with scale. This is analogous to ordinary
nonequilibrium thermodynamics in which macroscopic thermodynamic parameters such as temperature, pressure, and density are
allowed to vary with position.

A particular form of b(n, T) must be specified in order to calculate the complete gravitational equation of state which is then
combined with thermodynamic fluctuation theory to derive equation (1). The assumption of scale invariance implies (Saslaw and
Hamilton 1984) that b depends on the density and temperature only in the combination G*m®nT ~3. To obtain a more specific form
of b(nT ~3), Saslaw and Hamilton (1984) assumed the simplest mathematical form which has the expected physical limits of b = 0 for
a perfect gas and b = 1 for a hierarchical system dominated by gravity in virial equilibrium on all scales. This suggested the Ansatz

b < bonT 3
T 14 bynT ™3’

where b, is a positive constant which does not need to be specified to obtain equation (1). Originally, this was regarded as a first
approximation to which additional terms might be added to find a more accurate form of f(N) than equation (1). The rather
extraordinary agreement of equation (1) with the N-body simulations in the applicable relaxation range, and with the observed
galaxy distribution, however, leads to the expectation that it might be based on more fundamenal considerations. We show, in § II,
that this is indeed the case. If initial correlations on very large scales are small and do not have time to grow significantly, f(N)
should have a Poisson form for these very large volumes. Nearly any modification of equation (5) would cause the f(N) distribution
function to diverge from this Poisson limit.

It also becomes possible (§ III) to understand how the form of equation (1) arises kinetically out of an initial Poisson distribution.
From the relation between the low-order correlation functions and the generating function of f(N), we obtain the early evolution of
f(N) for small values of b. The form of equation (1) implies that Q5, the coefficient of the three-point correlation function, has a value
of 2, in reasonable agreement with its observed value.

Nearly all theoretical work so far has been concerned with the spatial gravitational f(N) distribution. In the present work, we go
further to derive the velocity distribution implied by equation (1). For relaxed clustering, it has the form (§ IV)

©®)

2a2ﬂ(1 — b) avZ—1 ,af(1 —b)—abv
f(l))dl) = —m)— [aﬂ(l - b) + abvzj 2 e B(1 ~b)~ab 2lel) 5 (6)
where
B =<v?) )
is the average velocity dispersion, a is an average structure factor which satisfies
1
GmN<;> = av?, (8)
and

oaff = Gm<l> , 9)
r

with {1/r) being the average inverse separation of galaxies. In equation (6), velocities are scaled to natural units in which G, m, and
the radius of the total system are all unity.

Comparison of equation (6) with gravitational N-body experiments shows remarkable agreement. Furthermore, we show that
this velocity distribution satisfies the basic previously known forms of the dynamical friction coefficient and the stochastic force in
the gravitational Fokker-Planck equation. If this velocity distribution is also observed to occur in a fair sample of galaxies, it will
further strengthen the case that quasi-equilibrium gravitational evolution determines the large-scale distribution of the galaxies.

II. THE UNIQUENESS OF THE THERMODYNAMIC DISTRIBUTION FUNCTION

In this Section, we will show that the thermodynamic distribution function of equation (1) follows from the assumption that, on
the largest scales, the distribution has a Poisson form. This assumption, which can replace the Ansatz of equation (5), means that
correlations on the largest scale are feeble or nonexistent. It would occur if initial large-scale correlations were small and did not
have enough time to grow significantly.
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a) Generalized f(N) Distributions

To derive this result, we first need to calculate how f(N) is generalized if we change the relation (5) between b, n, and T. The main
steps in calculating f (N) may be summarized as follows (Saslaw and Hamilton 1984):
1. Substitute equation (5), or a modification of it, into the general expressions for the internal energy

U=3NT(1 —-2b), (10)
and the pressure
NT
P=—(-
V( b), (11)

of a pairwise interacting system.

2. Use the general thermodynamic relation TdS =dU + PdV to calculate the gravitational contribution to the entropy
S(N, T, b).

3. Calculate the chemical potential u(n, b)/T from the general relation

=1n(nT'3/2)—b—fn'1bdn, (12

where
‘P=£TK=N(1—b) (13)
is the grand canonical potential. The grand canonical ensemble is the relevant system for considering fluctuations of number and

energy in different regions of the galaxy distribution.
4. Obtain the distribution function f(N) from general thermodynamic fluctuation theory, which gives

uN/T
SOy = e @5, (14)
with

(e'!')gN) = “:{ne—uﬂ ﬁ %}Neh(l —b}}] e (15)

In the earlier investigation, this procedure was applied by adopting equation (5) to obtain the fundamental distribution of
equation (1). We now explore the consequences of modifying equation (5). To do this most simply, we rewrite it in the more general

form
o(b)
bo T3

Previously ¢(b) = b was used to give equation (1). Now we let ¢(b) be an arbitrary function of b which satisfies the boundary
condition

n(l —b) = (16)

#0)=0. 17

This boundary condition represents the fact that in an ensemble of systems, those with b — 0O represent a perfect gas for which
GT ! - 0. Either the gravitational interactions between objects can be decreased or the thermal energy can be made very large
compared to the interaction energy to obtain the perfect gas limit.

Substituting equation (16) into equation (12) gives

be'(b)
——db
#(b) @ %)

which reduces to equation (38b) of Saslaw and Hamilton (1984) for ¢(b) oc b (after correcting the misprint of +3/2 for —3/2 in the
exponent of T). From equation (15), we now obtain the more general forms of (e¥){") for any nonzero b, T ~3:

%:mmrww*ﬂ—

€20 =1, (19)
(VP = VT2 lim of ¢41#¥b 20)
b—0
¥\ (2) 3 -3 1 |4 b 1 2 § (be’/$)db
e =VTh T lim || +—-+=)e , @21)
b0 L\boT™> "¢~ &

e 2w 2 ¢ 1 b
(5" = VT Hbo T2 lim Mh T 6 96 @y o6 ¢2]

1 b 14 % Vv 5 b0 o
* [W * 98 Tt r-w](z s r-s>}‘* "]| - @)
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We can also derive the generalized integral of the two-point correlation function from the general relation between the density
variance and the grand canonical potential:

(BN = (N = By == )
*WT) |y
Using equations (16) and (18), we obtain d(u/T)/0b |y, = (1 — b)¢'/¢ , and hence
N bg'(b) — ¢(b):|
AN)*) = I:l - - , (24)
AN =T 40
which can be related to the two-point correlation function through the standard expression (e.g., Landau and Lifshiftz 1958)
1 1 [(AN)?
ns f £adVydV, =ﬁ[ U 1]
1 1 b¢' — ¢
= - _— — . 25
N [(1 e b)2¢’] 9

When ¢(b) c b, as in equation (5) the expressions (19)+25) reduce to the earlier results of Saslaw and Hamilton (1984); here we see
how they are altered for general ¢(b).

The uncorrelated state £,, = 0 corresponds to the Poisson distribution for which b = 0. To obtain this limiting state, we suppose
that as b — 0 the right-hand side becomes proportional to b* with « > 0. It is readily seen that, for any value of a, there are no
solutions of the resulting linear differential equation for ¢(b) which satisfy the boundary condition ¢(0) = 0 of equation (17).
Therefore, the only way to obtain a consistent Poisson limit is to require b¢’ — ¢ = 0, which implies that, in this limit, ¢(b) is an
analytic function for small b. Thus we may write

@(b) = bn(b) (26)
withn(b) = 1 + a,; b + a, b*> + --- . We next find a restriction on n(b).

b) A More Fundamental Basis for the Original Ansatz

In addition to the standard Poisson limit b — 0, there is another limit in which the distribution function would be expected to
have a form similar to a Poisson distribution. This occurs for b independent of scale when N is measured for volumes much larger
than any correlation length scale. Statistical fluctuations of N from volume to volume, in this case, are essentially N'/? variations
modified by any correlations which may cross the boundaries of the volumes. To illustrate this, we may examine the tail of f(N)
from equation (1) in the limit

N — oo, N - o0, —— 0. 27
We see that
1 .
SN =1 =b) 1 N¥e™V, (28)

so that the Poisson form, reduced by the factor (1 — b), emerges again.
Any modification of ¢(b) which has the general form of equation (26) leads to the modified f(N) distribution

-N(1-b)

N!

FoodN) = S (be ™) (ne ~* 4 Nk ) 29)
by combining equations (26), (18), and (14), along with (19)22) for N = 0-3. Since lim,_,, # = 1, the e* factors will be changed only
for f(3) and higher f(N). For N < 3, the only modification of f(N) is the ™ exp [— N [ bdInn] factor.

It is worth noting that the fits of equation (1) to the N-body experiments (Itoh et al. 1988) are so close that they put stringent limits
on any particular form of 5(b) one might wish to assume to obtain f;, 4(N). We have found, for example, that the unmodified f; 4o(V)
of equation (1) provides an excellent fit to the experimental distribution.

More generally, in the limit of large N given by equation (27), the modified distribution will diverge away from the Poisson form
unless # = 1. This is because the exponential factors in e¥ , vanish in their limit of b = 0 with 7(0) = 1, as may be seen from
equations (20)22). This leaves the exp { — N [ bdlnn} factor in f,,.4(N), which will only agree with the Poisson form if n is a constant
independent of b. The constant can be normalized to unity by changing the value of b, [which does not affect f(N)], so we obtain the
original Ansatz of equation (5). This also shows why the thermodynamic f(N) would not be expected to apply to an unrelaxed
system with inhomogeneous (possibly initial) correlations over all scales, for then it would not satisfy the Poisson form as N
becomes arbitrarily large.

III. THE KINETIC EVOLUTION OF THE SPATIAL DISTRIBUTION FUNCTION

Having strengthened the derivation of equation (1), we next ask how f(N) emerges from an initially uncorrelated distribution.
How does a Poisson distribution grow a nonzero b, and evolve into the thermodynamic f(N)? In exploring this question, we find as
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a bonus that equation (1) yields a particular value of Q, the coefficient of the three-particle hierarchial correlation function, and this
value is consistent with the observed value.
Any f(N) distribution can be presented compactly by a generating function

gGs) = Ngof ()™, (30)

where s is an arbitrary variable used as a counter, and g(1) = 1 since there must be some number, including zero, of galaxies in any
volume. This generating function can be expressed in terms of volume integrals of the N-particle correlation functions &, by the
general relation (Balian and Schaeffer 1989)

® V_lN(S _ l)N 5 3
g(s) = exp Z —NT dory o | dPryEplry oy | (3D
N=1 M | 4 | 4
with ¢, = 1.
Early evolution from an initial Poisson state is characterized by &y , < ¢, and —W/K = 2b < 1 so that to order b
_ N2 (s —1)?
g(s) = exp |:N(s— 1)+W( > ) f é,delde]. (32)

The first term of the exponential gives the generating function for a Poisson f(N); the second term shows how the growing two-point
correlation function modifies f(N). Expanding the volume integral in terms of the ratio of correlation to kinetic clustering energy as

N w A%
7z f EdVidv, = — X + |:<7> :I = 2b + O[(2b)*] (33)
during the early development (this form also follows from eq. [25]) gives
g(S) — eﬁ(s—l)+ﬁb(s—1)2 . (34)
Comparing equation (34) with the generating function for the gravitational f(N) of equation (1), namely (Saslaw 1989)
o (1-1b) NN N
gis)=exps—N+ N| b+ Y ———bNe NN |5, (35
b N=1 N!

shows they are the same to order b. Therefore, equation (32) describes the initial evolution of the gravitational distribution function
f(N) away from its Poisson state, toward the quasi-equilibrium distribution of equation (1). The specific time evolution of b(t) may
be calculated from the cosmic energy equation (Saslaw 1986) or from the solutions of the BBGKY hierarchy (Zhan, 1989; Zhan and
Dyer 1989).

We can go further to show that the kinetic development implied by equation (31) is also consistent with the gravitational
distribution of equation (35) to order b2. For this we need the volume integral of £,, which we assume has the hierarchial form

83 =0312813 + &3 +&5:1&5,) - (36)

Using equation (33), from which we need just the same first-order term which gave equation (34), we may write

N? 30, N?
¥ [[[esavianan, =2 ([ e, ey av,avian

= 30,(2b)? = 120, b* . (37)

We next need the second-order extension of equation (33) to obtain the second term of equation (31) to order b2. In fact, this second
term of equation (31) is available to all orders of b from equation (25), with b¢’ = ¢ as required by the large N Poisson limit.
Although the derivation of equation (25) uses the same basic assumptions as lead to equation (1), it does not depend on the f(N) and
may be viewed independently.

Substituting equations (25) and (37) into the general expression (31) and comparing with the gravitational generating function (35)
shows that they are identical to order b2, provided

0:=1%. (38)

Therefore, the gravitational f(N) distribution is consistent with the hierarchial three-particle correlation function for this value of
Q3. According to Peebles (1980), the observed value of Q is 0.80 + 0.07, although earlier for a different observed sample, Groth and
Peebles (1977) found Q5 = 1.29 + 0.21; it is rather difficult to extract this quantity accurately from the observations. After deriving
the result (38), we learned that Zhan and Dyer (1989) had independently derived a relation between Q5 and f(N) from a complemen-
tary point of view, which gives a good numerical fit for Q3 = 0.73 in the nonlinear regime, so these results appear consistent with
each other and can be tested with more refined observations.

IV. THE VELOCITY DISTRIBUTION FUNCTION f(v)

a) Form of the Distribution

As the galaxies begin to cluster, their velocities depart from the Hubble flow and build up a gravitationally consistent distribution.
A method for finding the form of this velocity distribution follows from the spatial fluctuation distribution given by equation (1).
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We can derive the velocity distribution f(v) in a simple manner by assuming:
1. As the system relaxes into a quasi-equilibrium state over a range of scales, the complete distribution function on those scales
evolves into a separable distribution of N and v, that is

SN, v) > f(N)h(v) . (39)

2. In quasi-equilibrium, the fluctuations in potential energy over a given volume (caused by correlations among particles) are
proportional to the local kinetic energy fluctuations, so that

GmN <%> =av? . (40)

In equation (40), the average inverse particle separation (1/r) is the expected value for a uniform Poisson distribution. Therefore,
o represents the local correlations which depart from a uniform distribution. It may be thought of as a local “form factor” which
relates the kinetic and potential energy fluctuations. Smaller values of « imply a more condensed, nonuniform region of particles
with higher local velocity dispersion v2. Generally, « will vary from volume to volume. We shall henceforth make the simplifying
approximation that « has a constant value which is its average over the entire system. Computer simulations described below show
that this is quite a good approximation. If we then average equation (40) over the entire system to obtain the mean square velocity
dispersion {v?), treating each particle’s peculiar velocity individually so that {N) = 1, we have the relation

- <1><v2>-1 : (1)
:

in natural units with G = m = R = 1 (which we shall use hereafter), taking a to denote its average value.

With these assumptions, the first step to finding the velocity distribution is to rescale equation (1) from density fluctuations to
kinetic energy fluctuations by replacing N with N{(1/r> and N, the average number in a given size volume, with N{1/r). The second
step is to substitute av? for N(1/r) from equation (40), recognizing that N! = (N + 1), and av?) for N{1/r). The third step is to
convert from kinetic energy fluctuations to velocity fluctuations using the Jacobian 2av. The result is

20p(1 — b)

Tt 1) (20— D)+ a0 e gy, (42)

fv)dv =
where
B =< 43)

and I is the usual gamma function.
On the high-velocity tail of the distribution, for av? > 1 and v? > B, we obtain

f(v)dv ~ (—) o¥? — ﬂ( b) (20?) " Y(be* b dv . (44)
In the limit of very high velocities, this satisfies the differential equation
% = 2a In (be! ~%)f, 45)

which we shall find to have an interesting physical interpretation in § IVb. Note that for the values of b of interest, 0 < b < 1; the
logarithm in equation (45) is negative, so that the high-velocity tail of f(v) always behaves like a Maxwellian. However, the limit of
f(v) as b — 0 will not be a Maxwell-Boltzmann distribution because a Maxwellian does not satisfy the relation N oc v? of equation
(40) in this limit. The Maxwell-Boltzmann limit of f (v) requires both b — 0 and no correlation between N and v.

b) Relation to the Fokker-Planck Equation

When gravitational clustering is very nonlinear, the galaxies will have high peculiar velocities, and they deflect the orbits of each
other only slightly. Fokker-Planck equations describe this situation. We would therefore expect f(v) to be a solution of the
stationary Fokker-Planck equation whose general form is

2

- [a(v)f )] = 5 pel CROTCIR (46)

when the time derivative of f(v) is small enough to be ignored, as in the quasi-equilibrium evolution we consider here. In gravitating
systems, the high-velocity limits of the functions a(v) and ¢%(v) which characterize dynamical friction and stochastic acceleration
have the form (e.g., Saslaw 1985a)

a(v) = —ov?; a}v) =y~ 3, (47)

where ¢ and y are positive constants.
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Substituting these gravitational functions into equation (46) and retaining only the dominant terms for large v gives the simple
result

d_ 59
o= "2 (48)

which is identical to equation (45) if we identify

g: —aln (be! ™Y, (49)

which is consistent with their gravitational form at large v. Thus, the asymptotic form of f(v) satisfies the gravitational Fokker-
Planck equation, as expected, with a tail which is essentially Maxwellian.

¢) Comparison with N-Body Experiments

We can test the f(v) distribution derived here by comparing it with N-body simulations. Eventually, when accurate secondary
distance indicators are known for an extensive fair sample of galaxies (see e.g., Sandage and Bedke 1988 for a large summary of this
problem) it will also be possible to observe f(v) and determine whether the actual peculiar velocities of galaxies, like their positions,
are consistent with gravitational clustering. If so, the absolute values of the observed peculiar radial velocities should have the
distribution of equation (42).

To compare the theoretical distribution of equation (42) with N-body simulations, we analyze further the gravitational experi-
ments whose spatial distributions were examined earlier by Itoh et al. (1988). Here we investigate their velocity distributions. These
experiments used a vectorized direct integration technique (Aarseth code) to follow the motion of 4000 galaxies in expanding
universes with various initial conditions and values of the density parameters Q,. The cases we explore here are for Q, = 1, 0.1, and
0.01 with initial Poisson distributions which begin cold with no motion relative to the Hubble flow.

The comparisons are shown in Figures 1-3 for Q, = 1, 0.1, and 0.01, respectively. Each figure shows four comparisons, at different
expansion factors a/a, with a, = 1 initially. The solid histogram is the experimental distribution; the light dashed line to the right of
each histogram is a Maxwell-Boltzmann distribution with the same velocity dispersion as the data and is shown just for illustration;
the heavy dashed line is a least-squares fit of the theoretical distribution of equation (42) to the experimental histogram. In the fit, the
quantities b, «, and B were considered as free parameters whose fitted values can then be compared with their values measured
directly from the data.

The precision of these fits is surprising. They show that the form of equation (42) does indeed provide a very good description of
the velocity distribution. Since f is determined by the overall velocity dispersion, « is given by equation (41) and b is known from the
spatial distribution, there are, in principle, no free parameters in the theory (although it does not take the distribution of « and b
around their average values into account).

T T T T T T T T 0.3 T T T T T T T T
0.6 Q = 1.0
4k afag = 141 | afag = 2.80
TR (v?) = 2.42 0.2r [ A (") = 1644 1
ot [/ kY . { i
fv) i | b = 0.765 fv) A b = 0823
M 4 a = 6.788 ] i Y a = 1.279
0.2} B = 2400 oty B = 15885
0.0 A . . ool A
0.0 2.0 4.0 6.0 8.0 10.0 0.0 4.0 8.0 12.0 16.0 20.0
v v
0.2 T T T T T 0.2 T T T T T
+ N afag = 7.86 R + afag = 15.62 1
| (v?) = 43.30 o (v?) = 60.94
f) o1} = 0833 4 f)oat Ml b = 0794 A
o = 0448 FEE . AN a = 0222
I B = 41830 | L/ b B = 57.987
0.0 : e + 0.0 . s
0.0 5.0 10.0 15.0 20.0 25.0 30.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0

v v
F1G. 1—Velocity distributions averaged over the four Q, = 1.0 simulations. Each panel shows a different epoch a/a,. The light dashed line to the right of each

experimental histogram is a comparison Maxwell-Boltzmann distribution with the same velocity dispersion, {v?), as the simulation. The heavier dashed line through
each histogram is the best fit to the gravitational quasi-equilibrium velocity distribution of eq. (42). The comoving velocity would be v/a.
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F1G. 2—Velocity distributions averaged over the four Q, = 0.1 simulations. Each panel shows a different epoch a/a,. The light dashed line to the right of each
experimental histogram is a comparison Maxwell-Boltzmann distribution with the same velocity dispersion, (v}, as the simulation. The heavier dashed line through

each histogram is the best fit to the gravitational quasi-equilibrium velocity distribution of eq. (42).

Tables 1a—1c give the best least-squares fits of b, a, and f for various expansion factors, as well as giving the average velocity
dispersion measured directly from the galaxy velocities in the experiment. These are averaged over four simulations for each value of
Q,. The agreement between f and {v2) is remarkable (better than ~4%) when Q, = 1, which is the most relaxed quasi-equilibrium
case. This specifically confirms equation (43). Agreement is still very good when Q, = 0.1, but it becomes rather poor for the
Q, = 0.01 model which, as the complementary spatial distributions in Itoh et al. (1988) show, is far from quasi-equilibrium. A
similar trend is apparent in the vaues of b. For Q, = 1, the value of b for f(v) is in good agreement with the value determined for f(N)
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0.2 1 0.2H / N \\\ J
1 / an,
0.0 1 1 - 1 0 0 '( 1 1 1 S . . A 1
0. 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
v
T T T T T 1.8 T T T T T T T T T
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F1G. 3.—Velocity distributions averaged over the four Q, = 0.01 simulations. Each panel shows a different epoch a/a,. The light dashed line to the right of each
experimental histogram is a comparison Maxwell-Boltzmann distribution with the same velocity dispersion, {v®), as the simulation. The heavier dashed line through
each histogram is the best fit to the gravitational quasi-equilibrium velocity distribution of eq. (42).
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TABLE 1la

BEST-FIT PARAMETERS FOR THE SIMULATIONS WITH Q, = 1

aja, b o B (v?)
141.......... 0.7652 6.7883 2.4001 242
199.......... 0.8275 2.6579 8.7799 8.84
2.80.......... 0.8229 1.2791 15.8851 16.44
395, cinn.l. 0.8482 1.0775 23.6628 24.11
557 cccn.... 0.8333 0.6498 31.5735 32.50
7.86.......... 0.8327 0.4482 41.8303 43.30

11.08.......... 0.8322 0.3570 50.0164 50.92
15.62.......... 0.7938 0.2216 57.9872 60.94
TABLE 1b

BEST-FIT PARAMETERS FOR THE SIMULATIONS WITH €, = 0.1

aja, b @ B C
141.......... 0.7539 8.4445 1.7393 1.77
1.99.......... 0.8326 3.9765 5.9632 6.08
280.......... 0.8491 2.6007 9.9189 10.38
395.......... 0.8679 2.2080 13.3451 13.66
557 i, 0.8689 1.7743 15.2695 15.96
7.86.......... 0.8630 1.2529 17.8835 18.20

11.08.......... 0.8695 1.0458 19.7958 19.77
1562.......... 0.8758 0.9893 20.5446 20.17
2203.......... 0.8682 0.7786 21.0638 21.13
31.06.......... 0.8875 0.7488 23.3825 21.88

TABLE 1c

BEST-FIT PARAMETERS FOR THE SIMULATIONS WITH Q, = 0.01
afa, b a B oy
141.......... 0.7480 28.2310 0.5139 0.51
1.99.......... 0.8225 16.8569 1.3841 1.39
2.80.......... 0.8788 18.1274 2.1173 2.31
395, 0.8921 19.0976 2.2681 2.80
557 .. 0.9161 25.2818 2.2963 2.79
786.......... 0.9395 40.0631 2.2036 2.86
11.08.......... 0.9594 59.3671 2.2662 2.76
15.62.......... 0.9719 89.4095 2.2071 2.62
22.03.......... 0.9873 147.2626 3.0622 2.53
31.06.......... 0.9960 246.3054 6.0964 249
4379.......... 0.9998 259.7312 92.3521 242

(Fig. 8 of Itoh et al. 1988) after the system has relaxed. Interestingly, the value of b obtained from the velocity distribution rises to
this relaxed value much faster than the value determined from the spatial distribution. This is expected, because the peculiar
velocities must build up before the galaxies are able to move into their more correlated positions. This effect increases as Q,
decreases and the velocity dispersions become smaller. It is especially evident for Q, = 0.01, where it is reflected in the high values of
b.p initio in Figure 8 of Itoh et al. (1988), compared with the small corresponding values of by;, for those spatial distributions. This lack
of relaxation for small Q, can also be seen in the poorer fit to the tails of those f(v) distributions in our Figure 3.

Comparison of the gravitational velocity distribution f'(v) with the Maxwellian having the same (v?) in Figures 1-3 is also rather
interesting. In all cases, the gravitational distribution has a colder peak than its associated Maxwellian, and the relative difference
between their peaks increases as the universe expands. This is a symptom of clustering. Lower density unbound regions, which
predominate, lose energy to the expansion of the universe and cool relative to a Maxwellian distribution. Universes with smaller
values of Q, have more field galaxies. So this difference between f(v) and a Maxwellian should increase as Q, decreases, as Figures
1-3 show it does. The higher tail of f(v) relative to the Maxwellian is caused by the small number of strongly bound clusters, which
nonetheless contain a significant fraction of all galaxies, and which do not lose appreciable internal energy to the general expansion.
This becomes especially apparent for Q, = 0.01, where the overall distribution is very cold with a small number of bound clusters,
forming a warm-velocity tail which far exceeds the Maxwellian value and somewhat exceeds the gravitational distribution. Even in
this Q, = 0.01 case, however, the bulk of the velocities fit the form of the gravitational distribution very well, although their values of
o and f cannot be represented by overall averages and indicate an expansion away from the quasi-equilibrium state.

We next consider the value of « in more detail, first asking how well its average determined by f(v) satisfies equation (41). The
average inverse radius for a uniform Poisson distribution is given by (e.g., Saslaw 19854 equation 33.23 with a = 0)

1
<;> = N”3F<§> =1.35N'3 =214, (50)
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where the last expression is for the N = 4000 particles used in our simulation whose total radius is normalized to unity. Thus, we
expect aff = 21.4. From Table 1a for Q, = 1.0 the values of aff at the eight successive expansion radii are, respectively, 16.3, 23.4,
20.7, 25.5, 20.5, 18.7, 17.9, and 12.8. The average of all these values is {af); g = 19.5, and the average, omitting the first and last
values (which may not be in quasi-equilibrium), is (¢f), , = 21.1. These are in reasonable agreement with equation (50), even
though individual values may fluctuate significantly. If we were to use the values of {v?) measured directly from the data, rather
than the fitted values of B, the agreement of «{v?) with equation (50) would be slightly better: 19.9 for all values and 21.5 omitting
the first and last. In the case Q, = 0.1 from Table 1b we find (e8>, o = 23.2 and (o8>, ,, = 21.8. In this case, the average of a{v?)
directly from all the data values is 22.1. Omitting the first and last, the average is 23.7, so these values are again close to equation
(50). A glance at Table 1c, however, shows strong disagreement between the values of af or a{v?) and the expected value from
equation (50) in the case of Q, = 0.01. This is caused by the gross departure from quasi-equilibrium for low Q,. These distributions
separate into a very cold Hubble flow involving most of the galaxies and a few compact clusters. Referring back to the discussion
following equation (40), we see that large values of « indicate that most of the distribution is uncondensed, and for Q, = 0.01 the
value of « generally increases rapidly with expansion. By contrast, for Q, = 1.0 and 0.1, the values of « decrease with the expansion,
indicating that clustering becomes stronger. Indeed, « seems to be a good way to measure how the state of clustering evolves.

We can go further and explore how « fluctuates from place to place, at any given time. We illustrate this for the four Q, = 1.0
simulations, since they are closest to quasi-equilibrium. The two upper panels of Figure 4 show the peculiar velocity dispersions in
spheres containing a given number, N, of galaxies at the two expansion epochs a/a, = 2.8 and 7.86, respectively. These diagrams are
obtained by first choosing 25 random spatial points within a radius R = 0.6 of the center of each simulation. Then we find the N
nearest galaxies to each random point and calculate the velocity dispersion of their peculiar motions. This is plotted for every
twentieth value of N. Results for each of the four simulations start at values of N = 20, 25, 30, and 35, respectively, for clarity. Thus,
for each value of N in the upper panels, every point represents the velocity dispersion in a sample sphere containing N galaxies. The
dashed horizontal line shows the average velocity dispersion within R = 0.8 for the entire example.

Initially the galaxies move just with the Hubble expansion and v = 0 for all N. The velocity dispersion builds up very rapidly,
particularly for small groups which form quickly. Large values of N automatically average over the velocities of many weakly
clustered galaxies, thus giving a lower and more representative value of v3. At later times, interesting network patterns develop in
the individual diagrams. They portray the correlations between velocity dispersion and spatial clustering. Figure 5 shows an
example at higher resolution for a single simulation. The thick streaks whose v decreases with increasing N arise from the random
spatial points which happen to fall near the centers of strongly bound clusters where the velocity dispersion is large. It decreases
toward the average with increasing distance from the cluster as more loosely bound and “field” galaxies are counted. The thin
chains whose v3 increases with increasing N arise from spatial points outside the cores of strong clusters, but whose spatial sphere
begins to encompass a core as N increases. The points at small N with very low v} are those which happen to be in underdense
regions. So this provides a rather nice pictorial representation of both position and velocity clustering, which could eventually be
compared with observations.
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F1G. 4—Velocity dispersions, v3, in spheres with a given number of galaxies for four Q, = 1 simulations, shown at expansion epochs of 2.8 and 7.86. Points in the
upper two panels are values around 25 randomly selected points within R = 0.6 for each simulation. For clarity, the values of N plotted are N = 20, 40, 60, etc., for
the first simulation, N = 25, 45, 65, etc., for the second, and so on. The horizontal dashed line is the average velocity dispersion of all galaxies within R = 0.8. The
lower two panels give the average and standard deviation for all spheres of a given N.
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F1G. 5—A higher resolution version of the upper right panel of Fig. 4 at a/a, = 7.86. This is for one Q, = 1 simulation with spheres of different N around 100
points selected randomly throughout the entire simulation. Each value of N is plotted. All 4000 particles are used.

The two lower panels of Figure 4 give the average and the standard deviation of v3 for each value of N in the upper panels. For
values of N between about 20 and 100, the average value of vy increases reasonably linearly with N. For large N, it reaches an
average value close to that of all the galaxies within R = 0.8. Larger values of N typically sample regions containing several clusters
and many field galaxies, so as N increases they become more representative of the entire system. The linear increase of v with N is
consistent with our assumption in equation (40) of an average value of . The standard deviation of « in different regions is indicated
by the vertical bars. However, most regions have a smaller range of « than these suggest, because the standard deviations are
increased by a few strongly bound groups with high-velocity dispersions, as the upper panels and Figure 5 show. Thus, although
there is a significant range of « in regions having the same number of galaxies, using an average value for « seems to provide a good
approximation for the velocity distribution.

We examine the nature of « from another point of view in Figure 6. Here we have chosen spheres of given radii, R = 0.02, 0.04,
0.06, 0.08, 0.1, 0.2, 0.3, and 0.4, around 9500 random spat1a1 points in each of the same four Q, = 1 simulations. The values of N and
the velocity dlspersmn (vR> for each of these spheres give the overall averages and standard deviations for (v%)>. As the system
evolves, there is again an increasing absolute dlsperswn around the average value of (v}, especially for small values of R. Despite
this scatter, one sees a fairly linear relation between {v%» and N, again most clearly for small values of R and N. For R > 0.3, this
linear relation seems to have a break at larger values of N. Moreover, the slope, which is the value of a, differs for the different radii.
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FI1G. 6.—Velocity dispersions in spheres of given radius, averaged over four Q, =

from 0.02 to 0.4.

1 simulations, shown at expansion epochs 2.8 and 7.86. Radii of spheres range
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Therefore, the average value of a determined by equation (41) must represent a weighted average over these different radii. The
procedure for weighing this average is not clear and would be a useful development of our theory. Meanwhile, we rely on the

agreement between f(v) in equation (42) and the computer experiments.

V. DISCUSSION

The discovery of the velocity distribution f(v), combined with the previously known number distribution f(N), now provides a
complete description of quasi-equilibrium gravitational clustering in the expanding universe at the same level as the Maxwell-
Boltzmann description of equilibrium in a perfect gas. Unlike the Maxwell-Boltzmann case, the gravitational distribution functions
show the strong effects of correlations induced by the gravitational forces: density fluctuations are correlated among themselves,
velocity fluctuations are correlated among themselves, and density fluctuations are correlated with velocity fluctuations. The
distribution functions implicitly include the effects of these correlations to all orders. That is why they are in such good agreement
with the N-body computer simulations of quasi-equilibrium evolution.

Like the Maxwell-Boltzmann distribution, which can be derived from just the assumptions of translational and rotational
invariance (homogeneity and isotropy), the quasi-equilibrium gravitational distribution in an expanding universe can be derived
from simple fundamental assumptions. For the spatial distribution f(N) these assumptions are statistical homogeneity, scale
invariance, the Poisson limit for very large N, and of course the pairwise nature of the gravitational potential. For the velocity
distribution f(v), the assumptions are that the combined distribution function f(N, v) separates into f(N)f(v) in quasi-equilibrium
and that the kinetic energy fluctuations are, on average, proportional to the potential energy fluctuations. It is probably possible to
refine this last assumption to take into account the result, shown by our numerical experiments, that the proportionality between
these energy fluctuations itself varies from place to place. Even without this refinement, however, the experiments show excellent fits
to the theoretical f(v) with no free parameters. Whether the observed galaxy distribution also fits f (v), as it does f(N), is a matter for
future observations to decide.

We have also developed the early stages of a nonequilibrium kinetic theory which shows explicitly how the gravitational system
evolves away from its initial uncorrelated state toward the observed f(N) distribution for galaxies. This is done quite simply by
relating the explicit generating function of the f(N) distribution to the BBGKY hierarchy of correlation functions. This ties the
evolution of f(N) into standard kinetic theory. One consequence is a value for the amplitude of the three-point correlation function,
which is consistent with the observed value for galaxy clustering.

These new links between the density distribution, the velocity distribution, and kinetic theory appear to have considerable
potential for a broader and more profound understanding of gravitational galaxy clustering in our expanding universe.
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