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Abstract. Let G, , denote the Grassmann manifold of k-planes in R". We show that for any
continuous map f: G, , — G, , the induced map in Z/2-cohomology is either zero in positive
dimensions or has image in the subring generated by w, (3, ,), provided 1 <<k < [n/2] and
nzk+2l—1. Our main application is to obtain negative results on the existence of
equivariant maps between oriented Grassmann manifolds. We also obtain positive results
in many cases on the existence of equivariant maps between oriented Grassmann manifolds.
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1. Main results

For 1<k<n, let G,, be the Grassmann manifold of all k-dimensional vector
subspaces (“k-planes”) of R”, and let (7,,,,‘ denote the oriented Grassmann manifold
of all oriented k-planes in R". The double covering map 7, ;: (~;,,, = G, 1s a universal
covering projection for n > 3. Let Yn,x denote the canonical k-plane bundle over Gpx
and let B, , denote the “orthogonal complement” bundle over G, ,, which is of rank
n—k. Let w;=w;(y,)eH (G Z/2), 1 <i<k, denote the i-th Stiefel-Whitney class
of Y4, and let w; = W;(B.x), 1 <j<n—k. Then, one has the following relation:

w-w=(1+w1+...+wk)(1+wl+...+W,,_k)=1 8))]

which can be used to express the W;'s in terms of the w;’s.
One has the following description for the Z/2-cohomology ring H*(G, ), (cf. [2],

[91): '
H*(G,,) is generated as an algebra over Z/2 by w,,...,w, subject only to the
relations coming from (1). ()]

Note that G, ; =G, ,_, so we assume without loss of generality that k < [n/2].

Theorem 1. Let 1 <I<k<[n/2,,n>k+2— Landlet2*"*<n< 25 If f: GG,
is any continuous map, then f*: H*(G, ;; Z/2)—>H*(G,4; Z)2) is

(i) zero in positive dimensions except possibly when n=2¢, or (n,k) = (2°—1,2),
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. o s
(ii) either zero in positive dimensions or F*wi(P)) = [1] wh, 1<i<l if n=2% or

n=2-1k=2

Note that G, =BO(k), a classifying space for real vector bundles of rank k.
We will prove

Theorem 2. Let 1<I<k. Then for any f: BO(k)—BO()), the induced map in
Z/2-cohomology is zero in positive dimensions or is given by

f*Wi0w,1)) = [;]Wl('))oo,k)j if j<rand f*W0.,))=0

if j>r, for somer<l. Conversely, given any r <1, there exists a map £.: BO(k)—~BO()
such that

f*(wj(yw,l)) = \:;}WI(Yw,k)jfor 1<j<r.

We will apply Theorem 1 mainly to the question of existence of equivariant maps
between oriented Grassmann manifolds. We hope that the above theorems will lead
to other applications also.

" The involution that changes the orientation on each element of G,,,k is a smooth
Z/2 action on G',,,k. Observe that the “inclusions” i: G,,,k—-> Gpr1x and j: G
G+ 1.4+ induced by the usual inclusion of R" in R**! are equivariant. From this it
follows that if g: Gy — G, is equivariant with m > n, then there exist equivariant
maps g: G, p G, fork—m+n<p< k, as can be seen from composing g with i’s
and j’s suitably, (m—n) times. The following theorem is a partial answer to the
question: “For what values of n, k and [ does there exist an equivariant map 5,,, v =G 1s
1 <1k <n,l#k n—Kk'?Since the diffeomorphism L: G, x— Gy - is equivariant, we
need only consider the case when k, 1< [n/2]. When k=1, the identity map 1is
equivariant. ‘

Theorem 3. Let 2 1 <n<2'

(@) Let1gli< k< [n/2], and let n > k + 21 — 1. Then there does not exist an equivariant
map of G, into G, provided that | is even when n is a power of 2, and that
(n, k) #(2°—1,2). e
(i) Letm<2"" 1 1<p< [m/2],1 <k <[n/2]. Then there does not exist an equivariant
map of G, into G, ,. There does not exist an equivariant map of (7,,,,‘ into Gos_1.1
_for k>3, (nk)# 2! + 1,3). No equivariant map exists from G, , or Gyo_141,3 iNtO
Gpeona1- :
As for positive results we prove

Theorem 4. (i) Let 1 <k< [n/2], and let d = dim G, =k(n—Kk). For anyr, there exists
an equivariant map f G,,,k—»('i,,i,,q, 1<gs<r. Further, when (n,k) # (2° + 1,2) there
exists an equivariant map 2 Gpe— Gi—14rg 1<GST. There does not exist an
equivariant map from Gasyy,2—Ga,1- )

(i) There exist equivariant maps 54,2 - 53,1, f 457,2 -‘—»Gm; g Gg.3— 63,1, and
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S"1xG,,—G,, for k odd and 1<k <8a+2", where n=12%"+b (odd), 0<b <3,
a20. Conversely, if there exists an equivariant map S"~* -»Gm,k, 2k<m<n, then
m=n, k is odd and k <24**?, ,

Recall that the span of a smooth manifold M is the maximum number of linearly
independent (tangential) vector fields that M admits. It was known [5] since 1985 that
3<Span Gg 3 <7. As a further application we prove, as a corollary to Theorem 5
proved in §4 that

Theorem 6. Span G4 3 =7. :

Theorems 1,2 and 3 are proved in § 2, Theorem 4 in § 3, and Theorems 5 and 6 in §4.
The following result of Stong [13] will be used in the proofs. Recall that for
wy€H' (G, x; Z/2), ht(w,): = height (w,) = sup {m|wT 5 0}.

Theorem 7. (Stong [13]). Let 2<k<n/2, 22" <n <2 Then

L _J2=2ifk=20rn=2""+1,k=3 ‘

twy) = 25 — 1 otherwise. | O
Unless otherwise mentioned, throughout this paper all cohomology groups will

have mod 2 coefficients.

2. Proofs of theorems 1, 2 and 3.

Our proofs are quite elementary as they make use of only basic properties of
characteristic classes of vector bundles. '

Recall, first, that the Steenrod operations on w,(£), the p-th Stiefel-Whitney class
of any vector bundle ¢ are given by the Wu relations [10]:

SPw, )= ¥ [” Rk l]w,,+,-(5)w,--,-(é), 0
0<isy

with the usual conventions that [ 0 ] =1 and wy(¢) = 1. In particular, if w, (&) =0

for all ¢ >r, then
S, () = w,(Ow;(&), 1<j<r. @)

Secondly, notice from (2) that there are no algebraic relations among w,,...,w, in
H*(G, ) in dimensions < n— k. Assume 2k < n, and order the w;’s by declaring that
1 =wo<w; <...<w,. Extend this to a simple ordering of all monomials of total
degree <n—k, as follows: Let I =i,,..., ip; J =j1,...,j, be non-increasing sequences
of non-negative numbers with i, j; < k. We write w, = W;,...w; . Declare that w; > w,
if for some r, 0 <r<p, iy =j;,...,i,.; =j,_, and i, > j,. For example, when n = 20,
k=1, we have w,we > w, > wE > wewi > wiwy >wiw, > w,wi >ws, '

- For 0 #aeH*(G, ), deg (a) <n—k, we denote the largest monomial that occurs
in a with coefficient 1€Z/2 by L(a), and define L(0)=0. It is easy to check that if .
beH*(G,,), deg (a) + deg(b) < n — k, then

L(ab) = L{a) L(b).




114 J Korbas and P Sankaran

In particular, if b = wy, then

L{aw;) = L(a)wy.

We caution the reader that homomorphismsin H*( ;Z/2)induced by a continuous
map between Grassmann manifolds need not be order preserving. However, this
ordering turns out to be a useful tool in our proofs.

Proof of Theorem 1. Write v; = w;(y,,), and let u; = wi(f* ) = *W;(7,1)) = f*(w:),
1<i< !l Then u; = h;(w,,...,w;) for a suitable polynomial k;, where w; = w;(y, ). Let
r be the largest integer for which u, # 0, and assume r > 1. Write u, as

U= whgo+wh g+ +g, } o)

where m > 1 is the largest integer such that w,, occurs in the expression of u, as a
polynomial in wy,...,w,, and g;=g;(Wy,...,Wn—,), 0 <i<p, with g4 #0.

At this stage we comment that the proof involves two steps. First we show that
Imf* is contained in the subring generated by w, (see Claim below). Then, using
Stong’s result on the height of w, (Theorem 7) we show that f* is as asserted in the
theorem.

Claim: m = 1. To get a contradiction, assume that m> 1. Then 2m — 1 >m.

Case 1: Let 2m—1<k. Then by (3), L(Sq(w;)) = L(S¢’~*(w;)) = w,;_,, for j<m.
Note that (m— 1)p +mp < 2r — 1 < n— k. Now consider

Sqm-VP(wE) = (Sg™~V(w,,))’ + terms involving w?
=Wym—1 + - + WpWp— ) + terms involving w2.
=w},_, + lower terms.
Again(m—1)p+r<2r—1<n—k. Now
Sqm~VP(y,) = Sq™~VP(wP g,) + terms smaller than w5,,_,,
= Sq™~VP(wP)g, + terms smaller than wg,,_,,

=w},,_1go + terms smaller than w5, _,.

Therefore if L(gy) = w; and L{ti,-,,) = w,, then by comparing both sides of the
equality L(Sq™ ™ Y?(u,)) = Lt tipn - 1),), We get

ng-—- 1 WI = L(Sq(m- l)p(ur)) = L(uru(m— l)p) = W%WIWJ.

This is a contradiction as 2m—1>m and (m—1)p+r<n—k, and there are no

algebraic relations among the w;’s in dimensions up to n—k. This shows that m = 1
in case 2m— 1 < k. .

Case2: 2m—1>k. Let _] be the smallest integer such that 2j —1>k. Then u, can be
written as

Up=Wpgo+ W1 f1+ - +W; fru_j+ fo
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where g, #0, f;, 0<i<m—j, are polynomials in Wi,:..sW;_; only by dimension
considerations. (Some of the f;’s can be zero.)
Forj<a<m,

Sq ™ (Wafm-a) = Sq* 7 Wo) f 7o a + WIS TN (frms)
=(WiWaqmg-p o + W, W, l)f’rzn-*a + Wgsqr—a—l(fm-a)
=W W1 1S -+ terms not involving w,.
Therefore,
Sq" 7 () = WiWam—1-x95 + EWae1 1 f4-,) + terms not involving w,.

The coefficient of w, in the above is non-zero becausé in w,,_;_ g2, Wom— 1 -x
occurs with odd exponent whereas in other terms it occurs, if at all, with even exponent.
Therefore w, divides L(Sq"~*(u,)). As in the previous case this leads to a contradiction.

This establishes our claim that m = 1.

Now if u,=w], then for j<r, uju,=Sqf(u,)=[’:]w{+'=[':-]W{ur. As j<r,
.. J

j+r<2r—1<n—k, we deduce that u;= [r wi.
J

It follows that for the dual Stiefel-Whitné‘y class, !'3,-, which is a certain polynomial
in vy,...,v;, we must have

f*(@;) = a;w}, for some a;eZ/2.

Applying f* to the relation (1) for the bundle Pu.1» We see that

I‘v r ; ’
(1 + [l]wl + v + [rilw'i)(l +a1W1 + A +a’,_lW’im')= 1.

If p is the largest integer for which d; = 1, then we get w;"?=0. Butr<Lp<n—I=

7+ p<n Thus w? =0. This contradicts Theorem 7, the result of Stong [13] on the

height of w, unless n=2° and r =1I; or n=2°— 1 and k = 2. This implies that in case
n#2°, and (n, k) #(2° — 1,2), we must have r =0. It follows that ;=0 for all i > 1.
Since H*(G, ;) is generated by v,,...,v,, we see that f* is zero in positive dimensions.

Ifn=2%andr>1,thenr=1 Thusuy,=w),and y; = [f]w‘l Ifn=2"—1,k=2, then
I=1, and, f*(v,) =w,, when f* is non-zero in positive dimensions.

Proof of Theorem 2. The proof of our claim that m=1 in the above holds even if
n=co. Hence, writing v;=w;(y,,) and w;=w(y,,), for any f: BO(k)—BO(),

f"‘(vﬂ:[ﬂw‘h 1<i<rand f*(v;)=0, j>r for some r <! as before, when f* is

non-zero in positive dimensions. '
As for the converse, let 1 <r<Il Let { be the line bundle with w,({) =w,, the

generator of H'(G,, ,). Let n =r{ @ (I —r)e, the Whitney sum of r copies of { and a

trivial vector bundle of rank (I —r). Let f,: BO(k)— BO(]) be a classifying map for n,
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that is f*(o,1) =7 Then f*W(,,1)) =w(m) =w(0) =1 +w,). Hence, f*(v;)=

(r.)W‘i,1<i<r,andf*(vj)=0forj>r. 0
l

\

NOTE: R R Patterson [11] has characterized all algebra homomorphisms from
H*(BO; Z/2) to H*(BO(k); Z/2) which respect the Steenrod operations.

Proof of Theorem 3. (i) It is easy to see that if g: G,,, k—»Gn,, is equivariant then for
the induced map f: G,i—G,;, f*W; (1)) =w;(p,:). Therefore it follows from
Theorem 1, that either n=2and lis odd, orn=2°—~1,and k=2, [= 1.

(ii) Assume the contrary and consider the induced map between the Grassmann
manifolds. A contradiction is obtained on comparing the heights of w; using
Theorem 7 stated in the introduction. ’ O

3. Construction of equivariant maps

Let {, , (or simply {) denote the unique (up to bundle isomorphism) non-trivial line
bundle over G, ;, so that wy((, ) =w, €H'(G, ;) = Z/2. Notice that a map f: G, ;= Gy,
is covered by an equivariant map f: G, —G,, , (ie. 7, ,° f= fom,,) if and only if
F*(Cm,p) = o p> Or €QUivalently f*(w, (Y, 5)) = Wy (yn,1)- Another useful characterization
of the existence of equivariant maps between oriented Grassmannians in terms of
vector bundles over Grassmann manifolds is the following:

PROPOSITION 3.1.

There exists an equivariant map f: G, ,— G,, , if and only if there exist vector bundles
¢ and 5 over G, of ranks p and (m — p) respectively such that & is non-orientable
and £®n ~ me.

Proof. Suppose that f:@,,,k - (~},,,, p 1S equivariant and f: G, — G,, , is the map induced
by f. Let { = f*(ym,p), and 7= f*(B, ;). Then E@ N f* (Y, ® B p) = f*(me) = me.
Also sinee f is equivariant, w, (&)= f*(w,(y o)) =wW;i(Yni) #0. Hence ¢ is non-
orientable.

Conversely, assume that & and #™? are vector bundles over G, with ¢
non-orientable and £ ®# &~ me. Choose a trivialization ¢: E(£ ®n) — G, X R™ Define
f:Goy=Gy by f(V)=pryoo(F ¢(V)), where F (V) denotes the fibre of £ over VeG,,,
and pr, is the projection G, x R™—R™ Then f is continuous, and f *Vm,p) =&
Since ¢ is non-orientable, it follows that w, (y, B =W () =W ([ *m,p)) = [* W1 (Vm,p))-
Hence f is covered by an equivariant map f: G, ,— G, » ‘

Proof of Theorem 4(i). Recall from Theorem 1.2 Ch. 8[4], that any real vector bundle
ofrank (d + 1) over a d-dimensional CW-complex admits a nowhere vanishing section.
Therefore, for a suitable d-plane bundle 1,

@+ D{~nde,

where ( is the non-trivial line bundle over G
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Tensoring both sides by { and observing that { ® { ~ ¢ as { is a line bundle, we obtain
d+Dex (1@ DL, |
Applying Proposition 3.1 we see that there exists an equivariant map
h: Gn,k—r» Gy 11

For any r, and ¢, 1 < g <r, one obtains an equivariant map G,,,,‘—» GHW by suitably
composing with h the equivariant inclusions i’s and j’s mentioned in the introduction.
When (n,k) = (2° + 1,2), from Stong’s Theorem, ht(w,)=2"! — 2 =d. Therefore
there is no map g: G, ;— G,,; = RP?~! with the property that g*(w,(ys,1)) = W1 (Vnx)-
Consequently there exists no equivariant map G, , — (~}d , 1n this case.

When (n,k) # (2° + 1,2), 2< k< [n/2], we see that wy(dl) =w,({))? =wi =0. The
manifold G, is orientable if and only if n is even, whereas d{ is orientable if and
only if d is even. It follows that w,(G, ) w,(d{) if and only if n or k is odd, as
d = k(n— k). Applying Proposition 3.10(i) of [6], we see that d{ admits a nowhere
vanishing section, providing (n, k) #(2° + 1,2) and n or k is odd.

If n and k are both even, then d =k(n— k) is even, and G, is orientable. Write
d = 2m. Then d¢ = 2m{ = m-fold Whitney sum of the oriented 2-plane bundle 2{. The
Euler class e(2)e H*(G,,; Z) can be shown to be a torsion element. In fact 2¢(2{) =0.
(See Prob. 9A, [9].) It follows that 2e(2m{)=2(e(2)))"=0 in H*"(G,;;Z)=
H%(G,,;Z)= Z. Hence e(2m{) = 0. Therefore 2m{ must admit a nowhere vanishing
section over the d-skeleton of G, ;, which is the whole of G, . As before we conclude
that there exists an equivariant map G, = Gi14r .o 1 <g <rin this case, completing
the proof of 4(1).

Proof of 4(i). It can be shown that Gy~ 5% x 5% (cf. p. 104, [3]) under a
Z/2-equivariant diffeomorphism. Here the Z/2-action on §2 x §? is given by the map

(@, b)—(— a, — b) for (a,b)eS? x S*. Then the composite

Gy 8% x S22, §2

is Z/2-equivariant in our sense.

Using the properties of the 2-fold vector product vR’7 x R’ »R” and the 3-fold
vector product p: R® x R® x R® > RS, as given by Zvengrowski [14], we construct
equivariant maps f: G7 2 —+G7 , and g: Gg 5 —+GB . as follows: if (a,b) is an ordered
basis in the orientation on Ve G7 ,,thenv(a, b)eS°® = G-, , depends only on the oriented
vector space V and not on the specific choice of the basis in the orientation of V. We
let f(V)=v(a,b). Then f is contmuous If — V is the same vector space as V but

with opposite orientation, then f(—V)=v(—a,b)=—v(qa, b)=— f(V) (cf. [14]).
Hence f is equivariant. The map g: Gs 3 Gs , is defined similarly. See [14].
We now construct equivariant maps "~ G,, 1—>G,,k for k odd and k< p(n),

where p(n) — 1 is the span of S"~*. From Adams [1], p(n) = 8a + 2" where n= 24atd.

(odd), 0<b<3,a=0.1If V,,; denotes the Stiefel manifold of orthonormal k-frames
in R", the bundle projection p: ¥, ,—S"" %, p(vy,..., ) =v, admits a Z/2-equivariant
section s: 8"~ - V,,, if k < p(n). Here the Z/2 actlon on V,, is given by (ay,...,a)—
(—ay,...,—a,) for each (a,,...,a)eV,,. The prOJectlon map a v, k—-»G,,k is
equivariant if k is odd. Therefore the composite gos: G =85"1> G,, . 1s equivariant
if k is odd, k < p(n).
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Now suppose that h: G,; =RP""!—G,,, is induced by an equivariant map h:
5"~ 5@, with 2k <m < n. Then the map h*: H*(G,,,)— H*(RP"~1)=(Z/2)[x]/
{x") has the property that h*(w,) = x, where w; = w;(Jnx). Let r <k, and s<m—k
be the largest integers such that h*(w,)#0 and h*(w,) # 0, respectively. Applying
h* to the relation w-w = 1, and comparing (r + s)-th degree terms on both sides we
obtain 0 = h* (w,)-h*(W,) = X" x° = x"**. Hence r + s > n. Since r + s < m < n, it follows
that r=k, s=m—k and m=n. Now h*(w,) = x* implies, by Wu’s formula, that

h*(w) = (1 + x)*. Since x = h*(w,) = (f)x we see that k must be odd. Also, h*(w) =

(1 + x)* implies h* (W) = (1 + x) % = (1 + x)* ~* for large enough N, as (1 + x)zN =1 for
N large. This implies that

N_
h*(wj)=[2 ] k}cl’, 1<jg<n—k
J ;

On the other hand,
R*(B;)x" ™% = h*(W;W,_ ) = h*(Sq’ (W, _))

. . —k )
= SPR¥(,-1)) = S H) = [n j ]x

Therefore we must have

N_ —_—
[2 . k}EI:n _k}modZ, 1<j<k.
J J

Using Lucas’ Theorem [12], p. 5, it can now be seen that if 227! < k < 27, then
n =0 mod 2?. This completes the proof. O

Remarks. 1) It is possible that Theorems 1 and 3 are true even without the restriction
that n>k+2l—1. For I=2, (and I<k<[n/2]) this condition is automatically
satisfied. For I =3, the only exception is the case k =4, n=38 in Theorem 1. In this
case one directly shows that Theorem 1 holds.

ii) The question of existence of equivariant maps of G,l . into G,,, in the case
1 <k <I<[n/2] seems to be much more difficult to handle, and perhaps requires a
quite different approach in order to obtain better results than Theorem 4(ii).

iii) Theorem 2 is perhaps well-known to experts in the field, but has been included
here for the sake of completeness.

4. Span of m{_,

For a vector bundle £ and let Span (£) denote the maximum number of everywhere
linearly independent cross sections that ¢ admits. Using our results on the existence
of equivariant maps, in this section we obtain estimates for Span (m{, ), where {, ,

denotes the non-trivial line bundle over G,,. Note that when k=1, this is the
generalized vector field problem. We will assume that 2 < k < [n/2], and that m> 1.

e

g;
e

s
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Theorem 5. Let 2° ' <n<2% 2<k<[n/2], and let d=dim G, ;.

i) Span ((2° —2){,.2) = Span ((2° — 2){p-1,,,) =0, and for k=3, (n,k) # (2°~1+1,3),
Span ((2°— 1){,.) =0.

i) Span (m{, ) = Span (m{, ) for all m > 1 provided (n, k) # (2571 + 1),2). Also,

Span (Ml - , 1 ,) = Span (mla+ 1 1), and (d{p-1, 1) =0.

g _ 4[m/4] if m=0,1,2 mod 4
iii) Span (Ma.2) = 4 rm/a]+ 1 if m=3 mod 4

Span (m{s ;) = Span (m{s,,) = Span (m{,,2)
o _(8[m8]+1if m=7mod 8
= Span (mt7.1) = {8[m/8] otherwise

Span (m{ e 5) = Span (m{, ;) = Span (ms,3)
| = Span (m{g,;) = 8[m/8].

Proof:i) wae—,((2° —2)(,2) = w?*~2 3£ 0 by Theorem 7. Hence span ((2° — 2){, ;) =0.
Other cases follow by the same argument.

ii) Let (n,k)#(2°"'+1,2). As shown in the proof of 4. (i), there exists a map
g=G,,— G, such that g*({y 1) = (ux- Hence Span (m({, ) = Span (m{, ;). Similarly
Span (m{,-1 1 ;) = Span (m{y4,1). To show that Span (d{,-:, ,) = 0 we observe that
d=22"1—1)= 2*~2="ht(w,) and $0 wy({y-1,,2)= wi #0.

iii) By 4. (i), we observe that the following compositions are equivariant.

-~ P o= 4o
Gs,z = G6,2 =3 G7,2 i G7,1a
~ i o~ i A g &

Gs,s S G7,3 =3 Gs,s - G8,1'

Passing to Grassmann manifolds, and pulling back the line bundle {, ; ~ y,,, over
G.,., = RP® one obtains Span(m(s ) > Span(m{, ) > Span(m{, ).

From Theorem 1.1 of [7], we obtain Span(m{, ,) to be as stated.

To show that Span(m{s ,) = Span(m{,,;), we use a Stiefel-Whitney class argument.
On Gs ,w¢ #0. Therefore for 1 <m <6, wu(m{s ;) =wr #0. '

The proofs for other cases are similar. O

Remark. The above result enables us to determine the order of [{,,]1€KO(G,,) for
n < 8 except for the case n = 8, k = 4. For example, 0([{7,4]) = 0([¢7,31) =0([{s,1 1) =8

Proof of Theorem 6. It is well known [8] that a stable normal bundle for the
Grassmannian G, i8S 22(Va) ® A2(Bui)- On Gg 3, 7 =763 and B = B3 are non-
orientable 3-plane bundles. '

Hence by 10.3, Ch. 12 of [4], A2()) =y ®{, A*(B)~ f®{ where 23(p)={ is the
non-trivial line bundle over G 5. Hence a stable normal bundle to Ge 3 is

GRNBBRN~( DR~ 6D~ 6L

Since by Theorem 5(iii) 8( is trivial it follows that the tangent bundle 7 of Gg 3 is
stably equivalent to 2{ @ 7e. Thus stable span of G¢ 5 is 7. It is known due to Korbas
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[5] that Span G 3 > 3. But from Prop. 20.8 and Corollary 20.5 of [6], one has Span
Ge,3 =1 or Span G 5 = stable span of G¢ ; = 7. It follows that Span G¢ 3 =7.
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