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Abstract

An arbitrary Feynman graph for string field theory interactions is analysed and the

homeomorphism type of the corresponding world sheet surface is completely determined

even in the non-orientable cases. Algorithms are found to mechanically compute the topo-

logical characteristics of the resulting surface from the structure of the signed oriented

graph. Whitney’s permutation-theoretic coding of graphs is utilized.

* * * * *

1

http://arXiv.org/abs/alg-geom/9208001v1


INTRODUCTION

A basic question in string field theory is to determine precisely which surfaces are

obtained from the Feynman diagrams (string propagation diagrams) of Witten’s open string

field theory. Open strings create rectangular strips as their world-sheets which join up with

each other with or without twisting, and they interact amongst themselves at the vertices

of the Feynman diagram. Mathematically, the problem is to determine the topological and

conformal type of the surface obtained by starting from any number of “Feynman vertices”

which are discs with some number (at least two) of rectangular stubs emanating radially

outwards, and creating the associated world sheet surface by joining up the stubs in pairs,

allowing the gluing to be done with or without a 180o flip. Note that the examples exhibited

in the pioneering paper by Giddings-Martinec-Witten [GMW, Figure 3(a)], as well as in the

follow-up paper by Giddings [G, p.185], have several stright joins as well as several flip joins

(see our Figures). It is therefore clearly possible to construct non-orientable surfaces with

boundary from string Feynman diagrams as well as orientable ones. On page 364 of [GMW]

it is mentioned that non-orientable surfaces can arise, but the problem of determining the

exact homeomorphism type of the surface obtained from an arbitrary string Feynman graph

has not been worked out anywhere.

Figure 1. A string-surface having k flip-joins.

In this paper we study the rather interesting topology that arises from this situation

and give explicit answers to the question of the topological type. In fact, for any string

propagation graph Γ with arbitrary assignment of joining rules, we determine the homeome-

orphism type of the corresponding surface S(Γ) by finding algorithms for its orientability,

its genus and the number of its boundary components. The results we prove allow us to

determine the topology by purely mechanical processes programmable on a computer. In-

deed, extending an old idea of Hassler Whitney, we code each Feynman diagram by a pair

of permutations and the signature on the edges. Certain operations defined recursively on

these permutations are shown to produce the required topological answers by quite different

methods.
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There are many subtle topological issues concerned with the set-up under study. The

graph Γ is a “GOS” (a graph with orientation and signature) - and it is a deep question

to analyse the minimal genus and other characteristics of a surface on which a given graph

can be embedded. This relates to the problem of classifying all inequivalent GOS’s that

produce the same topolgical type. In principle that problem can be solved on a computer

by implementing the algorithms we have determined in the final sections of this paper.

The interesting matrix-models techniques described in [BIZ] for finding the number of such

graphs in the orientable cases are being extended by us to the general case, and will be

reported on in future publications.

Remark : In Witten’s string field theory [W] one only has to consider Feynman diagrams

Γ for which every vertex is trivalent. Since the topological probelm is mathematically

natural with arbitrary types of vertex, we solve the general unrestricted problem.

To put our subject into perspective, we end this Introduction by mentioning the con-

formal structure on the surface S(Γ) obtained by assigning Euclidean structure to the

rectangular strips (of fixed width) which are the propagators. Initially in [GMW] and [G]

the authors had put forth an argument using the “canonical presentation” of a Riemann

surface (hence restricting to only the orientable case) to claim that the string diagrams

will produce each Riemann surface once and only once. That canonical presentation arises

from a Jenkins-Strebel holomorphic quadratic differential on a Riemann surface, and the

well-known cell decomposition of the finite dimensional Teichmüller spaces due to Harer-

Mumford-Strebel-Thurston et.al. is closely involved. (See, for example, Harer[H].) Sub-

sequent papers of Samuel [S] and Zwiebach [Z1,Z2] pointed out objections to the above

arguments, but again the problem of studying the conformal (Klein surface) structure in

the non-orientable cases is left untouched. It is important to note that the given GOS-

graph, which is fattened suitably to create the resulting surface S, should be envisaged as

the critical trajectory graph of the appropriate Jenkins-Strebel quadratic differential on the

Riemann surface S in the old orientable cases. Each fixed type of graph corresponded to

a simplicial cell in the decomposition of the Teichmüller space. The space of conformal
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structures on arbitrary surfaces will inherit a similar natural cell-structure from our more

general theory. This is under study, and we hope to report on it in later papers.

1. Feynman graphs and their associated surfaces :

Start with an arbitrary finite connected graph Γ - namely, any finite connected abstract

1-complex. [Note that we allow looping edges, as well as multiple edges joining the same

vertex pair.] An orientation on Γ is an assignment of a cyclic ordering on the half-edges

(≡ stubs) emanating from each vertex. To avoid triviality we only consider graphs for

which every vertex has number of stubs (valency of the vertex) at least two. The joining

rule (without or with a twist) for the two stubs corresponding to each edge is specified by

assigning a + or - sign to that edge ; this is called a signature on Γ. So signature is a map

ε

ε : {Set of edges of Γ} → {+1,−1} (1)

Def 1.1 : A graph with an orientation at each vertex and a signature for each edge will be

called a GOS (alternatively(!) SOG). This is our fundamental object – a “string Feynman

graph”.

Each GOS, Γ, determines a compact topological surface with boundary called S(Γ) as

follows. Any k-valent vertex v is identified with the subset of R2 obtained by k rectangular

stubs jutting out of a central disc.

Figure 2. A 4-valent oriented vertex

The vertex is to be thought of as a k-string interaction site. The orientation at v assigns a

cyclic numbering from 0 to (k−1) of the half-edges incident at v. This numbering is assumed

(without loss of generality) to coincide with the natural increasing order when going in the

anticlockwise direction around the vertex in the planar model. Note that the numbering is

fully determined up to the addition of any fixed number t(mod k) to all the numbers. We

have thus placed all the vertices on the same oriented plane with the ordering of the stubs

at each vertex coinciding with the anticlockwise ordering induced from the plane.
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The abstract surface S(Γ) associated to the GOS Γ is now obtained by gluing the two

stubs corresponding to each edge without any twist if that edge had plus signature, and

with a flip if minus signature was present.

Figure 3 : Joining rule for pairs of stubs

Since the orientation at each vertex gives to any stub a well-defined ordering of its two sides

(i.e., the “right side” and “left side”) it is clear that the joining rule depicted pictorially

is easily formalised mathematically, and the resulting identification space S(Γ) is clearly a

compact 2-manifold with at least one boundary component. Notice the fundamental fact

that the 1-complex Γ is naturally embedded on the surface S(Γ) as its “mid-line graph”. In

our figures we have denoted the graph Γ as the dotted mid-line of each strip of surface.

Remark : In the standard case where the GOS has only + signs, (see Bessis-Itzykson-

Zuber[BIZ], Penner[P], Milgram-Penner [MP]) they have been called “fatgraphs”.

The purely topological questions that arise are :

(1) What is the topological type of S(Γ) ?

(2) Does every surface of finite topological type (i.e. having finitely generated fundamental

group) with at least one boundary component appear from some GOS ?

(3) When should two GOS’s be considered equivalent for the problem of classifying the

topology ?

To apply the methods of algebraic topology to the problems at hand we need to recall

below the standard classification of compact surfaces.

2. The classification of surfaces with boundary :

Let X be a connected compact surface with b boundary components. Let M denote

the closed (compact without boundary) 2-manifold obtained by filling in b 2-discs, one for

each boundary circle. A short homology argument (left to the reader) proves that X is

orientable if and only if M is. We record the classical facts (see Massey [M], Rotman [Rot]).

Proposition 2.1 : Let M be any closed surface. Then M is homeomorphic to precisely

one of the following list of 2-manifolds :
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[ORI] If M is orientable then either M is homeomorphic to the 2-sphere S2 or M is

homeomorphic to the connected sum of g copies of the torus T2 = (S1 ×S1), for a uniquely

defined integer g ≥ 1. g is called the “genus” of M and S2 is considered the genus zero

case. The homology groups of M are :










H0(M) = Z
H1(M) = Z2g

H2(M) = Z
(2)

[NON-ORI] If M is non-orientable then M is homeomorphic to the connected sum of h

copies of the real projective plane P2, for a uniquely defined integer h ≥ 1. We call h the

“non-orienable genus” of M . The homology groups of M are :










H0(M) = Z
H1(M) = Zh−1 ⊕ Z2

H2(M) = 0
(3)

N.B. All homology groups are with Z coefficients.

Remark : The operation of connected sum (#) of (homeomorphism classes of) closed

2-manifolds is a commutative and associative operation. The reader may find it instructive

to check, for example, that P2#P2 is the familiar Klein bottle while P2#T2 is the surface

of non-orientable genus h = 3.

Finally then, the original X itself is homeomorphic to the clased manifold M minus b

disjoint open 2-discs.

3. The genus of S(Γ) :

Given the data for a GOS, Γ, our aim is to provide algorithms by which we can identify

S ≡ S(Γ) topologically. In the next sections we will show how to determine the number

of boundary components b, and the orientability or otherwise, of S. At present, assuming

that we know b and the orientability-type we will exhibit the homeomorphism class of S

(Theorem 3.1).

Henceforth, V and E will denote, respectively, the number of vertices and edges of Γ.

Thus the Euler characteristic of Γ is

χ(Γ) = V − E (4)
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It is straightforward to prove that the 1-complex Γ has the homotopy type of the wedge of

r circles, where

r = 1 − χ(Γ) = 1 − V + E (5)

One of our main theorems is :

Theorem 3.1 Suppose S has b boundary components and r is as above. Then :

[ORI] If S is orientable then S is a surface of genus g = 1

2
(r− b+1), with b disjoint discs

removed.

[NON-ORI] If S is non-orientable then S is a surface of non-orientable genus h = (r−b+1),

again with b disjoint discs removed.

Proof : First notice that the surface S deformation retracts onto the mid-line graph Γ.

Hence S also has the homotopy type of a wedge of r circles.

As in Section 2, construct the closed 2-manifold M by “filling in the holes” of S using

b 2-discs :

M = S
⋃

∂S

(b discs). (6)

By excision of the interiors of the b discs, we see that the homology of the pairs (S, ∂S)

and (M, b points) are equivalent. Thus,

H⋆(S, ∂S) = H⋆(M, A) (7)

where A = {p1, . . . , pb} is a set of b distinct points of M . The technique now is to look at

the homology sequence for ∂S
i
→֒ S

j
→֒ (S, ∂S). We get the exact sequence :

0 → H2(M)
δ
→ Zb i⋆→ Zr j⋆

→ H1(M, A)
δ
→ Zb i⋆→ Z → 0. (8)

In (8) we have used the following facts : H2(M, A) = H2(M) since A is zero-dimensional

also H1(∂S) = Zb, H1(S) = Zr, H0(∂S) = Zb, H0(S) = Z since S has the homotopy type

of wedge of r circles and ∂S is the disjoint union of b circles. Moreover, the surjectivity of

i⋆ : H0(∂S) → H0(S) has been uitlised to truncate the sequence at H0(S). Of course, the

excision isomorphism (7) has been used repeatedly.
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But the exact sequence for the pair (M, A) produces :

H1(A) = 0 → H1(M) → H1(M, A) → Zb → Z → 0 . (9)

utilising the fact that H1(A) = 0 as A is zero-dimensional.

Set rank H1(M) = x and rank H1(M, A) = y. Note that rank H2(M) = 1 or 0 according

as S (and hence M) is orientable or not. Since the alternating sum of ranks in any exact

sequence is zero, we obtain from (8)

y = r − 1 +

{

1 if S is orientable
0 if S is non − orientable.

(10)

But exactness of (9) means

x = y − b + 1 (11)

Substituting y from (10) into (11) we simply compare rank H1(M) with the values in the

classification Theorem 2.1. The required result follows immediately.

A sufficient (but not necessary) conditon for S(Γ) to be non-orientable is

Corollary 3.2: If a GOS has (E − V − b) odd then the associated surface must be

non-orientable.

Proof : For S(Γ) to be orientable (r − b + 1) must have been even. The result follows.

Remark 3.3 : It is easy to see using the above Theorem that any orientable or non-

orientable closed surface with at least one disc removed is achievable as an S(Γ), excepting

S2 with one hole (i.e. a closed disc). If only graphs with all vertices at least trivalent

are allowed then one has to further leave out the exceptions : S2 with two holes (i.e., the

annulus) and P2 with one hole (i.e., Möbius strip).

EXAMPLES:

Let us see some instructive applications of our Theorems now, by noting examples of

GOS’s and the associated S(Γ). In all the following figures the signature of edges is assumed

positive unless otherwise marked. Also, the orientation at each node, if left unspecified, is

assumed to be the natural anticlockwise orientation induced from the plane of the diagram.
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The algorithms of the following sections have been utilized to derive the orientability and

the number of holes.

Table for the Figures:

Figure 1 : If the number k of vertical flipped strips is even (say k = 2p), then the surface

is orientable of genus (p − 1) with two holes. For k odd with k = 2p + 1 (say), the surface

is again orientable of genus p with only one hole. This last case is depicted in [GMW] as

well as [G].

Figure 4(a) : S(Γ) is non-orientable connected sum of 3 copies of P2 with 1 hole.

Figure 4(b) : Replace one of the two horizontal + edges by a flip join. Interestingly, the

topological type remains the same as in 4(a).

Figures 5 and 6 : GOS structures on the Petersen graph. This famous non-planar graph

consists of an inner (star-)pentagon and an outer pentagon joined by five inner-to-outer

connecting edges. Thus every interaction site is trivalent and we have r = 6. Applying our

theorem we see that for every GOS structure on it that produces an orientable surface, the

genus g must be less that or equal to 3. Non-planarity implies that g = 0 is unattainable.

Figure 5(a) produces genus 1 with (necessarily) 5 holes; 5(b) gives genus 2 with 3 holes;

and 5(c) results in genus 3 with 1 hole. Figure 6 shows the Petersen graph with flip joins

along the five inner-outer connector edges; in this diagram we have drawn the world-sheet

S(Γ) itself. Again the surface turns out to be orientable with genus 2 and (therefore) 3

boundary components. It is easy to construct non-orientable surfaces also from the Petersen

graph.

Remark 3.4 : Apropos of the example above, let us suppose the minimal genus of an

orientable surface on which a graph Γ can be embedded is known. (This is a difficult

and well-studied concept in graph theory.) Then it is not very hard to see the following

result: There exist GOS structures on Γ with all edges having plus signature such that each

genus from the minimal genus up to and including the maximal genus, [r/2] (allowable by

Theorem 3.1) will appear amongst the associated surfaces. Evidently, this is the full range

of genera of orientable surfaces achievable from Γ.
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Again from Theorem 3.1 the maximum value of non-orientable genus obtainable from

GOS stuctures on Γ is r. One may conjecture that here too the complete range of non-

orientable genera from the minimal possible one up to r will appear via various GOS

structures on Γ.

Remark 3.5 : For planar graphs, of course, any all-plus GOS structure (with orientations

at the nodes coming from the planar embedding) will result in a genus zero surface with

the some holes.

Remark 3.6 : It is worth remarking that there is an interesting connection with the

fact that the surface S(Γ) associated to Γ is actually a Seifert surface for the link in space

constituting the boundary ∂S(Γ) in the natural pictures for S(Γ) in R3. See our figures

and compare Chapter 5 of Rolfsen’s book [R]. We are indebted to M. Mitra for pointing

this out to us.

4. Determining orientability :

Given the GOS, Γ, consider the underlying graph (=1-complex) of Γ and choose any

maximal (spanning) tree sub-graph, T , connecting all the vertices. Since Γ had V vertices

and E edges, any such tree necessarily has exactly (V − 1) = (E − r) edges. [Recall r from

equation (5).] Therefore, any maximal tree misses exactly r edges of Γ.

Now, consider in turn adjoining each one of these r extra edges to the tree. Let

{α1, . . . , αr} be these edges of (Γ − T ). Adjoining αi to T gives us a graph having the

homotopy type of a circle. If the number of minus signatures in a circuit in T ∪ αi is even,

we will say that T ∪ αi is of “orientable type”.

Proposition 4.1 : S(Γ) is an orientable surface if and only if each T ∪αi is of orientable

type for i = 1, 2, . . . , r.

Proof : In fact, the mid-line graph Γ, as well as the surface S(Γ), has, as we know,

the homotopy type of the wedge of r circles. The non-trivial closed curves on S(Γ) can

therefore be generated by the r cycles, one from each T ∪αi. To obtain non-orientability is
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therefore equivalent to showing that “the normal direction gets reversed” when traversing

at least one of these r closed curves. Hence, for S(Γ) to be non-orientable, at least one of

these cycles must have had an odd number of 180o flip-joins. We are through.

It is important to note that there are standard efficient algorithms available for finding

a maximal tree in a graph. See, for example, Aho, Hopcoft and Ullman [AHU]. Therefore,

given an arbitrary GOS, Γ, it is straightforward to implement on a computer the above

criterion for the orientability of the surface S(Γ). In Section 6 below we will show another

algorithm for orientability.

Clearly, the choice of cyclic ordering (orientation) at each vertex has a great deal to do

with the topology of the resulting surface. As our figures exemplify, it is quite a difficult

question to determine the complete family of topological types obtainable by imposing

all the possible orientations and signatues on a given graph. In particular, to connect

up with the case of the classical “fatgraphs”, we will answer affirmatively the following

natural question with the reader may have been asking himself. If a GOS Γ having some

minus signatures produces an orientable surface S(Γ), then is there a naturally related GOS

structure on the same graph with all edges now having positive signature and producing

the same surface ?

The answer to this query leads to a method of obtaining new GOS structures on the

same graph Γ preserving the topological type of the associated surface. The idea is to

reverse the orientation at any vertex, i.e., reversing the cyclic order of the stubs thereat.

This operation corresponds to cutting out a neighbourhood of that vertex from S(Γ) and

reattaching using the old side identifications after turning that “fattened vertex” upside

down. A little thought shows that the same topological surface is obtained provided all the

signatures of the edges incident at the distinguished vertex v are reversed - except for those

edges which loop at v, their signatures being preserved. We will call this new GOS structure

as obtained from the initial one by “turning v upside down”. We will prove :

Proposition 4.2 : If S(Γ) is orientable for a given GOS, then there exists a GOS

structure obtained on Γ by successively turning some vertices upside down with all edges
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having + signature. The new fatgraph (with all + signs) produces the same surface.

Proof : Choose a maximal tree T in Γ, as above. If any of the edges present in T has a

minus sign then turn upside down any one of the two endpoints of such an edge. Clearly

then, by turning a set of vertices upside down we can get every edge in the tree to be of

+ signature. Consider the topologically-equivalent GOS we have on our hands now. Since

S(Γ) was orientable, the criterion of Proposition 4.1 applied to this new GOS with the

all-plus tree shows that every edge everywhere must have become plus-signed The result is

proved.

There is always the trivial equivalence relation of “relabelling” amongst GOS’s. We

will say Γ1 and Γ2 are relabellings of each other if there is a homeomorphism between

the underlying 1-complexes that respects the cyclic ordering at the nodes and the edge-

signatures. Aside from this “relabelling” of a GOS we have the above operation of “turning

vertices upside down”. One may question whether in general these two notions will produce

all the various “equivalent” GOS structures on a given graph so that the resulting surface

retains its topological type.

5. Determining the boundary components :

The number b of boundary components ( = number of “holes”) in S(Γ) is determinable

by playing a simple game with 4E counters. The game which we christen “follow-the-

boundary” game, takes one counter to the next by alternating edge-moves and vertex-moves

according to the rules prescribed below. At the end of the game, the 4E counters get

separated into distinct piles (i.e., equivalence classes), each pile containing those counters

that are obtainable from each other by the moves of the game. The number of piles is the

sought-for number b.

Let {v1, v2, . . . , vV } be the vertices of Γ. Suppose the vertex vj has valency wj. To avoid

trivialities we will henceforth assume each node to be at least trivalent.

The total number of stubs ( = half-edges), which is twice the number of edges, is

therefore

2E = w1 + w2 + . . . + wV (12)
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The vertex vi contributes 2wi counters - each counter being an ordered triple (i, k, δ)

with k ∈ Z/wiZ and δ ∈ {+1,−1}. This counter corresponds to the “right side” or the “left

side” of the kth stub at the oriented vertex vi according as δ = −1 or δ = 1, respectively.

Clearly, the total number of counters is 4E.

A vertex-move is given by the simple rule :

(i, k, δ) goes to (i, k + δ,−δ) . (13)

If the kth stub at vertex vi is joined in Γ to the mth stub at vertex vj with signature on

that edge being ε(= ±1), then the edge-move prescribes

(i, k, δ) goes to (j, m,−εδ) . (14)

The rationale for the above moves is made clear by drawing a few pictures. Clearly

the moves are symmetric (i.e.reversible), and the game is played by alternating vertex and

edge moves starting from any counter (and any move type). One sees that disjoint cycles

(“piles”) form within the set of counters. The number of such piles is exactly the number

b of boundary circles in S(Γ).

Remarks : The number of counters in each pile is always even. The process above is

evidently programmable on a computer.

6. Coding by permutations :

Extending old ideas of Hassler Whitney, we can code the structure of a GOS by two per-

mutations on the set of all stubs and the signature map ε. The study of these permutations

will be now shown to produce the required topological parameters for S(Γ).

As in the previous section, let vertex vi have valency wi(≥ 3), i = 1, 2, . . . , V . Label

the stubs using the labeling set {1, 2, . . . , 2E}, such that the stubs at v1 get the numbers

(1, 2, . . . , w1), the stubs at v2 get (w1 +1, . . . , w1 +w2), and so on. We stipulate that at any

k-valent vertex the cyclic ordering of the stubs thereat coincides with the cyclic ordering

of the label subset (i, i + 1, . . . , i + k − 1) assigned above. As in [BIZ] we define the first
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characteristic permuation for Γ to be :

σ = σ(Γ) = (1, 2, . . . , w1)(w1 + 1, . . . , w1 + w2) . . . (
V −1
∑

1

wj + 1, . . . , 2E) (15)

The attaching rules in pairs for the 2E stubs produces the second characteristic permu-

tation for Γ :

τ = τ(Γ) = (s1, s2) (s3, s4) . . . (s2E−1, s2E) (16)

Here the cycle decomposition into disjoint doubletons codes the pairs of stubs that join

together to form a full edge. [Namely, stub s1 attaches to stub s2, etc..].

Both σ and τ are permutations in the symmetric group Σ2E , and the GOS Γ is determined

by σ, τ and the signature map ε (of equation (1)).

Notation : Permutations in Σ2E will be composed from left to right. The action of a

permutation π on some p ∈ {1, . . . , 2E} will therefore be denoted pπ.

Once again our goal is to determine algorithmically the orientability and the number

of boundary components of S(Γ) from (σ, τ, ε). Knowing b and the orientability one again

uses Theorem 3.1 to get the complete topological information.

Our method is the following. The surface S(Γ) is going to be built up inductively by

joining one pair of stubs (i.e., one propagator strip) at a time. This gives us several interme-

diate (not necessarily connected) surfaces that interpolate between the initial (orientable!)

one comprising simply V discs (the V fattenned vertices), and the final S(Γ). At stage i,

we have a surface Si obtained from Si−1 by filling in ith propagator strip. Now a certain

permutation ρi ∈ Σ2E determines the boundary structure of Si. We will explain how to

produce ρi from ρi−1, and simultaneously we determine whether the resulting surface Si

remains orientable or not. If at any stage in passing from an orientable Si−1 to Si our rule

asserts that Si is non-orientable, then the final SE = S(Γ) is also non-orientable. We let bi

denote the number of boundary components in Si. Clearly b0 = V .

Remark 1 : It is not surprising that in the presence of arbitrary flip joins, the rules

needed become far more complicated than the ones for only + signatures - as in the previous

literature.
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Remark 2 : The induction obviously depends on a particular ordering of the doubletons

(= edges of Γ) in τ(Γ). Our results do not depend on any particular ordering at all, but it is

convenient (and often instructive) to take an ordering such that the first (V −1) doubletons

span a (necessarily maximal) tree in Γ. That implies, in particular, that the surfaces SV −1

onward are each connected, and that SV −1 itself is still orientable.

Note that S0 = V disjoint discs, is oriented, and setting the initial ρ0 = σ(Γ) we see that

the disjoint cycle structure of ρ0 captures fully the boundary of S0. Further, the induced

orientation on ∂S0 from the orientation on S0 is also completely represented by the cyclic

ordering within each individual cycle of ρ0.

Remark 3 : The process of passing from Si−1 to Si by joining a propagator strip

is exactly what is called in topology the “boundary connected sum” operation. See, for

instance, Massey [M].

Let i ≥ 1. By the induction hypotehsis assume that the decomposition into disjoint

cycles for ρi−1 gives the boundary of Si−1 with orientation, which is the induced orientation

of ∂Si−1 in case Si−1 is oriented.

Let the ith edge consisting of a doubleton of stubs be ti = (s2i−1, s2i) = (p, q) (say).

Write p′, q′ for the labels of stubs which occur before p and q with respect to the cyclic

orientations on the fat vertices containing p and q respectively. Let [p] denote the arc,

contained in the boundary of the fat vertex containing p, obtained as one traverses from

the left hand edge of p′ to the right hand edge of p, following the cyclic order at that vertex.

Then [p] and [q′] (resp. [p′] and [q′] are in the same boundary component of Si, and [p′] and

[q] (resp. [p] and [q]) are in the same component of Si when ε(ti) = 1 (resp. ε(ti) = −1).

In Si−1, however, [p] and [p′] are in the same (oriented) boundary component, C1, and

[q] and [q′] are in the same (oriented) boundary component C2. Each Ci will be identified

with the corresponding cycle in ρi−1. We can regard Ci as elements of Σ2E in the obvious

manner (where we identify the arc [j] with the element j ∈ {1, 2, . . . , 2E}). One then has

p′C1 = p or pC1 = p′
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and similarly

q′C2 = q or qC2 = q′.

CASE -I : Suppose C1 6= C2, in which case C1

⋂

C2 = ∅.

In this case bi = bi−1 − 1.

(I-1) If p′C1 = p and q′C2 = q, define ρi as

(a) ρi = ρi−1(p, q) if ε(ti) = 1

(b) ρi = ρi−1C
−2

2 (p, q′) if ε(ti) = −1.

(I-2) If p′C1 = p and qC2 = q′, define

(a) ρi = ρi−1(p, q
′) if ε(ti) = −1

(b) ρi = ρi−1C
−2

2 (p, q) if ε(ti) = 1.

There are two other similar (hence omitted) possibilities where the roles of p and q are

interchanged. In case-I Si in orientable if and only if Si−1 is orientable and in the context

of I-1(b) and I-2(b), C1 and C2 belong to distinct path components of Si−1. In case Si is

orientable, the orientation on it is then obtained from that on Si−1 as follows : Note that

Si−1 is an imbedded submanifold of Si of the same dimension and that Si−1 intersects all the

path components of Si. Hence the orientation on Si−1 extends uniquely to an orientation

on Si in cases I-(1)(a) and I-2(a). In the cases I-1(b) and I-2(b) the orientation on Si−1

cannot be extended to Si. However if we reverse the orientation on that component of

Si−1 which contains C2, then the resulting orientation on Si−1 can be (uniquely) extended

to obtain an orientation on Si. For this orientation on Si, the induced orientation on the

boundary components of Si coincides with that which one obtains from ρi. It is not hard

to check our assertions remembering the boundary - connected sum operation.

CASE-II : Suppose C1 = C2 = C (say).

Let p′, p, q, q′ occur in that cyclic order in C. Then let

(II-1)

(a) ρi = ρi−1(p, q
′) if ε(ti) = −1

(b) ρi = ρi−1C
−1(p, . . . , q, rev(p′, q′)) if ε(ti) = 1,

where rev(p′, q′) denotes the sequence of integers obtained as one traverses from p′ to q′ in
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the reverse orientation on C.

(II-2) Let p′, p, q′, q occur in that cyclic order in C. Then

(a) ρi = ρi−1(p, q) if ε(ti) = 1

(b) ρi = ρi−1C
−1(p, . . . , p′, rev(p′, q)) if ε(ti) = −1.

Figure 7 clarifies the situation for the cases II-1(b) and II-2(b).

Also the number of boundary components is affected as follows :

bi = bi−1 + 1 in cases II − 1(a)and II − 2(a).

bi = bi−1 in cases II − 1(b)and II − 2(b).

Si is orientable if and only if Si−1 is orientable and situations II-1(a) or II-2(a) applies. In

these situations there is a unique extension of the orientation of Si−1 to Si. The orientation

on ∂Si coincides, then, with that obtained from ρi.

Note : SV −1 is homeomorphic to a disk under the assumption of Remark 2 above. For

the first V − 1 steps Case-II then never arises.

Remark : In Case-II-1, suppose that p′ = q. Then the vertex at the stub p will have

valency 2, contradicting our assumption. Thus p′ = q is untenable. Suppose p′ = q′. then

p = q, which is absurd. On the other hand it could happen, in Case-II-2, p = q′ in which

case p′ = q. Then ρi has to be interpreted as

(II-2) (a)′ ρi = ρi−1(p, q) if ε(ti) = 1

(II-2) (b)′ ρi = ρi−1C
−1(p, rev(p′, q)) if ε(ti) = −1.

Figure 7 : Cases II - 1(b) and II - 2(b)

Conclusion : Since SE = S(Γ), at the E-th step we obtain bE = b, ρE = ρ and also the

above procedure determines whether SE is orientable or not. When all the signatures are

+, the final ρE from our recursion reduces to στ ; thus the theory in the classical case is

vastly simpler.

Therefore, our algorithms allow us to solve in principle the problem of finding the various

different GOS’s producing a given topological type. Indeed, if we fix the number of edges
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E, we can start with any triplet of the foregoing sort - (σ, τ, ε) - and apply the algorithm

to check whether the surface produced is of the desired type. The equivalence relations of

“relabelling” and “turning vertices upside-down” (mentioned at the end of section 4) are

easily quotiented out. As mentioned in the Introduction, the easier question of finding just

the number of graphs producing a fixed topological type is computable by random matrix

integrations, and we are extending that method to the general GOS structures of this paper

and non-orientable surfaces.
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