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FROBENIUS SPLITTING OF

CERTAIN RINGS OF INVARIANTS

V. LAKSHMIBAI, K. N. RAGHAVAN, AND P. SANKARAN

Dedicated to Professor Melvin Hochster on the occasion of his sixty-fifth birthday.

Abstract: Let k be an algebraically closed field of characteristic p > 0,
and V an n-dimensional k-vector space together with a non-degenerate
symmetric bilinear form. Let G denote one of the groups G = SL(V )
or SO(V ) where we assume that p > 2 if G = SO(V ). Let R denote
the coordinate ring of Vm,q := V ⊕m ⊕ V ∗⊕q (resp. Vm := V ⊕m) if
G = SL(V ) (resp. if G = SO(V )), V ∗ being the dual of V . The
defining representation of G on V induces the diagonal action of G
on Vm,q (resp. Vm). Let S = RG. In this paper, we show that S is
Frobenius split.

1. Introduction

The concept of F -purity was introduced by Hochster-Roberts [6]; the
F -purity for a noetherian ring of prime characteristic is equivalent to
the splitting of the Frobenius map, when the ring is finitely generated
over its subring of p-th powers. It is closely related to the Frobenius
splitting property á la Mehta-Ramanathan [10] for algebraic varieties;
to make it more precise, the F -split property for an irreducible projec-
tive varietyX over an algebraically closed field of positive characteristic
is equivalent to the F -purity of the ring ⊕n≥0H

0(X;Ln) for any ample
line bundle L over X (cf.[3],[13],[14]). We feel that it is but appro-
priate to dedicate this paper to Professor Hochster on the occasion of
his sixty-fifth birthday and thus make a modest contribution to this
birthday volume.

Let k be an algebraically closed field of characteristic p > 0 and let
X be a k-scheme. One has the Frobenius morphism (which is only
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an Fp-morphism) F : X−→X defined as the identity map of the un-
derlying topological space of X, the morphism of structure sheaves
F# : OX−→OX being the p-th power map. The morphism F induces
a morphism of OX -modules OX−→F∗OX . The variety X is called
Frobenius split (or F -split or, merely, split) if there exists a splitting
ϕ : F∗OX−→OX of the morphism OX−→F∗OX . Equivalently, X is
Frobenius split if there exists a morphism of sheaves of abelian groups
ϕ : OX−→OX such that (i) ϕ(f pg) = fϕ(g), f, g ∈ OX and (ii)
ϕ(1) = 1. Basic examples of varieties that are Frobenius split are
smooth affine varieties, toric varieties (cf. [1]), generalized flag vari-
eties, and Schubert varieties [10]. Smooth projective curves of genus
greater than 1 are examples of varieties that are not Frobenius split.

Frobenius splitting is an interesting property to study. If X is Frobe-
nius split, then it is weakly normal (cf. [1], Prop 1.2.5) and reduced
(cf. [1], Prop. 1.2.1). Indeed, projective varieties which are Frobenius
split are very special. We refer the reader to [1] for further details.

IfX = Spec(R), thenX is Frobenius split if and only if the Frobenius
homomorphism R−→R defined as a 7→ ap admits a splitting ϕ : R−→R
such that ϕ(apb) = aϕ(b), and ϕ(1) = 1.

If a linearly reductive group G acts on a k-algebra R which is Frobe-
nius split, then the invariant ring RG is Frobenius split (see [1, Ex-
ercise 1.1..E(5)]). To quote Karen Smith [13, p. 571], “The story of
F -splitting and global F -regularity for quotients by reductive groups in
characteristics p that are not linearly reductive is much more subtle and
complicated”. We shall show that although the groups SO(n), n ≥ 3,
and SL(n), n ≥ 2, are not linearly reductive, it turns out that certain
rings of invariants for these groups are Frobenius split.

We state below the main results of this paper.

Let k be an algebraically closed field of characteristic p > 2 and V an
n-dimensional vector space over k with a symmetric non-degenerate bi-
linear form. Denote by Am the the coordinate ring of Vm := V ⊕m, m ≥
1, and consider the action of SO(V ) on Am induced by the diagonal
action of SO(V ) on V ⊕m. Then

Theorem 1.1. The invariant ring A
SO(V )
m is Frobenius split for all

m ≥ 1.

The group SL(V ) acts on V , as well as on the dual vector space
V ∗ = Homk(V, k). Now consider the diagonal action of SL(V ) on the
vector space Vm,q := V ⊕m ⊕ V ∗⊕q, m, q ≥ 1. This leads to an action of
SL(V ) on the coordinate ring Am,q of Vm,q.
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Theorem 1.2. The invariant ring A
SL(V )
m,q is Frobenius split for any

m, q ≥ n.

We shall now sketch the proofs of the main results (assuming m, q >
n). Let S be the invariant ring in question. Let R be the ring of invari-

ants under the larger group G̃ = GL(V ) (resp. G̃ = O(V )), we have
(cf. [2, 8]) that R is the coordinate ring of a certain determinantal
variety in Mm,q, the space of m× q matrices (resp. SymMm, the space
of symmetric m ×m matrices) with entries in k. Now a determinan-
tal variety in Mm,q (resp. SymMm) can be canonically identified (cf.
[8]) with an open subset in a certain Schubert variety in Gq,m+q, the
Grassmannian variety of q-dimensional subspaces of km+q (resp. the
symplectic Grassmannian variety, the variety of all maximal isotropic
subspaces of a 2m-dimensional vector space over k endowed with a
non-degenerate skew-symmetric bilinear form). Hence we obtain that
R is Frobenius split (since Schubert varieties are Frobenius split). Let
X = Spec(S), Y = Spec(R), and π : X−→Y , the morphism induced by
the inclusion R ⊂ S . When G = SO(V ), we show that π is a double
cover which is étale over a ‘large’ open subvariety – that is a subvariety
whose complement has codimension at least 2. When G = SL(n), we
show that restricted to a large open subvariety, π is a Gm bundle. The
main theorems are then deduced using normality of S.

Theorem 1.1 can also be deduced from Hashimoto’s work [4], wherein
it is shown that if a reductive group G acts on a polynomial ring A over
k (of positive characteristic) with good filtration, then the ring AG of
invariants is strongly F -regular. Our Theorem 1.2 does not seem to fol-
low from the results of [4]. Granting the results of [9] and [7]—we don’t
need all the results of these papers, only some of the relatively easier
ones—the arguments used in our proofs are straightforward and quite
elementary; the techniques used in [4] are representation theoretic.

Theorem 1.1 will be proved in §2 and Theorem 1.2 in §3.

2. Splitting SO(n)-invariants

Let k be an algebraically closed field of characteristic p > 0. Suppose
that S is an affine k-algebra which is Frobenius split and that a finite
group Γ acts on S as k-algebra automorphisms. Then the invariant
ring R = SΓ is Frobenius split provided the order of Γ is not divisible
by p (cf. [1, Ex. 1.1.E(5)]). We first obtain a partial converse to this
statement in the case when Γ is of order 2.
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Assume that char(k) > 2. Let S be an affine k-domain and let
Γ = {1, γ} ∼= Z/2Z act effectively on S. Denote by R the invariant
subalgebra SΓ. Then R is an affine k-algebra and S is quadratic and
integral over R. Indeed, any b ∈ S can be expressed as b = b0+b1 where
b0 = (1/2)(b+γ(b)) ∈ R and b1 = (1/2)(b−γ(b)) satisfies γ(b1) = −b1.
Thus, we can choose generators u1, · · · , us for the R-algebra S to be in
the −1 eigenspace of γ. Clearly u2

i = −uiγ(ui) =: pi ∈ R for all i ≤ s.
Furthermore,

γ(uiuj) = uiuj =: pi,j ∈ R for all i, j ≤ s (with pi,i = pi). Observe that
p2

i,j = pipj .

We shall assume that S is reduced so that pi 6= 0, for all i. Now let
Ri = R[1/pi], 1 ≤ i ≤ n. Let Si = S[1/ui]. We claim that Si = Ri[ui].
To see this, first observe that Ri[ui] ⊂ S[1/ui], since 1/pi = (1/ui)

2 ∈
S[1/ui]. To show that S[1/ui] ⊂ Ri[ui], it suffices to show that uj ∈
Ri[ui] for all j and (1/ui) ∈ Ri[ui]. Indeed, 1/ui = ui/u

2
i = ui/pi ∈

Ri[ui] and so uj = pi,j/ui ∈ Ri[ui].

Write X = Spec(S), Y = Spec(R) and let π : X−→Y be the mor-
phism (induced by the inclusion R ⊂ S). As above, let Si = S[1/ui],
and let Ui = Spec(Si) ⊂ X and let U :=

⋃
1≤i≤s Ui; it is the full

inverse image under π of
⋃

1≤i≤s Spec(Ri). It is readily verified that
π|U : U−→π(U) is étale. Indeed, Si is a free Ri module with basis
{1, ui} and det(ui) = −pi 6= 0 and so π|Ui is étale. Hence π|U is étale.

On the other hand, if y ∈ Y is a closed point such that pi(y) = 0 for
all i ≤ s, then the fibre f−1(y) = Spec(Sy ⊗Ry k) is the scheme whose
coordinate ring is Sy ⊗Ry k = k[u1, · · · , us]/〈u

2
i , 1 ≤ i ≤ s〉. Here Ry

is the local ring at y. Thus f−1(y) is non-reduced. It follows that the
ramification locus of π equals Y \ π(U). (See [12, §III.10, Theorem 3].)

Proposition 2.1.Let k be an algebraically closed field of characteristic
p > 2. Let S be an affine normal domain over k acted on by Γ ∼= Z/2Z

and let R := SΓ be Frobenius split. Suppose that the ramification locus
of the double cover π : Spec(S)−→Spec(R) has codimension at least 2 in
Spec(R). Then, any splitting ϕ : R−→R extends uniquely to a splitting
ψ : S−→S.

Proof. We use the notations introduced above.

Since X is normal and the codimension of the the ramification locus
of π is at least 2, it suffices to show that U =

⋃
1≤i≤s Ui is Frobenius

split (cf. [1], Lemma 1.1.7,(iii)).
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Let ϕ : R−→R be a splitting of Y = Spec(R). First, we shall extend
ϕ to a splitting ψi : Si−→Si of Ui = Spec(Si)(= Spec(Ri[ui])) for each
i and verify that these splittings agree on the overlaps Ui ∩ Uj for 1 ≤
i, j ≤ s. Thus we will obtain a splitting of U =

⋃
1≤i≤s Ui. By normality

of X and the hypothesis on the codimension of the ramification locus,
we will conclude that this splitting extends to a splitting of X. Next,
we shall establish the uniqueness of the extension.

Recall that {1, ui} is an Ri-basis for Si. Since ui = u−p
i p

(1+p)/2
i on

Ui, if ψi : Si−→Si is any splitting of Ui which extends the splitting

ϕi of Ri defined by ϕ, we must have ψi(aui) = ψi((1/ui)
pap

(p+1)/2
i ) =

(1/ui)ϕi(ap
(p+1)/2
i ). By additivity, we must have

ψi(aui + b) = (1/ui)ϕi(ap
(p+1)/2
i ) + ϕi(b) = (ui/pi)ϕi(ap

(p+1)/2
i ) + ϕi(b)

where a, b ∈ Ri. Thus the extension ψi, if it exists, is unique.

We now define ψi by the above equation and claim that ψi is indeed
a splitting of Si. First, observe that ψi(1) = 1, by the very definition
of ψi.

Now, for any x, y, a ∈ Ri, we have

ψi((xui + y)paui) = ψi(x
pp

(p+1)/2
i a+ ypaui)

= xϕ(p
(p+1)/2
i a) + yϕ(aui)

= x(pi/ui)ψi(aui) + yϕ(aui)

= xuiψi(aui) + yψ(aui)

= (xui + y)ϕ(aui)

An entirely similar (and easier) computation shows that

ψi((xui + y)pb) = (xui + y)ψi(b), completing the verification that ψi is
a splitting.

We verify, by another straightforward computation, that these ψi

agree on the overlaps Ui ∩ Uj . Indeed, writing uj = uipi,j/pi, we have

ψi(uj) = ψi(uipi,j/pi) = (ui/pi)ϕ((pi,j/pi)p
(p+1)/2
i )

= (ui/pi)ϕ(pi,jp
(p−1)/2
i )

Since pi = p2
i,j/pj on Ui ∩ Uj , we have

ϕ(pi,jp
(p−1)/2
i ) = ϕ(pp

i,j(pi/p
2
i,j)

(p−1)/2)

= pi,jϕ(p
(1−p)/2
j ) = (pi,j/pj)ϕ(p

(p+1)/2
j )
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Substituting in the above expression for ψi(uj) we get

ψi(uj) = (uipi,j/(pipj))ϕ(p
(p+1)/2
j ) = (uj/pj)ϕ(p

(p+1)/2
j ) = ψj(uj)

This implies that the extensions {ψi} patch to yield a well-defined
splitting on U as claimed. As observed above, the normality of X and
the hypothesis on the codimension of the ramification locus implies
that this splitting extends to a unique splitting ψ : S−→S.

Finally, if ψ′ is another splitting of X which also extends ϕ, then ψ′

and ψ agree on Ui (for any i) as already observed. As X is irreducible,
Ui is dense in X and we conclude that ψ′ = ψ. �

As a corollary, we obtain the following

Theorem 2.2. Let π : X−→Y be a double cover of a Noetherian
scheme whose ramification locus has codimension at least 2. Suppose
that X is reduced, irreducible and normal and that Y is Frobenius split,
then X is Frobenius split.

Proof. Cover X by finitely many affine patches Xα. Let Yα := πXα.
Then each π|Xα satisfies the hypotheses of the above proposition. Let ϕ
be a splitting of Y and let ψα be the unique splitting of Xα that extends
the splitting ϕ|Yα. The ψα’s agree on overlaps and hence define a unique
splitting of X which ‘extends’ ϕ. �

We now turn to proof of Theorem 1.1.

Proof of Theorem 1.1. Denote by S the ring of SO(V )-invariants of
Am, where Am is the coordinate ring of Vm. Let R be the ring of
O(V )-invariants.

We shall assume that m > n. By [2, 8] we have that Y := Spec(R)
is the determinantal variety Dn(SymMm) consisting of all matrices
in SymMm (the space of symmetric m × m matrices with entries in
k) of rank at most n; further, we have (cf. [8]) an identification of
Dn(SymMm) with an open subset of a certain Schubert variety in the
Lagrangian Grassmannian variety (of all maximal isotropic subspaces
of a 2m-dimensional vector space over k endowed with a non-degenerate
skew-symmetric bilinear form). Hence we obtain that Y is Frobenius
split (since Schubert varieties are Frobenius split (cf. [10])).

Observe that Γ := O(n)/SO(n) ∼= Z/2Z acts on S (the subring of
SO(V )-invariants of Am) and that SΓ equals R. As above, let

X := Spec(S), and π : X−→Y be the morphism induced by the inclu-
sion R ⊂ S. We need only verify the hypotheses of Theorem 2.2. It is
well-known that S is an affine normal domain. It remains to verify that
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the codimension of the branch locus is at least two. This was proved in
[7]. In fact, the ramification locus of Y equals the singular locus of Y ,
but this more refined assertion is not relevant here. Since Y is normal
it follows that the codimension of the ramification locus is at least 2.
Therefore, by Theorem 2.2, X is Frobenius split.

The case m = n is isolated separately as Lemma 2.3 below. When
m < n, it is easy to see that S = R. Again, R is a polynomial algebra
over k and hence S is Frobenius split. �

Assume that m = n. In this case R = k[yi,j : 1 ≤ i ≤ j ≤ n] is a
polynomial ring, being the ring of polynomial functions on the space of
n×n symmetric matrices. As an R-algebra, S = R[u]/〈u2−f〉, where f
denotes the determinant function of the symmetric n×n matrix whose
entry in position (i, j) for 1 ≤ i ≤ j ≤ n is yi,j.

Lemma 2.3. Let m = n. The ring S of SO(V )-invariants is Frobenius
split in this case also.

Proof. There is a natural identification of Spec(R) with an affine patch
of the symplectic Grassmannian and the vanishing locus of f under
this identification becomes an open part of a Schubert variety [8, 7].
Thus by [10] (see also [1]), there exists a splitting of Spec(R) that
compatibly splits Spec(R/(f)). Let ϕ be such a splitting. Continue
to denote by ϕ the restriction of ϕ to the open part Spec(R[1/f ]).
Arguing as in the proof of Proposition 2.1 above, we may ‘lift’ the
restriction ϕ to a splitting (also denoted ϕ) of Spec(S[1/f ]). We claim
that ϕmaps S to S and hence extends to a splitting of Spec(S). Indeed,
a general element of S is of the form au + b with a, b in R, so that

ϕ(au + b) = ϕ(aup+1

up + b) = ϕ(af(p+1)/2)
u

+ ϕ(b). Since ϕ compatibly

splits the vanishing locus of f , it follows that ϕ(af (p+1)/2) belongs to the
ideal (f). Writing ϕ(af (p+1)/2) = cf , we have ϕ(au+ b) = cf

u
+ ϕ(b) =

cu+ ϕ(b) ∈ S. �

We conclude this section with the following remarks.

Remark 2.4. (i) The condition on codimension of U in Proposition 2.1
will be satisfied if S is generated over R by two or more elements ui such
that there exist ui, uj such that the supports Di and Dj of the reduced
scheme defined by ui = 0 and uj = 0 do not have any component in
common.

(ii) Theorem 2.2 is not valid when the hypothesis on the codimension
of the ramification locus is not satisfied. For example, if Γ ∼= Z/2Z

is generated by the involution of a hyperelliptic curve X of genus g ≥
2, then the quotient is a smooth projective curve which is Frobenius
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split. However, X is not split since ωX is ample but H1(X;ω) ∼= k,
whereas higher cohomologies for ample line bundles over Frobenius split
projective varieties vanish.

(iii) We do not know if Theorem 2.2 remains valid if Γ is any finite
group whose order is prime to the characteristic p of k, even in the
case when Γ is cyclic.

(iv) One has an isomorphism of SL(2) with SO(3) such that the SO(3)
action on V = k3 corresponds to the conjugation action of SL(2) on
trace zero 2×2 matrices. In this case the Frobenius splitting property of
Am was proved by Mehta-Ramadas [11, Theroem 6]. It should be noted
that when dimV = 3, the completion of the stalk at the origin in Am

is isomorphic to the completion of the stalk at the point corresponding
to the class of the trivial rank 2 vector bundle in the moduli space of
equivalence classes of semi-stable, rank 2 vector bundles with trivial
determinant on a smooth projective curve of genus m > 2 (see [11]).

3. Splitting SL(n) invariants

In this section we shall establish Theorem 1.2. Let V be an n dimen-
sional vector space over an algebraically closed field k of characteristic
p ≥ 2 and let V ∗ denote its dual. Let Vm,q := V ⊕m ⊕ V ∗⊕q, and let
A denote the ring of regular functions on Vm,q. By fixing dual bases
for V and V ∗, we shall view elements of V and V ∗ as row and column
vectors respectively, so that V ⊕m (resp. V ∗⊕q) is identified with the
space Mm,n of m× n matrices (resp. the space Mn,q of n× q matrices)
over k; further, GL(V ) gets identified with GLn(k) (the group of in-
vertible n× n matrices over k). In the sequel, we shall denote GLn(k)
by just GL(n). Then the action of GL(V ) on V ⊕m gets identified with
the multiplication on the right of Mm,n by GL(n). Similarly, the action
of g ∈ GL(V ) on V ∗⊕q gets identified with the multiplication on the
left of Mn,q by g−1. The diagonal action of GL(V ) on V ⊕m ⊕ V ∗⊕

is therefore defined as (u, ξ).g = (ug, g−1ξ) where g ∈ GL(n) and
(u, ξ) ∈ Mm,q := Mm,n × Mn,q. We identify A with the coordinate
ring of Mm,q.

We denote by R and S the rings of invariants AGL(n) and ASL(n)

respectively. Let Y = Spec(R) and X = Spec(S). Note that Y and X
are the GIT quotients Mm,q//GL(n) and Mm,q//SL(n) respectively.

Let m, q ≥ n. By [2, 8] we have that Y is the determinantal variety
Dn(Mm,q) consisting of all matrices in Mm,q (the space of m × q ma-
trices with entries in k) of rank at most n; further, we have (cf. [8])
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an identification of Dn(Mm,q) with an open subset of a certain Schu-
bert variety in the Grassmannian variety (of q-dimensional subspaces
of km+q). Hence we obtain that Y is Frobenius split (since Schubert va-
rieties are Frobenius split). The multiplication map µ : Mm,q −→Mm,q

factors through Y ; further, under π : X−→Y (induced by the inclusion
R ⊂ S), we have, π([u, ξ]) = uξ ∈ Mm,q where [u, ξ] ∈ X is the image
of (u, ξ) ∈ Mm,q under the GIT quotient Mm,q−→X.

Let I(n,m) denote the set of all n-element subsets I of {1, 2, · · · , m}.
Any such I determines a regular function uI : Mm,q −→ k which maps
(u, ξ) to the determinant of the n×n submatrix u(I) of u ∈Mm,n with
column entries given by I. Clearly uI is invariant under the action of
SL(n) on Mm,q and hence yields a regular function uI on X.

We define ξ(J) and ξJ for J ∈ I(n, q) analogously; ξJ is also an
SL(n)-invariant.

We have, uIξJ =: pI,J ∈ R for all I ∈ I(n,m), J ∈ I(n, q); indeed
pI,J([u, ξ]) is just the determinant of the n×n submatrix of uξ ∈Mm,q

with row and column indices given by I and J respectively. It is shown
in [9], among other things, that S is generated as an R-algebra by
uI , ξJ , I ∈ I(n,m), J ∈ I(n, q), the ideal of relations being generated
by uIξJ −pI,J , I ∈ I(n,m), J ∈ I(n, q) together with certain quadratic
relations among the uI ’s and certain quadratic relations among the ξJ ’s.
Further, in [9], a standard monomial basis is constructed for S; as a
particular consequence, we have that each uI (resp. ξJ) is algebraically
independent over R for I ∈ I(n,m) (resp. J ∈ I(n, q)).

For K ∈ I(n,m), L ∈ I(n, q), let

RK,L = R[1/pK,L], YK,L = Spec(RK,L)

For a given I ∈ I(n,m), J ∈ I(n, q), let

YI = ∪
J ′∈I(n,q)

YI,J ′, YJ = ∪
I′∈I(n,m)

YI′,J

Note that for I ∈ I(n,m), any YI,J ′ is contained in YI ; similarly, for
J ∈ I(n, q), any YI′,J is contained in YJ .

Set XI = π−1(YI) ⊂ X and XJ = π−1(YJ) ⊂ X. Note that uI (resp.
ξJ) is non-zero on XI (resp. XJ). Denote by fI : XI−→YI × k∗ the
morphism fI = (π|XI , uI |XI), and by fJ : XJ−→YJ ×k

∗ the morphism
fJ = (π|XJ , ξJ |XJ).

Lemma 3.1. The morphisms fI : XI−→YI ×k
∗ and fJ : XJ−→YJ ×k

∗

are isomorphisms for any I ∈ I(n,m), J ∈ I(n, q).
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Proof. We shall prove that fI is an isomorphism, the proof in the case
of fJ being the same.

Let XI,J = π−1(YI,J); then XI,J equals Spec(SI,J) (where SI,J =
S[1/pI,J ]) andXI,J is contained inXI . The morphism fI,J : XI,J−→YI,J

defined by the restriction of fI is induced by the RI,J -algebra map
f ∗

I,J : RI,J [t, t−1]−→SI,J which maps t to uI . Note that pI,J = uIξJ
implies that uI is invertible in SI,J(= S[1/pI,J ]).

We must show that

(1) f ∗
I,J is an isomorphism of k-algebras

(2) fI,J and fI,J ′ agree on the overlap XI,J ∩ XI,J ′ for any two
J, J ′ ∈ I(n, q).

(1). Note that uI′ = uIuI′ξJ/pI,J = uIpI′,J/pI,J = f ∗
I,J(pI′,J/pI,Jt).

Hence uI′ is in the image of f ∗
I,J for any I ′ ∈ I(n,m). Similarly ξJ ′ is

also in the image of f ∗
I,J for any J ′ ∈ I(n, q). Therefore f ∗

I,J is surjective.

Now suppose that P (t) ∈ RI,J [t, t−1] is in the kernel of f ∗
I,J . We may

assume that P (t) is a polynomial in t and that the coefficients of P (t)
are actually in R. Then 0 = f ∗

I,J(P (t)) = P (uI). Since XI,J is open in
X, which is irreducible, the we see that the equation P (uI) = 0 must
hold in S. This contradicts the fact that uI is algebraically independent
over R (cf. [9],Theorem 6.06,(3)). Hence f ∗

I,J is an isomorphism.

(2). It is evident that f ∗
I,J(t) = uI ∈ SI,J and f ∗

I,J ′(t) = uI ∈ SI,J ′

both restrict to the same regular function, namely uI |XI,J ∩XI,J ′, on
the overlap XI,J ∩XI,J ′ = Spec(S[1/pI,J , 1/pI,J ′]). It follows that fI,J

and fI,J ′ agree on XI,J ∩XI,J ′. This completes the proof that fI is an
isomorphism. �

Observe that, if J, J ′ ∈ I(n, q), then ξJ/ξJ ′ ∈ S[1/ξJ ′] defines a regu-
lar function on YJ ′. This is because, on YI,J ′, ξJ/ξJ ′ = (uIξJ)/(uIξJ ′) =
pI,J/pI,J ′. It is immediately seen that, on YI,J ′ ∩ YI′,J ′, the two regular
functions pI,J/pI,J ′ and pI′,J/pI′,J ′ agree. Therefore we conclude that
ξJ/ξJ ′ is a well-defined regular function on YJ ′. Clearly it is invert-
ible on YJ ∩ YJ ′. Similar statements concerning uI/uI′ hold for any
I, I ′ ∈ I(n,m).

Notation: Let m, q ≥ n.

Denote by I the disjoint union I(n,m)
∐
I(n, q). We set

λβ,α =





uα/uβ if α, β ∈ I(n,m),
ξβ/ξα if α, β ∈ I(n, q),
pα,β if β ∈ I(n, q), α ∈ I(n,m),

1/pβ,α if β ∈ I(n,m), α ∈ I(n, q).
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Consider the covering {Yα}α∈I of the open subvariety Y0 :=
⋃

α∈I Yα ⊂
Y . The cocycle condition λα,βλβ,γ = λα,γ is readily verified for any
α, β, γ ∈ I. Thus we obtain a Gm-bundle over Y0; call it E .

Let X0 :=
⋃

α∈I Xα.

Lemma 3.2.Assume that m, q ≥ n. With the above notations, the total
space of the Gm-bundle E over Y0 is isomorphic to the open subvariety
X0 :=

⋃
α∈I Xα ⊂ X.

Proof. The total space of the Gm-bundle corresponding to D is∐
α∈I Yα × k∗/∼ where (π([u, ξ]), t) ∈ Yα × k∗ is identified with

(π([u; ξ]), λβ,α(π([u, ξ]).t)) ∈ Yβ × k∗ whenever π([u, ξ]) ∈ Yα ∩Yβ. One
has the following commuting diagram for any α, β ∈ I:

Yα × k∗ ⊃ (Yα ∩ Yβ) × k∗
λβ,α
−→ (Yβ ∩ Yα) × k∗ ⊂ Yβ × k∗

fα ↑ f ′
α ↑ ↑ f ′

β ↑ fβ

Xα ⊃ Xα ∩Xβ == Xβ ∩Xα ⊂ Xβ

where f ′
α is the restriction of fα. Since, by Lemma 3.1, the fα’s are

isomorphism of varieties, it follows that that the total space of the Gm

bundle over Y0 is isomorphic to the union X0 :=
⋃

αXα ⊂ X. �

We shall now compute the codimension of Z := X−X0. We give the
reduced scheme structure on Z. It is evident that Z is defined by the
equations pI,J = 0, ∀I ∈ I(n,m), J ∈ I(n, q). We claim Z = Zu ∪ Zξ

where Zu is the closed subvariety with reduced scheme structure defined
by the equations uI = 0, ∀I ∈ I(n,m) and Zξ, by the equations ξJ =
0, ∀J ∈ I(n, q). Clearly Zu∪Zξ ⊂ Z. On the other hand, if [u, ξ] is not
in Zu ∪Zξ, then uI([u, ξ]) 6= 0 for some I and ξJ([u, ξ]) 6= 0 for some J .
This implies that pI,J([u, ξ] 6= 0. Hence [u, ξ] ∈ X0. Thus Zu ∪Zξ = Z.

Lemma 3.3. Let m > n (resp. q > n). Then the codimension of Zu

(resp. Zξ) in X is at least 2.

Proof. Consider the closed subvariety Mu := Dn−1(Mm,n) × Mn,q ⊂
Mm,q (with reduced scheme structure). We have,

dimMu = (n−1)(m+1)+nq (note the dimension of the determinantal
variety Dt(Mr,s) (consisting of r× s matrices of rank at most t) equals
t(r + s − t) (cf. [8])). Clearly Mu is stable under the SL(n)-action
and Mu//SL(n) = Zu. We shall find an open subset Zu,0 of Zu such
that SL(n) acts freely on the inverse image of Zu,0 under the quotient
morphism η : Mu−→Zu and η−1(Zu,0)//SL(n) = Zu,0. It would then
follow that dim(Zu) = dim(η−1(Zu))− dim(SL(n)) = (n− 1)(m+ 1) +
nq−(n2−1) = (m+n)q−(n2−1)−(m−n+1) = dim(X)−(m−n+1) ≤
dim(X) − 2 (note that dimX = (m+ n)q − (n2 − 1) (cf. [9])).
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Define
Wu = Dn(Mm,n) ×M0

n,q

where M0
n,q := {ξ ∈ Mn,q | ξJ(ξ) 6= 0, for some J ∈ I(n, q)}. Then Wu

is the inverse image of

Zu,0 := {[u, ξ] | ξJ(ξ) 6= 0}

under the quotient morphism η : Mu−→Zu. The assertion that the
SL(n)-action is free on Wu follows from the fact that the SL(n)-action
on M0

n,q is free.

An entirely similar argument shows that Zξ has codimension at least
2, and consequently codimension of Z in X is at least 2. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let m, q > n. As already observed, we have that
Y = Dn(Mm,q) can be identified with an open subset of a certain Schu-
bert variety in the Grassmann variety SL(m + q)/Pq of q-dimensional
vector subspaces in km+q. Since Schubert varieties in the Grassmann
variety are Frobenius split, it follows that Y is Frobenius split. Since
Y0 is open in Y , it follows that it is also Frobenius split. The variety
X0, being the total space of a Gm-bundle over Y0, is Frobenius split
by [1],Lemma 1.1.11. Now X being normal and codimension of X0 in
X being at least 2, it follows that X is Frobenius split (cf. [1],Lemma
1.1.7,(iii)).

If m, q < n, then X = Y = Mm,q and hence Frobenius split. The
case m = n is isolated separately as Lemma 3.4 below. �

Assume that q = n = m. In this case Y = Mn,n. Denote the (i, j)-
th coordinate function on Y by yi,j. The set I(n,m) and I(n, q) are
singletons and so S = R[u, ξ]/(uξ − f) where f is the determinant
function on Y = Mm,q.

Lemma 3.4. Let q = n = m. The ring S of SL(V )-invariants is
Frobenius split in this case also.

Proof. Let ϕ be a splitting of Spec(R). Continue to denote by ϕ the
restriction of ϕ to the open part Spec(R[1/f ]). We can ‘lift’ ϕ to the
Gm-bundle Spec(R[1/f ][u, u−1]) (over Spec(R[1/f ])) as follows: define
ϕ(a+

∑
biu

i +
∑
cju

−j) := ϕ(a) +
∑
ϕ(bi)u

i/p +
∑
ϕ(cj)u

−j/p, where
the summations are over positive integers and ui/p (respectively u−j/p)
is interpreted to be 0 unless i (respectively −j) is an integral multiple
of p. Observe that R[1/f ][u, u−1] = S[1/f ], so we have a splitting of
Spec(S[1/f ]) which we still denote ϕ. We claim that ϕ maps S to S and
hence extends to a splitting of Spec(S). Indeed, a general element s of S
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is of the form a+
∑
biu

i+
∑
cjξ

j with a, bi, and cj in R, so that ϕ(s) =
ϕ(a +

∑
biu

i +
∑
cjf

ju−j) = ϕ(a) +
∑
ϕ(bi)u

i/p +
∑
ϕ(cjf

j)u−j/p.
Rewriting ϕ(cjf

j)u−j/p as ϕ(cj)f
j/pu−j/p = ϕ(cj)ξ

j/p, we see that ϕ(s)
belongs to S. �

Remark 3.5. In the case when one of {m, q} being < n, and the other
≥ n, we expect the ring of invariants to be Frobenius split though at
the moment, we do not have a proof of this assertion!
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