On homeomorphisms and quasi-isometries of the real line

Parameswaran Sankaran
Institute of Mathematical Sciences,
CIT Campus, Taramani, Chennai 600 113
Email: sankaran@imsc.res.in

Abstract: We show that the group of piecewise-linear homeomorphisms of \mathbb{R} having bounded slopes surjects onto the group $QI(\mathbb{R})$ of all quasi-isometries of \mathbb{R} . We prove that the following groups can be imbedded in $QI(\mathbb{R})$: the group of compactly supported piecewise-linear homeomorphisms of \mathbb{R} , the Richard Thompson group F, and the free group of continuous rank.

1 Introduction

We begin by recalling the notion of quasi-isometry. Let $f: X \longrightarrow X'$ be a map (which is not assumed to be continuous) between metric spaces. We say that f is a C-quasi- isometric embedding if there exists a C > 1 such that

$$C^{-1}d(x,y) - C \le d'(f(x), f(y)) \le Cd(x,y) + C \tag{*}$$

for all $x, y \in X$. Here d, d' denote the metrics on X, X' respectively. If, further, every $x' \in X'$ is within distance C from the image of f, we say that f is a C-quasi isometry. If f is a quasi-isometry (for some C) then there exists a quasi-isometry $f': X' \longrightarrow X$ (for a possibly different constant C') such that

A.M.S. Subject Classification (2000):- 20F65, 20F28, 20F67 Key words and phrases: pl-homeomorphisms, quasi-isometry, Thompson's group, free groups.

 $f' \circ f$ (resp. $f \circ f'$) is quasi-isometry equivalent to the identity map of X (resp. X'). (Two maps $f, g: X \longrightarrow X$ are said to be quasi isometrically equivalent if there exists a constant M such that $d(f(x), g(x)) \leq M$ for all $x \in X$.) Let [f] denote the equivalence class of a quasi-isometry $f: X \longrightarrow X$. The set QI(X) of all equivalence classes of quasi-isometries of X is a group under composition: $[f].[g] = [f \circ g]$ for $[f],[g] \in QI(X)$. If X' is quasi-isometry equivalent to X, then QI(X') is isomorphic to QI(X). We refer the reader to [1] for basic facts concerning quasi-isometry. For example $t \mapsto [t]$ is a quasi-isometry from \mathbb{R} to \mathbb{Z} .

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be any homeomorphism of \mathbb{R} . Denote by B(f) the set of break points of f, i.e., points where f fails to have derivative and by $\Lambda(f)$ the set of slopes of f, i.e., $\Lambda(f) = \{f'(t) \mid t \in \mathbb{R} \setminus B(f)\}$. Note that $B(f) \subset \mathbb{R}$ is discrete if f is piecewise differentiable.

Definition 1.1. We say that a subset Λ of \mathbb{R}^* , the set of non-zero real numbers, is bounded if there exists an M > 1 such that $M^{-1} < |\lambda| < M$ for all $\lambda \in \Lambda$. We say that a homeomorphism f of \mathbb{R} which is piecewise differentiable has bounded slopes if $\Lambda(f)$ is bounded.

We denote by $PL_{\delta}(\mathbb{R})$ the set of all those piecewise-linear homeomorphisms f of \mathbb{R} such that $\Lambda(f)$ is bounded. It is clear that $PL_{\delta}(\mathbb{R})$ is a subgroup of the group $PL(\mathbb{R})$ of all piecewise-linear homeomorphisms of \mathbb{R} .

It is easy to see that each $f \in PL_{\delta}(\mathbb{R})$ is a quasi-isometry. (See lemma 2.1 below.) One has a natural homomorphism $\varphi : PL_{\delta}(\mathbb{R}) \longrightarrow QI(\mathbb{R})$ where $\varphi(f) = [f]$ for all $f \in PL_{\delta}(\mathbb{R})$.

Theorem 1.2. The natural homomorphism $\varphi : PL_{\delta}(\mathbb{R}) \longrightarrow QI(\mathbb{R})$, defined as $f \mapsto [f]$, is surjective.

If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a homeomorphism, recall that $\operatorname{Supp}(f)$, the support of f, is the closure of the set $\{x \in \mathbb{R} \mid f(x) \neq x\}$ of all points moved by f. Denote by $PL_{\kappa}(\mathbb{R})$ the group of all piecewise-linear homeomorphisms of \mathbb{R} which have compact support. It is obvious that $PL_{\kappa}(\mathbb{R}) \subset \ker(\varphi)$.

Let Γ be a group of homeomorphisms of \mathbb{S}^1 . Any $f \in \Gamma$ can be lifted to obtain a homeomorphism \widetilde{f} of \mathbb{R} over the covering projection $p : \mathbb{R} \longrightarrow \mathbb{S}^1$, $t \mapsto \exp(2\pi\sqrt{-1}t)$. The set $\widetilde{\Gamma}$ of all homeomorphisms of \mathbb{R} which are lifts of elements of Γ is a subgroup of the group $Homeo(\mathbb{R})$ of all homeomorphisms of

 \mathbb{R} . Indeed $\widetilde{\Gamma}$ is a central extension of Γ by the infinite cyclic group generated by translation by 1: $x \mapsto x+1$. Denote by $Diff(\mathbb{S}^1)$ the group of all C^{∞} diffeomorphisms of the circle. When Γ is one of the groups $PL(\mathbb{S}^1)$, $Diff(\mathbb{S}^1)$, any element of $\widetilde{f} \in \widetilde{\Gamma}$ has bounded slope and is quasi-isometrically equivalent to the identity map of \mathbb{R} (since $\widetilde{f}(x+n)=\widetilde{f}(x)+n$ for $n\in\mathbb{Z}$).

Recall that Richard Thompson discovered the group

$$F = \langle x_0, x_1, \dots | x_i x_j x_i^{-1} = x_{j+1}, i < j \rangle$$

and used it in some constructions in logic related to word problems. The group F is finitely presentable with two generators x_0, x_1 and two relations. This group and a closely related larger group G have since then appeared in several contexts including homotopy theory [6], homological group theory [3], Teichmüller theory [9], etc. The group F is isomorphic to the subgroup of piecewise-linear homeomorphisms of \mathbb{R} which are the identity outside the unit interval I such that B(f) is contained in dyadic rationals and $\Lambda(f)$ is contained in the subgroup of \mathbb{R}^* generated by 2. Although F satisfies no (nontrivial) group law, it contains no non-abelian free group. The group G is the group of piecewise-linear homeomorphisms f of the circle $\mathbb{S}^1 = I/\{0,1\}$ with $B(\tilde{f})$ contained in dyadic rationals and $\Lambda(\tilde{f})$ contained in the multiplicative subgroup of \mathbb{R}^* generated by 2 for some lift \tilde{f} of f. It is the first known example of a finitely presented infinite simple group. We recommend the beautiful survey article [4] for further information about Richard Thompson's groups.

We shall prove the following theorem:

Theorem 1.3. The following groups can be imbedded in $QI(\mathbb{R})$.

- (i) the groups $\widetilde{Diff}(\mathbb{S}^1)$ and $\widetilde{PL}(\mathbb{S}^1)$,
- (ii) the group $PL_{\kappa}(\mathbb{R})$,
- (iii) the Thompson's group F, and,
- (iv) the free group of rank c, the continuum.

Our proofs are completely elementary. We explain the main idea of the proof of theorem 1.3. Take for example the group $PL_{\kappa}(\mathbb{R})$. The first step is to realise this as a subgroup Γ_1 of $PL_{\kappa}(\mathbb{R})$ having support in (0,1). This is achieved easily by imbedding \mathbb{R} in the interval (0,1). The group Γ_1 can be thought of as a group of piecewise-linear homeomorphisms of the circle. Lifting this back to \mathbb{R} via the covering projection, we obtain now a group $\widetilde{\Gamma}_1$

which no longer has compact support. However each element of this group is quasi-isometric to id. So we conjugate this group by a piecewise-linear homeomorphism whose slope grows exponentially. The result is that the features of each element of $\widetilde{\Gamma}_1$ get magnified resulting in a quasi-isometry not representing 1. The same trick works for $\widetilde{Diff}(\mathbb{S}^1)$ as well. Parts (iii) and (iv) follow from known embeddings of the relevant groups.

2 Proof of Theorem 1.2

We first establish the following basic observation.

Lemma 2.1. Let f be a piecewise differentiable homeomorphism of \mathbb{R} with $\Lambda(f) \subset \mathbb{R}^*$ bounded. Then f is a quasi-isometry.

Proof: Replacing f by -f if necessary, one may assume without loss of generality that f is monotone increasing.

Suppose that $\Lambda(f) \subset (1/M, M)$. If f is differentiable everywhere, then it is an M-quasi-isometry.

Suppose that $B(f) \neq \emptyset$. Let $a \in \mathbb{R}$. For any b > a, let $a_1 < \cdots < a_k$ be the points of (a,b) where f is non-differentiable. Then, applying the mean value theorem, $f(b) - f(a) = \sum_{0 \le i \le k} (f(a_{i+1}) - f(a_i)) = \sum_{0 \le i \le k} f'(c_i)(a_{i+1} - a_i)$ for some $c_i \in (a_i, a_{i+1})$. Since $\Lambda(f) \subset (1/M, M)$, it follows that $M^{-1}(b - a) < f(b) - f(a) < M(b - a)$. Since $a, b \in \mathbb{R}$ are arbitrary, we conclude that f is a quasi-isometry.

One has a well-defined map $\varphi: PL_{\delta}(\mathbb{R}) \longrightarrow QI(\mathbb{R})$ which is a homomorphism. We now prove that φ is surjective.

Lemma 2.2. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a C-quasi-isometry that preserves the ends of \mathbb{R} . Let $x \in \mathbb{R}$. Then (i) there exists y such that $y - x \leq 4C^2$ is positive integer and f(y) > f(x); (ii) there exists v such that $x - v \leq 4C^2$ is a positive integer and f(x) > f(v).

Proof: If f(x+1) > f(x), then y = x+1 meets our requirements.

Assume that f(x) > f(y) for all y such that $x+1 \le y < 4C^2 + x$. Let $z \ge x+2$ be the smallest real number such that z-x is a positive integer and $f(z) > f(x) \ge f(z-1)$. Such a z exists since $f(t) \to +\infty$ as $t \to +\infty$. By our assumption $z - x \ge 4C^2 + 1$. Set u = z - 1. Then the inequality (*) implies $f(u) < f(x) + C - C^{-1}(u - x) \le f(x) - 3C$ and f(z) - f(u) < C(z - u) + C = 2C. Hence f(z) < f(u) + 2C < f(x) - C, i.e., f(z) - f(x) < -C. This contradicts our hypothesis that f(z) > f(x), completing the proof of part (i). Proof of part (ii) is similar.

Proof of Theorem 1.2: Since the subgroup $QI^+(\mathbb{R}) \subset QI(\mathbb{R})$ that preserves the ends $\{+\infty, -\infty\}$ of \mathbb{R} is of index 2 and since $PL_{\delta}(\mathbb{R})$ contains elements which are orientation reversing, it suffices to show that $QI^+(\mathbb{R})$ is contained in the image of φ where $QI^+(\mathbb{R}) \subset QI(\mathbb{R})$ is the index 2 subgroup whose elements preserve the ends of \mathbb{R} .

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a C-quasi isometry, with C > 1, which preserves the ends of \mathbb{R} . We assume, as we may, that C is a positive integer.

Set $x_0 = 0$. We define $x_k \in \mathbb{Z}$ for any integer k as follows: Let $k \ge 1$. Having defined x_{k-1} inductively, choose $x_k > x_{k-1}$ to be the smallest integer such that $f(x_k) > f(x_{k-1})$. For any negative integer k, we define x_k analogously (by downward induction) as the greatest integer such that $x_k < x_{k+1}$ and $f(x_k) < f(x_{k+1})$.

Set $y_k := x_{C^3k}$, and let $B := \{y_k | k \in \mathbb{Z}\} \subset \mathbb{Z}$. By lemma 2.2, we see that B is a discrete subset of \mathbb{R} which is $4C^5$ -dense in \mathbb{R} . Note that for any $k \in \mathbb{Z}$, $y_k - y_{k-1} \ge C^3$.

Since $f(y_k) > f(y_{k-1})$ for all $k \in \mathbb{Z}$, there exists a unique piecewise-linear homeomorphism $g : \mathbb{R} \longrightarrow \mathbb{R}$ such that $g(y_k) = f(y_k)$ and is *linear* on the interval $[y_{k-1}, y_k]$ for every $k \in \mathbb{Z}$. We claim that g has bounded slopes. Since g is linear on each of the intervals $[y_{k-1}, y_k]$, we need only bound $\frac{g(y_k) - g(y_{k-1})}{y_k - y_{k-1}}$. Indeed,

$$\frac{g(y_k) - g(y_{k-1})}{y_k - y_{k-1}} = \frac{f(y_k) - f(y_{k-1})}{y_k - y_{k-1}} < C + \frac{C}{y_k - y_{k-1}} \le C + C^{-2}$$

as $y_k - y_{k-1} \ge C^3$. Similarly,

$$\frac{g(y_k) - g(y_{k-1})}{y_k - y_{k-1}} > C^{-1} - C^{-2}.$$

It follows that $\Lambda(g) \subset [C^{-1} - C^{-2}, C + C^{-2}]$ and $g \in PL_{\delta}(\mathbb{R})$.

Since f and g agree on the quasi-dense set B, we see that [f] = [g]. This completes the proof.

Remark 2.3. (i) By setting $g(y_k)$ equal to a rational number sufficiently close to $f(y_k)$ in the above proof, we see that since $y_k \in \mathbb{Z}$, the element $g \in PL_{\delta}(\mathbb{R})$ has rational slopes. Consequently it follows that φ restricted to the subgroup $PL_{\mathbb{Q}}^{\mathbb{Q}^*}(\mathbb{R})$ of $PL_{\delta}(\mathbb{R})$ consisting of those $g \in PL_{\delta}(\mathbb{R})$ having slopes in \mathbb{Q}^* and B(g) contained in \mathbb{Q} is surjective.

(ii) The kernel of φ contains the group of all piecewise-linear homeomorphisms which have slope 1 outside a compact interval. This latter group equals to the derived group $PLF'(\mathbb{R})$ where $PLF(\mathbb{R})$ denotes the subgroup of $PL_{\delta}(\mathbb{R})$ consisting of homeomorphisms f for which B(f) is finite. Also $PL_{\kappa}(\mathbb{R}) = PLF''(\mathbb{R})$. See [2].

3 Proof of Theorem 1.3

Let $h_1: \mathbb{R} \longrightarrow (0,1)$ be the homeomorphism defined by $h_1(-x) = 1 - h_1(x)$ for every $x \in \mathbb{R}$, $h_1(n) = 1 - 1/(n+2)$ for each integer $n \geq 0$ and is linear on each interval [n, n+1] for $n \in \mathbb{Z}$. If f is any compactly supported (piecewise-linear) homeomorphism of \mathbb{R} then $h_1 \circ f \circ h_1^{-1}$ is a compactly supported (piecewise-linear) homeomorphism of (0,1). Since $\mathbb{S}^1 = I/\{0,1\}$, we also get an embedding $\overline{\eta}: PL_{\kappa}(\mathbb{R}) \longrightarrow PL(\mathbb{S}^1)$ where $\overline{\eta}(f)$ is defined to be the extension of $h_1 \circ f \circ h_1^{-1}$ to \mathbb{S}^1 . We define $\eta: PL_{\kappa}(\mathbb{R}) \longrightarrow PL_{\delta}(\mathbb{R})$ as the imbedding $f \mapsto \eta(f)$ where $\eta(f)(n) = n$ for $n \in \mathbb{Z}$ and $\eta(f)(x) = n + h_1 f h_1^{-1}(x-n)$ for n < x < n + 1.

Let $h_0: \mathbb{R} \longrightarrow \mathbb{R}$ be the piecewise-linear homeomorphism defined as follows: $h_0(-x) = -h_0(x) \ \forall x \in \mathbb{R}, h_0(x) = x \text{ for } 0 \leq x \leq 1 \text{ and maps the interval } [n, n+1] \text{ onto } [2^{n-1}, 2^n] \text{ linearly for each positive integer } n.$

Suppose $f: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ is an orientation preserving piecewise-linear homeomorphism or a diffeomorphism. Let $\widetilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$ be any lift of f so that $p \circ \widetilde{f} = f \circ p$, where $p: \mathbb{R} \longrightarrow \mathbb{S}^1$ is the covering projection $t \mapsto \exp(2\pi \sqrt{-1}t)$. Then $[\widetilde{f}] = 1$ in $QI(\mathbb{R})$. (Indeed one has $\widetilde{f}(x+n) = n + \widetilde{f}(x)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{Z}$ and so $|\widetilde{f} - id| \leq |\widetilde{f}(0)| + 1$.)

Let Γ be one of the groups $PL(\mathbb{S}^1)$ or $Diff(\mathbb{S}^1)$ and let $\widetilde{\Gamma}$ be the group of homeomorphisms of \mathbb{R} which are lifts of elements of Γ with respect to the covering projection p. For $\widetilde{f} \in \widetilde{\Gamma}$ set $f_0 := h_0 \widetilde{f} h_0^{-1}$. Clearly, $\widetilde{f} \mapsto f_0$ is a monomorphism of groups $\widetilde{\Gamma} \longrightarrow Homeo(\mathbb{R})$. We claim that for any $\widetilde{f} \in \widetilde{\Gamma}$, f_0 is a quasi-isometry. To see this, we assume without loss of generality that \widetilde{f} is orientation preserving. It is clear that f_0 is differentiable outside a discrete subset of \mathbb{R} . We claim that f_0 has bounded slopes. Since f_0 has continuous derivatives on each interval on which f_0 has derivatives, it suffices to show that the set $\{f'_0(t)\}$ as t varies in $\mathbb{R} \setminus B$ is bounded, where B is any discrete set which contains $B(f_0)$. We set $B := B(h_0) \cup h_0 B(\widetilde{f}) \cup h_0 \widetilde{f}^{-1} B(h_0)$.

Let 0 < m < M be such that $m < \widetilde{f}'(x) < M$ for $x \in \mathbb{R}$. Let $t \in \mathbb{R} \setminus B$ and set $s = h_0^{-1}(t), u = \widetilde{f}(s)$ so that $h_0^{-1}, \widetilde{f}, h_0$ are differentiable at t, s, u respectively. Consequently f_0 is differentiable at t.

Since $|u-s|=|\widetilde{f}(s)-s|< q$ where $q:=[|\widetilde{f}(0)|]+2$, we see that $2^{-q}< h_0'(u)/h_0'(s)< 2^q$. Using the chain rule, it follows that $f_0'(t)=h_0'(u)\widetilde{f}'(s)(h_0^{-1})'(t)=\widetilde{f}'(s)h_0'(u)/h_0'(s)$ lies in the interval $(2^{-q}m,2^qM)$. It follows from lemma 2.1 that f_0 is a quasi-isometry.

It is clear that the map $\psi: \widetilde{\Gamma} \longrightarrow QI(\mathbb{R})$ defined as $\widetilde{f} \mapsto [f_0]$ is a homomorphism.

We are now ready to prove theorem 1.3.

Proof of theorem 1.3: We use the above notations throughout the proof.

(i) We prove that $\psi: \widetilde{\Gamma} \longrightarrow QI(\mathbb{R})$ is a monomorphism where $\Gamma = PL(\mathbb{S}^1)$ or $Diff(\mathbb{S}^1)$. Suppose that $\widetilde{f} \in \widetilde{\Gamma}$, $\widetilde{f} \neq id$. We shall show that that $|f_0 - id|$ is unbounded. Choose x in the interval [0,1) such that $\widetilde{f}(x) \neq x$. Set $k = [\widetilde{f}(x)]$ so that $\widetilde{f}(x) = k + y$, $0 \leq y < 1$. Replacing \widetilde{f} by its inverse if necessary, we assume without loss of generality that $x < \widetilde{f}(x)$. This implies that $k \geq 0$ with equality only if y > x. For any positive integer n, we have $f_0(2^n + 2^n x) = h_0 \widetilde{f} h_0^{-1} (2^n + 2^n x) = h_0 \widetilde{f}(n+1+x) = h_0(n+1+\widetilde{f}(x)) = h_0(n+1+k+y) = 2^{n+k} + 2^{n+k}y$.

If k = 0, then y > x and so $f_0(2^n + 2^n x) - (2^n + 2^n x) = 2^n (y - x)$. Thus $|f_0 - id|$ is unbounded.

If k > 0, then $f_0(2^n + 2^n x) - (2^n + 2^n x) = 2^{n+k} + 2^{n+k} y - 2^n - 2^n x \ge 2^{n+1} - 2^n - 2^n x = 2^n (1-x)$. As $0 \le x < 1$, again it follows that $|f_0 - id|$ is unbounded.

- (ii) As observed earlier, $\eta: PL_{\kappa}(\mathbb{R}) \longrightarrow PL_{\delta}(\mathbb{R})$ is a monomorphism. It is evident that the image of η is contained in $\widetilde{PL}(\mathbb{S}^1)$. Since $\psi: \widetilde{PL}(\mathbb{S}^1) \longrightarrow QI(\mathbb{R})$ is a monomorphism by (i), assertion (ii) follows.
- (iii) Now statement (iii) follows from (ii) above and the fact that Thomp-

son's group F is isomorphic to the subgroup of $PL_{\kappa}(\mathbb{R})$ of all piecewise-linear homeomorphisms which have support in [0,1] having break points contained in the set of dyadic rationals in [0,1] and slopes contained in the multiplicative subgroup of \mathbb{R}^* generated by 2.

(iv) To prove (iv), recall that Grabowski [8] has shown that the free group of rank c the continuum embeds in the group of compactly supported C^k diffeomorphisms $(1 \le k \le \infty)$ of any positive dimensional manifold. In particular this is true of $Diff(\mathbb{S}^1)$. It follows easily that $Diff(\mathbb{S}^1)$ also contains a free group of rank the continuum. By part (i), this completes the proof.

Lemma 3.1. The group $QI^+(\mathbb{R})$ is torsion-free.

Proof: Let $f \in PL_{\delta}(\mathbb{R})$ be such that $[f] \neq 1 \in QI^{+}(\mathbb{R})$. Thus f - id is unbounded. Choose a sequence (a_n) of real numbers such that $a_n \to +\infty$ as $n \to +\infty$ and $|f(a_n) - a_n| \to +\infty$. Let k > 1 be any integer. Suppose that $f(a_n) > a_n$. Since f is order preseving, for each n we have $a_n < f(a_n) < \cdots < f^k(a_n)$. In particular $f^k(a_n) - a_n > f(a_n) - a_n$. Similarly, $a_n - f^k(a_n) > a_n - f(a_n)$ in case $a_n > f(a_n)$. Therefore $|f^k(a_n) - a_n| > |f(a_n) - a_n| \forall n$ and hence $f^k - id$ is unbounded. Hence $[f^k] \neq 1$ in $QI^+(\mathbb{R})$ for k > 1.

Remark 3.2. Thompson's group G does not imbed in $QI(\mathbb{R})$ since it has an element of order 3 whereas it follows from Lemma 3.1 that all torsion elements in $QI(\mathbb{R})$ are of order 2.

Acknowledgements: Part of this work was done while the author was visiting the University of Calgary, Alberta, Canada, during the Spring and Summer of 2003. It is a pleasure to thank Professors K.Varadarajan and P.Zvengrowski for their invitation and hospitality as well as financial support through their NSERC grants making this visit possible.

References

- [1] M.R.Bridson and A.Haefliger, *Metric spaces of non-positive curvature*, Grund. math. Wiss., **319**, (1999), Springer-Verlag, Berlin.
- [2] M.Brin and C.C.Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. math., 79, (1985), 485-498.

- [3] K.S.Brown and R.Geoghegan, An infinite dimensional torsion-free FP_{∞} group, Invent. math. 77, (1984), 367-381.
- [4] J.W.Cannon, W.J.Floyd, and W.R.Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. **42**,215-256,(1996).
- [5] J.Dydak, A simple proof that pointed connected FANR-spaces are regular fundamental retracts of ANR's. Bull. Polon. Acad. Sci. Ser. Sci. Math. Astron. Phys., **25**,(1977), 55-62.
- [6] P.Freyd and A.Heller, Splitting homotopy idempotents-II, J. Pure Appl. Algebra, 89, (1993), 93-106.
- [7] M.Gromov, Infinite groups as geometric objects, Proc. ICM, Warsaw, 1982-83.
- [8] J.Grabowski, Free subgroups of diffeomrphism groups, Fund. Math. 131,(1988), 103-121.
- [9] M.Imbert, Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée Geometric Galois actions, 2, 313–324, London Math. Soc. Lecture Note Ser., 243, Cambridge Univ. Press, Cambridge, 1997.
- [10] R.McKenzie and R.J.Thompson, An elementary construction of unsovable word problems in group theory, *Word problems* W.W.Boone et al., (eds), Studies in Logic and the Foundations of Mathematics, **71**, 457-478, North-Holland, Amsterdam, 1973.