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Abstract. Let G, denote the oriented grassmann manifold of oriented k-planes in R". It is
shown that for any continuous map f:G,,~@,, dimG,, =dimG,, =Im—1I), the
Brouwer’s degree is zero, provided />1, nsm. Similar results for continuous maps
9:CG,,»CG,, h:HG,,»HG,,, 1 <I<k<n/2, k(n—k)=Km~1I) are also obtained.
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1. Introduction

Let G.x denote the oriented grassmann manifold of oriented k-dimensional vector
subspaces of R". For F = C or H, let FG,x denote the F-grassmannian of k-dimen-
sional (left) F-vector subspaces of F*. In their work on self maps of homogeneous
varieties, Paranjape and Srinivas [7] prove, among other things, that if
f:CGug = CGmy, 122, dimCGmy=Il(m—1)= k(n—k)=dimCG,; is a finite mor-
phism of projective varieties, then (n, k) = (m, [) and f is an isomorphism. It is obvious
that if f: CGnx — CGm, is any morphism of projective varieties, then f is complex
analytic when the varieties involved are regarded as complex analytic manifolds. It
follows that f is orientation preserving and that its Brouwer degree can be cal-
culated as #f ~*(x) for most points x € CGp,. In particular its (Brouwer) degree must
be positive. It is a well-known fact that if f: N— M is any continuous map of
non-zero degree between compact, connected, oriented manifolds, then the induced
map in the rational cohomology f*: H*(M; Q) - H*(N; Q) is a monomorphism.
Using this observation we are able to show the following.

Theorem 1. Let h: Gy — G, be any map between oriented grassmann manifolds of
the same dimension, where (n, k) # (m, I}, 2<I<m/2, 1 <k < n/2. Then deg(h) = 0.

Theorem 2. Let f: CGmi— CGny, §: HGmyi— HGus, 1<I<k< [n/2] be any map
between the complex (respectively quaternionic) grassmannians of the same dimension.
Then deg(f) =0 =deg(g).

In the case, when h: G, — Gm1 =S k(n— k)y=d=m—1, is a continuous map, one
knows by Hopf—Whitney theorem (Theorem 5, ch.1, [6]), that there are maps of every
degree me Z, from Gny to S¢ and that any two maps of the same degree are homotopic.

The restriction 1 <1< k < [n/2] is needed in our proof in the case of complex and
quaternionic grassmannians. However it seems plausible that the theorem will con-
tinue to be true, even for 2 < k << [m/2]. We were able to verify this only for small
values of [, k,m and n.
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Note that Theorem 2 implies part of the result of Paranjape and Srinivas quoted
earlier, namely, if f: CGm,i— CGnx, 2 <1<k <n/2, is a finite surjective morphism,
then we deduce from Theorem 2 that (n, k) = (m, I). On the other hand, our theorem
applies to any continuous map f. It is not true in general that any given continuous
map can be homotoped to a complex analytic map. Hence, Theorem 2 does not
follow from the work of Paranjape and Srinivas [7].
~ Our proofs are in fact quite elementary, and for the most part follow from a purely

algebraic lemma (see Lemma 4 (v)). The cases when f: CGnx — CP%, g:HGpix— HP,
k(n — k) =d, are any continuous maps between the complex (respectively quater-
nionic) grassmannians will be discussed at the end of §2. We give applications to
K-theory in some cases in § 3.

For the sake of completeness, we give a proof of the following well-known lemma,
quoted earlier. '

Lemma 3. Let f: N - M be any continuous map between two compact connected

oriented manifolds of the same dimension d such that deg(f)#0. Then f*: H*(M; Q)
- H*(N; Q) is a monomorphism.

Proof. Let [M] denote the orientation class in H(M; Z) c H(M; Q)= Q. One has
a non-degenerate pairing

HP(M; Q) x H* ?(M; Q) » Q
(o, B) = <o v B, [M])
= <o, B [MD.

Let deg(f)=A4+#0, AeZ Thus f (IN])=A[M]. Now if O#ae HP(M; @), choose
Be Hi™?(M; Q) such that («, ) = 1. Then {f*(@) U f*(B), [N])> =<0, U B, [ [N]) =
(v B,A[M]> = 1 #0. Therefore f* is a monomorphism. O

2. Proofs of main results

Let 1<k<n/2, n,keZ. Let Hyx denote the graded Q-algebra with generators

X1 X0 eee s Xpo XypXgs ... Xn-k; deg(x;) =i=deg(X) with relations given by the in-
homogeneous relation

(L% x4+ +x) (L+E 4+ X+ +Fnp) =1 (1)

(i.e. the relations are all generated by the basic relations Zogi<r X;%r-i =0, 1 <r<n).
Note that one can regard the basic relations Z;+j=,X;X; =0 as defining the X, as a
polynomial in x;, inductively for 1 <r<n—k. Therefore Hyx = Q[x,, X, ..., X1/~
Hy, is readily recognized as being isomorphic to the cohomology algebra
H*(CGn; Q) by an isomorphism that doubles the gradation, sending x; to c;, the ith
Chern class of the canonical k-plane bundle over CGn,.. We denote the vector space
of homogeneous elements of Hux of degree r by Hr .

Lemma 4. With the above notation

@) Hox=0if r>kin —k),

(i) x§"~Y is a generator of Hi% ™™, which is a 1-dimensional Q-vector space,
(i) dimqHnx= (Z)
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(iv) there are no algebraic relations among X, x,, ..., %, up to degree n — k.
WM If 1<I<k<n?2, and meZ is such that k(n—k)<Il(m—1I), then~for any
homomorphism ¢ : Hyx — Hm, of graded Q-algebras, ker(¢) # 0.

Proof. Parts (i), (ii), (iii) and (iv) follow from the isomorphism of graded algebras
Hp = H*(CGni; @), and well-known facts about the cohomology of CGi.

‘Proof of (v): Let Zy,25,...,7; denote the defining algebra generator of Hmy,
deg(z)=Jj, 1<j<I Let, if possible, ¢: Hnx — Hm,: be a monomorphism of Q-al-
gebras. Since k >, there exists an i</+ 1 such that ¢(x;) is in the subalgebra
generated by z,,z,, ..., z:-1. We may assume that 1 < i is the smallest such integer. If
i=1, then ¢(x,) =0. Therefore i > 2 and

¢(x1)= ’11213 2«1 #O, . (2)

¢(x]~)=Aj2j+Pj(Zl,22,,_,’Zj_l), AJ;&O (3)
and

¢(xi):Pi(zlszza---,zi—l), 4)

for suitable polynomials P;, 1 < j <i. In view of (2) and (3), one can express the z ;as
a polynomial in ¢(x,), #(x,), ... »@(x;) for 1< j<i. Thus

Q[zy, 25, ..., 2i-1] = QLP(xy), Plx,), ..., plxi-1)]. (5)
In particular, for a suitable polynomial Q, one has

Pi(zls 29y ey Zi- 1) = Q(¢(X1), ¢(x2)a “eny ¢(Xi—- 1)) (6)
and hence

dx) = Q(dxy), d(xa), .., plxi-1)) = HQ(X1, X3, ... , Xi=1)). (7
Therefore, x; — Q(x4,x,,...,xi-1) € ker(¢) = 0. But this contradicts (iv). Therefore,
we must have ker(¢) #0. O

Let 2 <k<n/2. We recall the structure of the cohomology algebra H*(Gyx; Q).
Let yn,x (resectively Bax) denote the canonical real k-plane (respectively (n — k)-plane)
bundle over G.i Denote by p, the Pontrjagin class pyyni) e H4(Gox Q),
1<i<[k/2] and denote by p; the class pj(Bnx), 1< j<[(n— k)/2]. Note that since
Vnk @ Bnx = ne, the trivial bundle of rank n, one has

P(yni) p(Bri) =1, @)

where p denotes the total Pontrjagin class. The subalgebra generated by
P1:P2: P35 ---5Py Dy>D2s...,P, 18 isomorphic to the graded algebra H,+:s where
k=2s+¢e n—k=2t+nene{0,1} under the isomorphism p,>x; 1<i<s.
Note that since ynx and fn. are oriented in a natural way, one has the rational
Euler classes ¢ :=e(yni) € H*(Gnic Q), en—k:=e(Bus) € H" ¥Gui; Q). (Our
notation is ambiguous when 2k =n, but as it is unlikely to cause confusion,
we retain this notation throughout.) Since the (integral) Euler class of an oriented
bundle of odd rank is of order two, e, (respectively e,-x) is zero if k (respectively
n—k) is odd. Again using the relation yn@® fax~ne, we get e(ynx)- e(Bnx) =0.
That is, e,.e,-x=0. Furthermore, ef =p,, (respectively e?_;= P), when k=2s
(respectively n— k = 2¢).
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In case n is even and k is odd there is a cohomology class o= ok € H" (G, Q),
which transgresses to pi21(ye,n) € H*" (BSO(n); Q) in the fibration

Gux 5 BSO(K) x BSO(n— k) = BSO(n)

as can be seen using a spectral sequence argument and known facts about the
rational cohomology of the classifying spaces BSO(n) [5]. Here yo.n denotes the
universal oriented n-plane bundle over BSO(n). We are ready to describe the co-
homology algebra H*(Gnx; Q):

PROPOSITION 5

With the above notation

(1) H*(G2s+20.25; Q) = Hy 15[ €25, €2:]/ ~ where e3s = p,, €3 =p,, e2s\J e =0.
(i) H*(G2s+ 20+ 1,25) Q) = Hs 15[ €25]/ ~ where e3s =p,.
(1ii) H*(st+2t+z,zs+1; Q) = Hs+1,4l0], 0% = 0,0€e ; 1(G2s+2t+2»2S+ 1; Q).

Here Hs+1s=Q[py, P55 ..., 0.1/ ~ is as defined earlier.
We omit the proof of this proposition. For (i) and (i) see Théoréme 26.1 [2]. [

Note. In H*(Gas+2:25 Q) one has exp,=e,U enrJen—i=0, and similarly,
es: p,=0. However, there are no linear relations over Hi..s satisfied by ez in
dimensions less than 2s + 4t =2n—k. O

Proof of~Theor€m 1. Letl<lI<k<n2<m/2, kin—k)=Im—I)=d. Letf: G =
G, 9 Gmyi— Gy be any continuous map. We must show that deg(f) =0 = deg(g).

In view of Lemma 3, it suffices to show that neither f* nor g* is a monomorphism
in the rational cohomology.

Write k=2s+¢ n—k=2t+n with &ne{0,1}, I=2a+¢, m—1=2b+7,

n'e{0,1}. Let g;, 1<i<a denote the ith Pontrjagin class of ym; and let p;,
1 £ j< s denote the jth Pontrjagin class of yux.

First consider the case when d = dim G, is odd. In this case n, m are both even and k,
| are both odd. Thus e=¢ =n=7'=1, n=2s+2t+2 and m=2a + 2b + 2. Clearly,
g*(p,) = Ag, for some 1eZ and f*(q,)=up, for some peZ Recall, for a nilpotent
element x in any algebra, the height of x is defined to be the smallest integer n such that
x"#0 and x*** = 0. Using Lemma 4(ii) and the above Proposition, note that the height
of p, is st, whereas the height of g, is ab. Since st=(d —(n—1))/4>(d —(m—1))/4=ab
it follows that g*(pP*1)=A*1g%*1 =0 and so g* is not a monomorphism. On the
other hand f*(g,) = 0 because f* is a ring homomorphism and st > ab.

Now assume d =dimG .k 1S €ven. Again, one can see easily that the height of p,
equals st and the height of g, equals ab. But st equals ab only when e =n=¢ =#"=0.
Therefore, only the case n=2s+2t, k=25, m=2a+2b, l—- 2a remains to be consider-
ed. Consider any continuous maps f: G, » G, and g: G, - G, -

First we show that g*(e,) = 0. Observe that usmg the relatlons in H*(G
can write

i @) One
g*e)=eP+Q

for suitable homogeneous polynomials P = P(q,,q,, .. ,vq,,) and Q0 =0(qy, 9,
of degrees k — I and I respectively. Similarly,

gre,-)=eP +Q,

)
c>dg)

(10)
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where P’'and Q' are homogeneous polynomials in 419, ...,4, of degrees n —k — |
and n — k respectively. Since e, Ue,_, =0, one has

O=g*e, Ve, )=(eP+ Q) (P + Q) (11)
=4.PP'+ Q0"+ ¢(PQ + P'Q) (12)

in H"(G,, ; Q). Note that as there are no linear relations satisfied by the Euler class e,
over H,, , up to dimension 2m — I — 1, and since n < 2m — I, we obtain

4,PP'+QQ' =0, (13)
PQ'+ P Q=0. (14)

Since by Lemma 4 (iv), there are no algebraic relations satisfied by g; in deg-
rees up to 4b, the above relations actually hold in the polynomial algebra
A=Q[4,,95...,9,). Therefore, multiplying (13) by Q and substituting for P'Q
from (14), we obtain

Q'Q*=¢q,P*Q (15)

in A. This implies Q% = q,P? in A. Since 4 is a UFD this is clearly a contradiction,
unless P = Q = 0. Hence g*(e,) = 0. Now by Lemma 4 (v), g* cannot be a monomor-
phism and so deg(g) =0.

To show deg(f) =0 note that since a <, f *(e,,) can be expressed as a polynomial
P(1,P2s s Ppaj2) in Py, Py, P23 TO obtain a contradiction assume that f* is a
monomorphism. Then proceeding as in the proof of Lemma 4 (v) one can express p;,
1<i<[a/2] as a polynomial in f*(g,), f*(g,), ..., f*(g,). Hence

J*(ey) =P(py, msp[a/z]) =P'(f*q,),f*(q5), ... :f*(Q[a/z])) (16)

for some suitable polynomial P’. In particular e,, — P'(44,45, ..., dra2) 18 in
ker(f*)=0. That is, e,, = P'(q,, .-+ »qpa2p)- But this contradicts Proposition 5. Hence
deg(f) has to be zero. This completes the proof of the theorem. O

Proof of Theorem2. Let 1<1<k<[n/2], k(n —k)=1(m—1). Let f: CG,,, - CG,,
be any continuous map. Then f induces an algebra homomorphism
[*:HXCG,;; Q) - HXCG,,; Q). As H*(CG, Q)=~H,, it is immediate from
Lemma 4(v) that ker(f*)>0. Hence deg(f)=0. Proof for 9:HG,, ,—» HG,, is
similar. O

Remark 6. Let f:CG,,—CP% d=k(n— k) be any continuous map. Then
F*e1(gey ) = AsCy(y,,) for some integer s Using the fact that CP? is the 2d + 1-
skeleton of CP* =~ K(Z, 2), one sees readily that if g : CG, ;- CP? is another conti-
nous map, then f is homotopic to g if and only if 1 s = 4, Moreover, there exists a
map f: CG, , —» CP? with A as any pre-assigned integer. Note that with respect to
the orientation obtained from the complex structure on CP* the positive generator
of H*(CP Z) is (—¢1(¥44+1.1))" The degree of f can be determined to be
A L= ) [CG,, 1> which equals (A)*[(1!12!...(k~Dld)((n—K)!...(n— nnHl,
using (Eg. 14.7.11, [3]).

By an entirely analogous argument one shows that the set [HG, ,; HPY] ~
[HG, s HP*]=[HG, ;; BSp(1)]. But Sp(1) = SU(2) = S3. So, [HG, ,; HP*] is in bi-
jective correspondence with the set of isomorphism cases of SU(2)-bundles over
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HG, ;. K HG, , — HP4, then the degree of f is given by the same formula as in the
case of complex grassmannians, where A, is defined by

o (f*(as 1,1)) = Afcz(yn,k)'

We do not know if there exists a continuous map f with A; as any pre-assigned
integer. _ O

3. Application to K-theory

Let f: X — Y be any continuous map between two finite CW complexes. One has a
commutative diagram [1]
R(Y) I, R(X)

Lenm den(x)
gey; Q) L Be(X;Q)

where ch(—) denotes the Chern character. In case X has cells only in even dimen-
sions then Chern character is Well:known to be a monomorphism. In any case
che(X):=ch(X)® Q:K(X)® Q —~ A% (X; Q) is 2 monomorphism ([4], p. 238).

Lemma7. Suppose that f*: INJ”Q’; Q) — B®(X; Q) is zero and that K (X) and K(Y)
are free abelian groups, then f*: K(Y)— R(X) is zero.

Proof. Tt suffices to show that f*: R(Y)®Q - K(X)® Q is zero. This follows
from the fact that chg(X) is a monomorphism and the hypothesis that
f*: H®(Y) - H*(X) is zero. O

Lemma8. Let 1<I<k<n/2<m/2, k(n—k)<l(m—1I). Assume that n> k?/(k —1).
Then any graded Q-algebra homomorphism ¢ H,,— H, , has image in Q, the
elements of degree zero in H, .

Proof. Let us write the canonical gemerators of H,, (respectively H,,) as
X1, X, ..., %, (TESpectively yi,¥s,...,). Write u;=¢(x;)e H,, . 1<i<k We must
show that u, =0 for each i. To obtain a contradiction, assume that u; # 0 for some
i>1. Then #;:=¢(x;) #0 for some j, 1<j<n—k Let p and g be the largest
integers so that u, # 0, i, # 0. Applying ¢ to both sides of the relation

(L+x,+ %+ +x) (L +% + X+ .. +X,_)=1 (17)

and collecting the terms of degree p+q we get u, %,=0 in H,, Since p< k,
g<n—k we get p+q<n Bug, nzkfk-D=>nk—-D=k*=>k(n—k)=nl=
Iim—I) > nl = (m—1) > n. Hence (p + q) <m — L This contradicts Lemma 4 (iv).

' O
As in the proof of Theorem 1, we write k=2s+¢ n—k=2t+1n, [=2a+¢,

m—1=2b+¢, with g,n,¢,n€{0,1}. . :

Theorem 9. (i) Let 1 <I<k<n/2<m/2, and let k(n—k)<l(m—1). Assume that
n=k*/(k —1). _Then for any continuous maps, g: CG,,, - CG,,, h:HG, ;- HG,,
one has g*: R(CG, )~ R(CG, ) and h*:R(HG,,) » K(HG,,) are zero. (ii) Let
1<i<m/2, 2<k<n/2, and let 1 <a<s<t, st<ab. Assume that (s + 1) > s2/(s — a).
If 1 0 mod 4 and (m — 1) % 0 mod 4, then for any continuous map f: G, — G, one
has f'*: R(CG, ) -~ R(CG,,) is zero. ’ ’
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Proof. By Theorem 3.6 [1] one knows that K(X) is a free abelian when X = G/K,
where G is any compact connected Lie group and K is a connected subgroup of
maximal rank. In particular this shows that K(X) is a free abelian for X =CG,,
HG, ;. G , When p is odd or g is even. K*(G ;) has been calculated in [8] for any p
and g, and in particular, it follows from Theorem 3.6, [8] that K(G o 18 a free
abelian for p is even and g is odd. (i) The above result shows g* = 0 = h* by applying
Lemmas 7 and 8. (ii) Now let [ 0 mod 4, (im— ) i 0 mod 4. Then by a straightfor-
ward dimension argument, f* : H‘"’(G,, o Q) — H“”(Gm 5 Q) must map the subalgebra
H,,,, < H"G,, Q) into the subalgebra H v H“(Gm 5 Q). By our hypotheses
on s,t,a,b it follows from Lemma 8 that f*|H_, ( is zero.

In case n =0, so that n—k = 2t, one has f*(e,_)eH,,,, if n —k=0mod 4, and
f*e,-eeH, p, < H"G, ; Q) if n— k=2 mod 4. (Here ¢,=0 if ] is odd). This is
because [ is not divisible by 4. Suppose f*(e,_,)=P € H,,, .. Then

0=1*(p)=f*(e2_)=P*. | (18)
Since st<ab and a<s, one has t <b. This implies 2(n — k) < 4b. Hence, P> =0
implies P =0 by Lemma 4(iv) and hence f *(e,,) = 0. Similarly, when n — k =2 mod

4, we show that f*(e,_,) = 0. By an analogous argument, when ¢=0, so that k =2s,
we show that f*(e,,) = 0. Hence, from Lemma 7, f*: K(G n,k) - K(Gm,l) is zero.
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