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Abstract

We consider a brane configuration consisting of intersecting Neveu-Schwarz five-branes,

Dirichlet four-branes, and an orientifold four-plane in a C2/ZZ3 orbifold background. We

show that the low-energy dynamics is described by a four dimensional gauge theory with

N = 1 supersymmetry and SO(N +4)×SU(N) or SP (2M)×SU(2M +4) gauge symmetry.

The matter content of this theory is chiral. In particular, the SU group has one matter

field in the antisymmetric tensor or symmetric tensor representation and several fields in the

fundamental and antifundamental representations. We discuss various consistency checks on

these theories. By considering the brane configuration in M theory we deduce the spectral

curves for these theories. Finally, we consider the effects of replacing the orbifold background

with a non-singular ALE space (both with and without an orientifold plane) and show that

it leaves the spectral curves unchanged.

http://arXiv.org/abs/hep-th/9712193v1


1. Introduction.

Lately, many insights into gauge theories have emerged from the study of D-branes [1]–

[26]. Two approaches have proved useful for this purpose. One, involving studying branes

in Calabi-Yau backgrounds, was pioneered in [1], for a review see [2] and references therein.

Another is to consider configurations of intersecting D-branes and NS branes [3]. As noted

in [5], such configurations often correspond in M theory to a single smooth NS brane and

this observation allows one to deduce the quantum behavior of the resulting gauge theory

from classical considerations in M theory [3]–[26].

In a previous paper [21], we showed how this latter approach could be extended to study

some chiral gauge theories. The key idea was to consider intersecting brane configurations

in non-trivial backgrounds. Ref. [21] focused, in particular, on orbifold backgrounds. In this

paper we continue the study by considering brane-configurations in a ZZ3 orientifold back-

ground 1. This yields a rich class of four dimensional theories with N = 1 supersymmetry,

SU(N)×SO(N +4) or SU(2M +4)×SP (2M) gauge symmetry and matter in chiral repre-

sentations. In particular the SU group contains one field in the antisymmetric or symmetric

representation and several fields in the fundamental and antifundamental representations.

The analysis leading to the field theory is similar to the orbifold case in many respects but

has one new feature: the orientifold carries a charge with respect to twisted RR fields which

must be cancelled by D 4-branes. We show how the requirement of anomaly cancellation

fixes this charge uniquely and determines the field theories.

In Section 3, we study the classical moduli space of the brane configuration and show

that it agrees with the field theory analysis. In Section 4, we turn to considering the brane-

configuration in M theory and show how various non-perturbative features of the low-energy

dynamics, pertaining to the spectral curves , can be derived in this way. Finally, in Section

5, we return to the orbifold theories considered in [21] and show that the spectral curves

are left unchanged (in suitable coordinates) when the orbifold background is replaced by a

non-singular ALE space. This is consistent with a field theory argument showing that the

curves should be independent of the Fayet-Iliopoulos terms for the anomalous U(1)’s. We

also make some comments with regards to orientifolds in this context.

One main motivation behind this work has been to gain a better understanding of chiral

gauge theories which exhibit supersymmetry breaking. We hope some of the techniques

developed here will eventually prove useful for this purpose.

1Generalising these results to ZZN backgrounds is straightforward but the resulting gauge theories are

more complicated and not particularly illuminating. We will not study them here.
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2. ZZ3 Orientifolds.

2.1 The orientifold and brane configuration.

In this paper we will discuss a particular orientifold background with an orientifold group

given by

G = { 1, α, α2, ΩR(−1)FL, ΩR(−1)FLα, ΩR(−1)FLα2 } . (2.1)

Here, α is a spacetime symmetry that acts on v = X4 + iX5 and w = X8 + iX9 as

(v, w) → (αv, α−1w), α ≡ e
2πi
3 , (2.2)

R is a reflection which acts on the directions transverse to the orientifold 4-plane, X4, X5,

X7, X8, X9, and Ω denotes world-sheet orientation reversal. The ZZ6 orientifold group has a

ZZ2 subgroup:

g1 = { 1, ΩR(−1)FL}, (2.3)

and a ZZ3 subgroup

g2 = { 1, α, α2}. (2.4)

In terms of these, the projection corresponding to the orientifold is given by
(

1 + ΩR(−1)FL

2

) (

1 + α + α2

3

)

. (2.5)

It is useful to bear in mind that the orientifold described above is related by T-duality to a

C2/ZZ3 orbifold of Type I theory2.

We will consider a configuration of intersecting NS and D4-branes placed in this back-

ground3 as shown in Fig. 1. The NS branes, stretching along X1, X2, X3, X4, X5, are placed

at the orientifold point, X7 = X8 = X9 = 0, and have definite positions in X6. The D4-

branes stretch along X1, X2, X3, X6 and are also placed at X7 = X8 = X9 = 0, which

ensures that they intersect the NS branes. Finally, there is an orientifold 4-plane (O4-plane)

parallel to the D4-branes (along X1, X2, X3, X6), which is also placed at the orientifold fixed

point, X4 = X5 = X7 = X8 = X9 = 0, and also intersects the NS branes.

2.2 The gauge group and matter content: basic strategy.

We are interested in studying the low-energy dynamics of this brane configuration. By

an argument analogous to the N = 2 case, it follows that this dynamics is governed by a
2In this paper we consider both SO and SP orientifolds; the above remark applies to the SO case. Also

we only consider non-compact backgrounds here; strictly speaking the remark on T-duality applies to a

background that has been appropriately compactified.
3While, as mentioned above, the generalization to arbitrary abelian (C2/ZZn) orbifolds is straightforward,

the nonabelian case (i.e. C2/G, with G–a nonabelian discrete subgroup of SU(2)) of the type considered in

[28], [30], is problematic. This is because in the construction with NS branes of Fig.1 a nonabelian orbifold

would mix parallel and transverse directions to the NS branes.
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Figure 1: The brane configuration giving rise to N = 2 SO or SP theories.

3 + 1 dimensional theory living in the intersection region of the NS and the D 4-branes,

i.e., along X1, X2, X3. The brane configuration in Fig. 1 leaves four supercharges unbroken,

corresponding to N = 1 supersymmetry in 3 + 1 dimensions. This follows by noting that

in the absence of the orientifold the configuration is invariant under eight supercharges;

“turning on” the orientifold reduces this number to four.

The main question that will occupy us in this section has to do with the gauge group

and matter content of this field theory. Since the discussion is somewhat involved we will

first sketch out the basic strategy in this section. Following this, in section 2.3, the strategy

will be explicitly implemented to find the resulting gauge group and matter content.

It is useful at the outset to summarize some conclusions from our earlier study of the field

theories obtained by placing the brane configuration in Fig. 1 in orbifold backgrounds, [21].

In these cases, it was found that the resulting field theory could be obtained by starting

with an N = 2 supersymmetric theory and projecting out some states. The projection

involved two operations. One was a spacetime symmetry (dictated by the particular orbifold

background) and the second acted on the Chan-Paton indices. States which transformed

non-trivially under this combined transformation were projected out, while those that were

invariant survived and gave rise to the low-energy theory. This projection could also be

understood in purely field theoretic terms in the underlying N = 2 theory. To see this, recall

that the space-time symmetries of the N = 2 brane configuration, SO(3)7,8,9 × SO(2)4,5,

appear as the classical SU(2) × U(1) R symmetry of the N = 2 world volume theory. The

orbifold spacetime symmetry then corresponded to a non-anomalous discrete subgroup of

the R symmetries4, while the action on the Chan-Paton factors corresponded to a discrete

4To avoid confusion, we stress that the relevant combination of R symmetries is non-R in N = 1 terms,

i.e. its action on all states in N = 1 supermultiplets is identical.
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subgroup of the gauge symmetry.

For the orientifold background at hand, we also expect that the gauge group and matter

content can be obtained by starting with an N = 2 supersymmetric theory and truncating

the spectrum. The ZZ2 subgroup of the orientifold group, eq. (2.3), suggests that the N = 2

theory has an SO or SP gauge symmetry. As in the orbifold case above, the projection

operator used in truncating the spectrum should have an interpretation in the field theory

as the product of a discrete subgroup of the R symmetries and a discrete subgroup of the

gauge symmetry.

The discrete subgroup of the R symmetry corresponds to the spacetime symmetry,

eq. (2.2), and can be easily found. Identifying the appropriate subgroup of the gauge sym-

metry is trickier and will take more effort. This subgroup corresponds to the action on the

Chan-Paton indices. The action of the group elements, ΩR(−1)FL and α, eq. (2.1), on the

Chan-Paton factors λ can be represented by the matrices :

λ → γΩR(−1)FL λT γ−1
ΩR(−1)FL

, (2.6)

and

λ → γα λ γ−1
α . (2.7)

The matrices γα and γΩR(−1)FL must furnish a representation of the orientifold group. From

eq. (2.1) this implies,

γΩR(−1)FL = ±
(

γΩR(−1)FL

)T
(2.8)

γ3
α = phase. (2.9)

The + (−) choice in eq. (2.8) corresponds to starting with an N = 2 theory with SO(SP )

symmetry. Eq. (2.9) restricts the subgroup of the gauge symmetry involved in the trunca-

tion but does not specify it uniquely. The remaining ambiguity in this choice is usually fixed

by the requirement of tadpole cancellation [27] for twisted RR fields5. The tadpole can-

cellation condition ensures that the total charge coupling to the twisted RR field vanishes.

In the present context, the RR fields come from the twisted sectors corresponding to the

(1, α, α2) subgroup of the orientifold group. Since both the D4-branes and the orientifold

plane can carry charge for these RR fields, the tadpole cancellation condition should provide

a constraint of the form:

Trγα = − orientifold charge . (2.10)

5For the orientifold discussed here, the twisted RR fields involved can propagate along one spatial direc-

tion, X7, which is of infinite extent. Even so, as argued in ref. [29], one expects the tadpoles to cancel. For

our purposes this argument is suggestive; however, we actually use anomaly cancellation in the field theory

to provide us with an additional constraint.
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The RR tadpoles are usually determined by one loop calculations, but with NS branes

present no explicit conformal field theory is known and such a calculation poses a formidable

challenge.

How then are we to proceed in identifying the discrete subgroup of the gauge symmetry

involved in projecting out states? As was discussed in ref. [31] and more recently refs. [32],

[33], one physical consequence of imposing tadpole cancellation is to ensure that the low-

energy field theory is anomaly free. Accordingly, we will, to begin with, leave the orientifold

charge, eq. (2.10), to be a free parameter. Starting with an SO or SP N = 2 theory

we truncate the spectrum, using the discrete subgroup of the R symmetry and γα, and

then demand that the resulting field theory is anomaly free. As we shall see, this fixes the

orientifold charge uniquely and completely determines the field theory.

It is worth pointing out that, in general, anomalies on a brane world volume theory do

not have to cancel. When this happens, the corresponding non-conservation of charge is due

to a charge inflow from outside the brane [34], [35]. In our case, however, the gauge fields

involved vanish outside the brane world volume. The non-abelian gauge anomalies in the

world volume theory must therefore vanish.

As we see below, the N = 2, SO theory leads to a theory with SO(N +4)×U(N) gauge

symmetry and SP (2ML) × U(2ML + 4) × SP (2MR) × U(2MR + 4) global symmetry. The

matter content of this theory is given by:

global gauge global

SP (2ML) × U(2ML + 4) SO(N + 4) × U(N) SP (2MR) × U(2MR + 4)

4 − 4 Q̄ 1 1 1 1

strings A 1 1 1 1 1

left vL 1 1 1 1

strings qL 1 1 1 1

q̄L 1 1 1 1

right vR 1 1 1 1

strings qR 1 1 1 1

q̄R 1 1 1 1

(2.11)

The N = 2, SP theory, on the other hand, will give rise to theories with SP (2M) ×
U(2M+4) gauge symmetry and SO(NL+4)×U(NL)×SO(NR+4)×U(NR) global symmetry.
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The matter content is given by:

global gauge global

SO(NL + 4) × U(NL) SP (2M) × U(2M + 4) SO(NR + 4) × U(NR)

4 − 4 Q 1 1 1 1

strings S 1 1 1 1 1

left vL 1 1 1 1

strings qL 1 1 1 1

q̄L 1 1 1 1

right vR 1 1 1 1

strings qR 1 1 1 1

q̄R 1 1 1 1

(2.12)

Note that the matter content in (2.11), (2.12) is chiral. In the first case, (2.11) the U(N)

gauge group has an antisymmetric tensor. In (2.12) the U(2M + 4) group has a symmetric

tensor. (2.11) and (2.12) are among the main results of this paper.

2.3 The explicit implementation.

We now turn to explicitly implementing the basic strategy outlined above. It will be

important to consider the N = 2 theories with both SO and SP gauge groups. As was

mentioned above, this corresponds to the two choices of sign in eq. (2.8). It is well known,

though not well understood, from the study of N = 2 theories that this sign flips in going

across an NS brane [6], [9], [10]. In our discussion we will, correspondingly, allow for the

possibility that the twisted-RR orientifold charge, eq. (2.10), also changes on crossing an NS

brane. More specifically, we allow for the orientifold charges of an SO and SP orientifold to

be different; for ease of subsequent discussion we denote these integer charges by −CSO and

−CSP , respectively. The corresponding tadpole cancellation conditions eq. (2.10), then are:

Tr γα = CSO , (2.13)

and

Tr γα = CSP . (2.14)

We are now ready to explicitly implement the truncation procedure outlined above. We

start with Fig. 1, and for concreteness first choose the orientifold charge for the 4-plane lying

in between the two NS branes to correspond to an SO group. After discussing this case in

some detail we will then turn to an SP orientifold. Let the number of D4-branes stretched

between the NS branes be N1. The orientifold charge conditions, eqs. (2.13), (2.14), mean

that the configuration we start with should in general also allow for semi-infinite D4-branes

stretching to the left and right of the NS branes (since the O4 plane extends both to the
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left and right of the two NS branes, semi-infinite D4 branes are needed to cancel its twisted-

RR charge). We take their number to be 2NL and 2NR respectively. It is useful for some

purposes to think of these semi-infinite 4-branes as being limiting cases of finite ones. This

can be done by adding two extra NS branes one to the far left and the other to the far right

along the X6 direction. The full gauge symmetry is then SP (2NL) × SO(N1) × SP (2NR)

(in particular, this explains why the number of semi-infinite 4-branes stretching to the left

and the right in Fig. 1 must be even in number). Moving the two extra NS branes to infinity

turns the SP (2NL) × SP (2NR) group into a global symmetry.

Strings connecting 4-branes lying in between the two NS branes contribute a vectormul-

tiplet of the SO(N1), N = 2 theory. In contrast, strings stretching across an NS brane with

one end lying on the D4-branes stretched between the NS branes and the other end on the

semi-infinite D4-branes give rise to (half) hypermultiplets which transform as QL ( , , 1)

and QR(1, , ) under the SP (2NL)×SO(N1)×SP (2NR) symmetry. It is useful to describe

this matter content in terms of the N = 1 supersymmetry that eventually survives. The

N = 2 vector multiplet contains an N = 1 vector multiplet and a chiral multiplet ΦSO which

transforms in the adjoint representation of the gauge group. Each half hypermultiplet gives

rise to one chiral multiplet. The matter content is then given as:

SO(N1) SP (2NL) SP (2NR)

4 − 4 ΦSO 1 1

left/right QL 1

strings QR 1

(2.15)

The theory also has a superpotential given by:

W = Tr J QT
L ΦSO QL + Tr J QT

R ΦSO QR , (2.16)

where J is the SP invariant antisymmetric tensor (J2 = −1). This completes our description

of the N = 2 theory.

We now turn to identifying the operators involved in projecting out states. As mentioned

above, the subgroup of the R symmetries corresponds to a rotation by 2π/3 in the X4, X5

and X7, X8 planes. This means that it acts on the fields as follows:

(Aµ, λ) → (Aµ, λ)

ΦSO → ei 2π
3 ΦSO

QL,R → e−i π
3 QL,R . (2.17)

The projection operator also involves a subgroup of the gauge symmetry. More accurately,

in the present context where there are semi-infinite branes present as well, it involves a

subgroup of the SP (2NL)×SO(N1)×SP (2NR) symmetry. Correspondingly, there are three

7



γα matrices, eq. (2.7), γL
α , γSO

α , γR
α , which act on the left semininfinite D4 branes, the 4

branes stretched between the two NS branes, and the semi-infinite 4-branes stretching to

the right, respectively. There is a phase ambiguity, related to these matrices, which we need

to address before going further. The alert reader might have noticed that in eq. (2.9) we

allowed γ3
α to equal a phase and not be necessarily unity. The relative phases of the γα

matrices corresponding to adjacent sets of D4-branes is physical: it acts nontrivially on the

hypermultiplets which correspond to strings going across an NS brane and ending on these

adjacent 4 branes. By a phase redefinition we can ensure that:

(γSO
α )3 = 1. (2.18)

It turns out then that6

(γL,R
α )3 = −1. (2.19)

As we saw above, the semi-infinite D4-branes can be thought of as limiting cases of finite

ones with SP symmetry. Keeping this in mind, our results for the respective phases can be

conveniently summarised as:

(γSO
α )3 = 1 , (γSP

α )3 = − 1 . (2.20)

We now return to the main thread of our discussion regarding the resulting field theory.

For concreteness we first consider the case where CSO, CSP ≥ 0, eqs. (2.13), (2.14). This

implies that (in a suitable basis) :

γSO
α = diag{1 × 1N+CSO

, α × 1N , α2 × 1N} , (2.21)

where 1 stands for an identity matrix of appropriate rank. We see that with the above

choice, the number of D4-branes N1 is given by:

N1 = 3 N + CSO . (2.22)

Similarly, eqs. (2.14) and (2.19) imply that:

γL,R
α = − diag{1 × 12ML,R

, α × 12ML,R+CSP
α2 × 12ML,R+CSP

}. (2.23)

Eq. (2.23) in turn means that:

NL,R = 3 ML,R + CSP . (2.24)
6Evidence in support of this comes from adding six branes placed away from the orientifold plane and in

between the two NS branes. In this case there are extra hypermultiplets, corresponding to strings stretching

between the D4-branes and the 6 branes. One is lead to conclude then [27] that (γ
(6)
α )3 = −1. Moving these

6-branes along X6 across an NS brane leads to the creation of D 4-branes. The 6 − 4 hypermultiplets then

turn into the ones discussed in the text above corresponding to strings stretched across the NS brane. This

leads to the conclusion that (γL,R
α )3 = −1 as well.
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Let us now consider the effect of the projection operators on the various fields in the

theory. As we saw above the gauge boson is invariant under the ZZ3 R symmetry. The

projection operator acts on it by:

Aµ → γSO
α Aµ (γSO

α )−1. (2.25)

Eq. (2.21) shows then that the final theory has a SO(N + CSO) × U(N) gauge symmetry7.

Similarly the SP (2NL) and SP (2NR) global symmetries are broken to U(2ML + CSP ) ×
SP (2ML) and U(2MR +CSP )×SP (2MR) respectively. The matter content can be found in

a similar manner by asking which states are invariant under the combined action of the ZZ3

R symmetry, γSO
α , γL

α , and γR
α . It can be read off from eq. (2.11), after making the changes:

U(2ML,R + 4) → U(2ML,R + CSP ), SO(N + 4) → SO(N + CSO).

We are now ready to impose the constraint of anomaly cancellation. Demanding that

the SU(N) subgroup of the U(N) gauge symmetry is anomaly free gives the condition:

CSO − 2 CSP = − 4 . (2.26)

So far, we have considered the case where the orientifold charge (between the NS branes)

was chosen to correspond (in the N = 2 case) to an SO(N) gauge theory. Now we can

consider the case where this is an SP gauge symmetry instead, restricting ourselves again

to the case CSO, CSP ≥ 0. In this case a similar analysis reveals that the final gauge

symmetry is SP (2M) × U(2M + CSP ). The global symmetry is correspondingly given by

SO(NL +CSO)×U(NL)×SO(NR +CSO)×U(NR). The matter content, which survives the

projection is given by eq. (2.12) after making the changes SO(NL,R +4) → SO(NL,R +CSO)

and U(2M + 4) → U(2M + CSP ).

Anomaly cancellation for the SU(2M + CSP ) now implies that

2 CSO − CSP = 4 . (2.27)

Eqs. (2.26) and (2.27) now show that

CSO = CSP = 4 . (2.28)

So far we have restricted ourselves to the case CSO, CSP ≥ 0. On considering the other

possibilities one finds no solutions consistent with the requirements of anomaly cancellation.

Thus one is lead to the unique values of the orientifold charges, eq. (2.28 )8.

To summarize, for an SO orientifold stretched in between the two NS branes the gauge

group is SO(N + 4) × U(N), the global symmetry group is SP (2ML) × U(2ML + 4) ×
7The U(1) subgroup of the U(N) will turn out to be anomalous; we will return to this later on.
8While we do not do so here, one can show that the solution, eq. (2.28), is consistent with the discrete

subgroup of the R symmetry, eq. (2.17), being non-anomalous as well.
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SP (2MR)×U(2MR +4). The matter content is as given in eq. (2.11) Note that the theory is

chiral and contains and antisymmetric tensor of the U(N) gauge group. The theory inherits

a superpotential from eq. (2.16):

W =
∑

i=L,R

A · q̄i · q̄i + Q̄ · vi · qi . (2.29)

For the SP orientifold the gauge symmetry is SP (2M)×U(2M +4), the global symmetry

is SO(NL + 4)×U(NL)× SO(NR + 4)×U(NR). The matter content is shown in eq. (2.12).

The corresponding superpotential is:

W =
∑

i=L,R

S · vi · vi + Q · qi · q̄i (2.30)

We note that to prevent a global anomaly in the SP (2M) gauge symmetry NL and NR must

both be either even or odd.

One final comment is in order before we end this section. As was mentioned above in

the SO case, the U(1) subgroup of U(N) is anomalous. Similarly, in the SP case the U(1)

subgroup of U(2M + 4) is anomalous. The role of anomalous U(1)s in D-brane theories

was discussed in ref. [28], where they were shown to be important in studying the low

energy dynamics. We will not discuss this issue in great detail. The important point is

that the U(1)s are in fact broken. The anomalies are cancelled by the Green Schwarz

mechanism; the axion fields involved come from the twisted RR fields, ref. [28]. The one

feature that will be important in the present discussion is that each U(1) gives a D-term

contribution to the potential energy, which is important in determining the moduli space of

the theory. The axions mentioned above have partners whose expectation value corresponds

to Fayet-Iliopoulos D terms for the anomalous U(1)s. Geometrically these expectation values

correspond to blowing up the orientifold background9. We will have more to say about

blowing up orbifolds and orientifolds in Section 5.

3. The Classical Moduli Space.

We now turn to comparing the classical moduli space of the field theories discussed above

with the allowed motions for the brane configuration. Detailed agreement between the two

provides additional evidence that the correct field theories have been identified.

For simplicity we keep the number of semi-infinite 4-branes in Fig. 1 to be the minimum

required by the tadpole conditions, eq. (2.13), (2.14), with eq. (2.28). This means ML,R = 0

in eq. (2.11) and the q̄L,R fields are absent in the SO case; similarly, NL,R = 0 in eq. (2.14),

with both qL,R and q̄L,R being absent in the SP case. The generalization for the non-minimal

case is straightforward and does not add anything new.
9In fact, in the orientifold case, eqs. (2.11), (2.12), since the anomalous U(1)s are not traceless, a contri-

bution to the FI terms is generated at one loop as well.
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3.1 The SO theories.

There are two cases to be discussed, corresponding to the SO theories, eq. (2.11), and

the SP theories, eq. (2.12). We first consider the SO theories. As follows from eq. (2.11),

a general configuration has 3N + 4 branes coincident with the orientifold plane. Starting

with this configuration, branes can be moved away from the orientifold plane along the

X4, X5 directions. Each brane, away from the orientifold plane, has five images under the

ZZ6 orientifold group. This means that, counting images, we can move sets of six branes away

from the orientifold point. Moving one set of six branes should correspond to Higgsing the

gauge symmetry SO(N + 4) × U(N) → SO(N + 2) × U(N − 2). Since the branes move in

X4, X5 there is one complex modulus associated with this motion.

It is useful in the subsequent discussion to distinguish between two cases. If the total

number of branes we started with is even, i.e. N is even, this process can be carried on till

3N branes have been moved away, leaving four branes stuck at the orientifold. The four

branes saturate the tadpole condition, Tr(γSO
α ) = 4, eqs. (2.13), (2.28), and give rise to an

SO(4) gauge symmetry. The branes that have been moved away contribute a U(1)
N
2 factor,

leading to a full SO(4)× U(1)
N
2 gauge symmetry. There are N/2 moduli parametrizing the

allowed motions of the 4-branes.

If N is odd, a maximum of 3(N − 1) branes can be moved away, leaving seven branes

stuck at the orientifold. These branes generically should give rise to an SO(4) gauge group,

leading to a full SO(4) × U(1)
(N−1)

2 gauge symmetry10. In this case there are (N − 1)/2

moduli parametrising the set of allowed motions. Finally, note that in both the even and

odd cases case when N1 branes come together away from the orientifold plane (as do their

images) the corresponding U(1)N1 factor in the gauge symmetry is enhanced to U(N1).

Let us see if the analysis in the field theory agrees with this. Note that of the field content

in eq. (2.11), only the Q̄ and A fields arise from the adjoint ΦSO, eq. (2.15). The other fields

originate from the (half) hypermultiplets QL,R. For the N = 2 supersymmetric theory it is

well known that the brane construction with semi-infinite 4-branes describes the Coulomb

branch of the N = 2 theory along which ΦSO gets a vev but not the hypermultiplets QL,R [9],

[10]. Accordingly, one expects for the N = 1 theories being discussed here that the allowed

brane motion will correspond to the branch of the moduli space where only Q̄ and A get a

vacuum expectation value. Below, we verify this.

For the N even case the solutions to the SO(N + 4) and SU(N) D-flatness conditions

10Eq. (2.11) would lead us to believe that the gauge group for the branes left at the orientifold is SO(5)×
U(1). However, the U(1) factor is anomalous and broken; generically it also has a non-zero FI term. To

meet the D-flatness condition for the U(1) when the FI term is non-zero, the Q̄ field must acquire a vev

breaking SO(5) → SO(4) (see discussion after eqns. (3.3), (3.4) ).
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are:

Q̄ =



























v1 0 . . . 0 0 0 0 0 0

0 v1 . . . 0 0 0 0 0 0

0 0 . . . 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . vN/2 0 0 0 0 0

0 0 . . . 0 vN/2 0 0 0 0



























, (3.1)

A = diag
(

a1 σ2, a2 σ2, . . . , aN/2 σ2

)

, with |vi|2 = 2 |ai|2 + c . (3.2)

Since these are the only fields that get expectation values, the F -flatness conditions are

automatically met, see eq. (2.29). The constant c in eq. (3.2) is fixed, by the anomalous U(1)

D-flat condition, to be proportional to its Fayet-Iliopoulos term. This is easy to see upon

substituting the solutions (3.1), (3.2) into the anomalous U(1) D-term equation, 2TrA†A −
TrQ̄Q̄† = ξFI . Clearly, the flat directions (3.1) and (3.2) preserve a diagonal SO(2)N/2 =

U(1)N/2 abelian gauge symmetry, times a nonabelian SO(4), exactly as predicted by the

brane picture.

We also note that along these flat directions the superpotential, eq. (2.29), gives mass to

all the qL,R fields and to the SO(N) components of the vL,R fields. This can be understood

in the brane picture as well: when the D4-branes moves away from the orientifold plane, the

open strings connecting them to the adjacent semi-infinite 4-branes get stretched.

The SO(4) group left unbroken has eight vectors and is non-asymptotically free. Con-

sequently, in the quantum theory, we expect the SO(4) gauge coupling to go to zero in the

infra-red and for the massless spectrum to include the SO(4) gauge bosons as well as the

eight vector matter fields.

For the odd N case a similar field theory analysis for the flat directions yields for the

field Q̄:

Q̄ =

































v1 0 . . . 0 0 0 0 0 0 0

0 v1 . . . 0 0 0 0 0 0 0

0 0 . . . 0 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . vN−1
2

0 0 0 0 0 0

0 0 . . . 0 vN−1
2

0 0 0 0 0

0 0 . . . 0 0
√

c 0 0 0 0

































, (3.3)

while the antisymmetric tensor now has rank N − 1:

A = diag
(

a1 σ2, a2 σ2, . . . , aN−1
2

σ2, 0
)

, with |vi|2 = 2 |ai|2 + c . (3.4)
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The constant c for the odd case is also fixed to be proportional to the anomalous U(1)

Fayet-Iliopoulos term. Note that if the full FI term (sum of tree level and one loop) is non-

zero, c 6= 0, and SO(5) is broken down to SO(4). Thus, in the odd-N case generically the

unbroken gauge symmetry is expected to be U(1)
N−1

2 × SO(4). The superpotential gives a

mass to the qL,R fields and the SO(N) components of the vL,R.

The Coulomb branch described above in eqns. (3.1, 3.2) (or (3.3, 3.4) for the odd-N case)

can also be given a gauge invariant description: from the fields Q̄ and A we can form the U(N)

invariant X = A·Q̄·Q̄, which transforms as an adjoint of SO(N+4). The rank of X, however,

is at most N (or N−1, if N is odd). Therefore, the independent SO(N+4)×U(N) invariants

that describe the Coulomb branch are TrX2j , with j = 1, ..., [N/2]. These correspond

to the positions of the [N/2] physical D4-branes away from v = 0. Note also that the

SO(N + 4) × SU(N) invariant “baryon” Q̄2N is not allowed by the anomalous U(1) (this

corresponds to eliminating c from (3.2) by the U(1) D-term). The pattern of symmetry

breaking is, of course, the same as the one described above via the explicit solutions along

the flat directions.

We end this section with one final comment. Above, we found that the unbroken gauge

symmetry is generically, U(1)
N−1

2 × SO(4). As in the even case, the SO(4) has eight matter

fields in the vector representation and is non-asymptotically free. Once again, in the quantum

theory, we expect the SO(4) gauge bosons and the eight matter fields to be present in the

massless spectrum.

3.2 The SP theories.

The description for the SP case is similar to the SO case and we only present it briefly.

As in the SO case we expect that the allowed brane motion should correspond to the branch

of moduli space where only the descendants of the N = 2 adjoint, Q, S̄, eq. (2.12), get an

expectation value. In this case the tadpole condition, eq. (2.14) and eq. (2.28), requires

6M + 8 branes to be coincident with the orientifold plane. 6M of these can be moved away

from the orientifold plane; this motion is parametrized by M moduli. The remaining eight

branes are stuck at the orientifold plane and saturate the tadpole condition, Tr(γSP
α ) = 4

(with γSP
α of the form given by eq. (2.23)). These eight branes give rise to an SU(4) gauge

symmetry, while the branes away from the orientifold plane contribute a U(1)M factor leading

to a full SU(4)×U(1)M gauge group. In field theory the moduli space is parametrised by the

M gauge invariants Tr (S ·Q·Q)2j , with j = 1, ..., M . The gauge group is SU(4)×U(1)M and

again agrees with what was expected from brane considerations. Also, along these directions

the U(2M) components of the vL,R fields get heavy eq. (2.30).

We saw above that a SU(4) subgroup is left unbroken. It has a symmetric tensor and eight

antifundamentals as matter fields and is asymptotically free. One would like to understand

the quantum behavior of this theory, in particular whether it confines or not and how it global
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symmetries are realised. Unfortunately, these turn out to be difficult questions and we will

have to leave them unanswered. What complicates the analysis is the fact that the theory has

no flat directions. The superpotential, eq.(2.30), lifts all flat directions involving the vi fields

leaving only one flat direction along which the field S gets a vev breaking SU(4) → SO(4).

This direction in turn is lifted by the D term of the anomalous U(1). We can say one

important thing about the ground state of this theory: it does not break supersymmetry.

One might have worried for example that along the flat direction, mentioned above, where

S gets a vev breaking SU(4) → SO(4), gaugino condensation in the SO(4) generates a

superpotential that pushes the S to large vevs, in conflict with the U(1) D-term requirement

and leading to supersymmetry breaking. However, since SO(4) ≃ SU(2) × SU(2), there is

a branch along which the gaugino condensates from the two SU(2)s contribute oppositely

and cancel; along this branch the quantum theory has a supersymmetric vacuum.

Finally, the field theory analysis above both for the SO and SP cases was restricted to

generic points in the moduli space. On extending it to points of enhanced gauge symmetry

one finds again agreement with the expectations from the brane picture.

4. The Hyperelliptic Curves from M Theory.

So far in our considerations we have considered the brane configuration in the Type

IIA limit. We now turn to considering it in M theory; this will allow us to determine the

spectral curves for the Coulomb phase described in section 3. Our analysis is based on the

important observation of ref. [5] that in M theory, the brane configuration of Fig. 1 can be

thought of as a single NS 5-brane which is smooth on the eleven dimensional Planck scale.

In ref. [5], the M theory 5-brane world volume had infinite extent in the X0, X1, X2, X3

coordinates, while spanning a two dimensional surface in a four manifold, parametrized by

v = X4 + iX5 and t = exp(−(X6 + iX10)/R). Refs. [9] and [10] extended this study to the

SO and SP cases by introducing an orientifold 4-plane. The effects of the orientifold plane

were incorporated by working in the covering space, X4, X5, X7, X8, X9, and restricting to

configurations symmetric under

(X4, X5, X7, X8, X9) → −(X4, X5, X7, X8, X9). (4.1)

For the case at hand, we consider placing the brane configuration of Fig.1 in a C2/ZZ3

orbifold background, given by identifying points as in eq. (2.2). A more convenient repre-

sentation of this orbifold is obtained by embedding it as a hypersurface in C3:

yz − x3 = 0. (4.2)

The coordinate mapping is y = v3, z = w3, x = vw. The 5-brane is described as a curve Σ

in C3 × R1 × S1. The effects of the orientifold 4-plane are incorporated, as in the N = 2
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case, by restricting to surfaces symmetric under (y, w) → −(y, w). The surface Σ is smooth

except at the orientifold point y = z = x = 0 and can be parametrized by y and t with z set

equal to zero.

There is one important limitation in our discussion below that should be mentioned at the

outset. We saw above that the SO case gives rise to a SO(4)×U(1)
[N]
2 gauge symmetry; the

SO(4) group is infra-red free and we expect its ultra-violet degrees of freedom to be present

in the infra-red as well. The SP case, on the other hand, gives rise to a SU(4) × U(1)M

unbroken gauge symmetry; here the inra-red behavior of the SU(4) theory is difficult to

analyse since it is asymptotically free and has no moduli. The discussion below will lead to

the spectral curves from which the gauge couplings etc. of the U(1) factors can be found,

but we will not address how the physics of the SO(4) or SU(4) gauge theory can be deduced

from M theory considerations. We expect this to be a fairly non-trivial question. In the Type

IIA limit, the SO(4) (SU(4)) symmetry arose because of 4-branes stuck to the orientifold.

Understanding this in M theory probably involves blowing up the orbifold and working in

the resulting ALE space (see the discussion in section 5 in this regard), in particular the

non-trivial two cycles of the ALE space should play an important role in this. We hope to

return to this question in the future.

In the analysis below, our basic strategy is to start with the N = 2 curves expressed in

terms of the coordinates t, v. Incorporating the ZZ3 orbifold results in setting some of the

order parameters of the N = 2 curves to zero. Then, re-expressing the curves in terms of

t and y gives rise to the final form of curves. The U(1) gauge fields, in the resulting world

volume theories, correspond to harmonic differentials odd under the y → −y symmetry

and we see below that their number agrees with the field theory analysis, section 3. Some

additional checks on the curves are carried out as well and shown to match field theory

expectations. There are three classes of N = 2 theories with even SO, odd SO, and SP

gauge symmetries, which give rise to three classes of N = 1 theories. We consider these in

turn.

4.1 The even SO case.

To begin, we consider the SO(2n+4)×U(2n) gauge theory, eq. (2.11), with ML = MR = 0

(incorporating additional semi-infinite four branes is trivial and does not add anything to

the discussion; see eq. (4.10)). As discussed in section 2, the corresponding N = 2 theory

has 6n+4 branes placed between the two NS branes and eight semi-infinite branes extending

to the left and right respectively. The corresponding curve is given by [9], [10]:

v10 t2 + t
(

(v2)3n+2 + u2 (v2)3n+1 + · · ·u6n+4

)

+ v10 = 0 . (4.3)

Imposing the ZZ3 symmetry sets several terms above to zero and gives rise to the curve:

v10 t2 + t
(

(v2)3n+2 + ũ1 (v2)3n−1 + · · · + ũn (v2)2
)

+ v10 = 0 . (4.4)
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We see that the curve above can be written as the product of two factors:

v4
[

v6 t2 + t
(

(v2)3n + ũ1 (v2)3n−3 + · · · + ũn

)

+ v6
]

= 0 . (4.5)

The analysis in section 3.1 leads us to expect that SO(2n+4)×U(2n) → SO(4)×U(1)n. The

discussion below shows that the second component in eq.(4.5) corresponds to the spectral

curve from which the gauge couplings etc. of the U(1)n group can be calculated. We

expect the v4 factor to be important in understanding the SO(4) unbroken symmetry, but

as mentioned above we will not pursue this any further here.

Discarding the v4 factor and substituting, v3 ≡ y as mentioned above then gives the final

form of the curve:

y2 t2 + t
(

(y2)n + ũ1 (y2)n−1 + · · · + ũn

)

+ y2 = 0 . (4.6)

Eq. (4.6) meets a number of checks, as we now discuss.

First, it has n order parameters, ũj, j = 1, · · · , n. This agrees with the field theory

analysis in section 3. The moduli ũj can be related, semiclassically, to the projections of the

N = 2 moduli that are ZZ3 invariant: Tr(Φ2
SO)3j, j = 1, ..., n. In the N = 1 theory, the N = 2

adjoint decomposes into the fields Q̄ and A, and using this identification, we can conclude

that, semiclassically, the moduli of the N = 1 theory are Tr(AQ̄2)2j, in accord with the field

theory expectations.

Second, as mentioned above, the U(1) gauge bosons correspond to holomorphic differen-

tials that are odd under y → −y. One can show from eq. (4.6) that these are n in number,

again in accord with the field theory analysis.

Third, the curve, eq. (4.6), is consistent with all the symmetries (exact and anomalous) of

the field theory. To see this it is convenient to introduce in eq. (4.6) an explicit dependence

on the strong coupling scales of the SU(2n) and SO(2n+4) groups. After rescaling t and y,

dimensional analysis and the requirement of invariance with respect to the U(1) (anomalous)

subgroup of the U(2n) gauge symmetry fixes the curve to be:

y2 t2 + t
(

(y2)n + ũ1 (y2)n−1 + · · · ũn

)

+ Λ
2bSU

0
SU Λ

bSO
0

SO y2 = 0 . (4.7)

One can now verify that eq. (4.7) transforms appropriately under all the other symmetries

of the field theory as well. (In eq. (4.7), b
SO(2n+4)
0 = 4n − 2 and b

SU(2n)
0 = 4n − 5 are the

one loop beta function coefficients of the SO(2n + 4)× SU(2n) theory, with ML = MR = 0,

respectively (2.11)11).

Finally, one can consider submanifolds of the moduli space that correspond classically

to an enhanced gauge symmetry and ask if the curve reduces there to the expected form.

11We note that, since 2b
SU(2n)
0 +b

SO(2n+4)
0 = b

SO(6n+4)
0,N=2 , the total power of the scale dependence in eq. (4.7),

Λ
2bSU

0

SU Λ
bSO
0

SO , matches that in the N = 2 theory, Λb
SO(6n+4)

0,N=2 .
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As an example, consider a situation where n physical branes come close together far from

the orientifold, resulting in an U(1)n → U(n) enhanced symmetry. The U(N) theory has an

adjoint field and we expect the curve to reduce to that for an N = 2 SU(N) theory12 along

this flat direction. To see that this is indeed the case, rewrite the curve in the form:

y2 t2 + t (y2 − a2
1) (y2 − a2

2) . . . (y2 − a2
n) + Λ

2bSU
0

SU Λ
bSO
0

SO y2 = 0 . (4.8)

The parameters ai in (4.8) correspond to the positions of the n physical D4-branes in the y

plane. The configuration with enhanced U(n) we described above corresponds to ai = a+δai,

with
∑n

i=1 δai = 0; a describes the center of mass motion of the n physical branes in the y

plane, whereas the δai are the small fluctuations around the center of mass. In the vicinity

of y = a, i.e. for y = a + δy, the curve (4.8) becomes, keeping only the leading terms in

δy, δai:

a2 t2 + t (2 a)n (δy − δa1) (δy − δa2) . . . (δy − δan) + Λ
2bSU

0
SU Λ

bSO
0

SO a2 = 0 . (4.9)

But this is precisely the curve describing the SU(n) theory with an adjoint, with the correct

strong coupling scale, as can be seen by rescaling away the coefficients in front of t2 and t,

and remembering that
∑n

i=1 δai = 0.

We end the discussion for the SO(2n) case with two comments. First, from eq. (4.6),

we see that (for ũn 6= 0 ) as y → 0, t → 0 and ∞. Thus the orientifold plane pushes the

NS 5-brane out to infinity in the small y region; this is analogous to what happens in the

SO(2n) N = 2 case. Second, above we considered the case with the minimal number of

semi-infinite 4-branes, i.e. ML = MR = 0. In the more general case where ML, MR 6= 0 the

curve can be written down in an analogous fashion. It is given by:

y2 t2
ML
∏

i=1

(y2 − a2
i ) + e t

n
∑

j=0

ũi (y2)n−i + f y2
MR
∏

k=1

(y2 − b2
k) = 0. (4.10)

4.2 The odd SO case.

Our discussion here will closely parallel the previous section, consequently we omit many

of the details and only mention the important points. To begin, consider the theory with

SO(2n + 5) × U(2n + 1) gauge symmetry and ML,R = 0, eq. (2.11). The corresponding

N = 2 theory is obtained by taking a configuration containing 6n + 7 4-branes between the

two NS branes and eight semi-infinite 4-branes stretching to the left and right respectively.

The N = 2 curve is :

v9 t2 + t
(

(v2)3n+3 + u2 (v2)3n+1 + · · · + u6n+6

)

+ v9 = 0 . (4.11)

12 The overall U(1) is not relevant for this discussion.
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Notice that this curve is invariant under the combined transformation, v → −v, t → −t.

After imposing the ZZ3 symmetry to set various terms to zero and substituting y ≡ v3 we

get:

y3 t2 + t
(

(y2)n+1 + ũ1 (y2)n + · · · + ũn y2 + ũn+1

)

+ y3 = 0 . (4.12)

It would seem that the curve has n + 1 order parameters, ũj, j = 1, · · · , n + 1; however, a

semiclassical analysis shows that ũn+1 is not an order parameter.

Let us pause briefly to discuss this. Note that semiclassically, this parameter is the

descendant of u6n+6 in the N = 2 theory, eq. (4.14), which is proportional to the product of

the squares of the 3n + 3 nonzero eigenvalues of ΦSO(6n+7) (recall that the eigenvalues come

in pairs). The decomposition of the adjoint of SO(6n + 7) in terms of the fields Q̄, A has

the form (in a basis where the SO adjoint is an antisymmetric matrix):

ΦSO(6n+7) =









0 Q̄T −iQ̄T

−Q̄ A iA

iQ̄ iA −A









. (4.13)

Then, substituting the solutions for the flat directions (3.3, 3.4) into (4.13), we see that

ΦSO(6n+7) can at most have 3n+1 nonvanishing pairs of eigenvalues along the flat directions.

Hence, semiclassically, ũn+1 = 0. This shows that in the full quantum theory ũn+1 cannot

be continuously varied but leaves open the possibility that it is a constant different from

zero (and dependent on the two strong coupling scales). At present, we do not know how

to determine this constant from a first principles analysis. We will see below though that

setting ũn+1 = 0 will yield a curve that meets several checks.

Putting ũn+1 = 0, in eq. (4.12) gives a curve which factorizes. The analysis in section 3.1

shows that generically , along the branch of moduli space under discussion here, SO(2n +

5) × U(2n + 1) → SO(4) × U(1)n. In analogy with the even SO curve we expect that the

spectral curve for the U(1)n subgroup is given by discarding the overall factor of y2. This 13

yields the final form of the curve:

y t2 + t
(

(y2)n + ũ1 (y2)n−1 + · · · + ũn

)

+ y = 0 . (4.14)

Let us describe some of the checks that the curve, eq.(4.14), meets. First, it has n moduli.

In fact, from eq. (4.13), it follows that semiclassically these correspond to Tr(AQ̄Q̄)2j , j =

1 · · · , n. Second, it gives rise to n holomorphic differentials odd under y → −y, t → −t. This

agrees with the n U(1) gauge bosons expected from the field theory analysis. Finally, after

rescaling t and y above the curve can be written in the form:

y t2 + t
(

(y2)n + ũ1 (y2)n−1 + · · · + ũn

)

+ y Λ
2bSU

0
SU Λ

bSO
0

SO = 0, (4.15)

13Once again the y2 factor should be important in understanding the SO(4) symmetry in M theory.
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which is easily seen to be consistent with all the symmetries of the field theory.

Eq. (4.14) can also be generalized for the case ML,R 6= 0 which correspond to having

6ML +8 semi-infinite 4-branes to the left and 6MR +8 semi-infinite branes to the right. The

corresponding curve is given by

y t2
ML
∏

i=1

(y2 − a2
i ) + e t

n
∑

j=0

ũj (y2)n−j + f y
MR
∏

k=1

(y2 − b2
k) = 0. (4.16)

4.3 The SP case.

Finally, we consider the case of an SP (2M) × U(2M + 4) theory, eq. (2.12). We begin

with the minimal case NL,R = 0. The corresponding N = 2 brane configuration has 6M + 8

4-branes stretched between the two NS branes and four semi-infinite branes stretching to

the left ad right respectively. The N = 2 curve can now be written:

v4 t2 + t v2
(

(v2)3M+4 + u2 (v2)3M+3 + · · · + u6M+8

)

+ v4 = 0 . (4.17)

Imposing the ZZ3 symmetry and setting appropriate terms to zero gives

v4
[

t2 + t
(

(v2)3M+3 + ũ1 (v2)3M + · · · + ũM+1

)

+ 1
]

= 0 . (4.18)

Notice that the curve has factorized with two components. Generically in moduli space the

SP (2M)×U(2M +4) symmetry is broken to SU(4)×U(1)M . In analogy with the SO even

case we expect the second component to be relevant in describing the spectral curve for the

U(1)M group.

Discarding an overall factor of v4 and substituting y ≡ v3 then gives:

t2 + t
(

(y2)M+1 + ũ1 (y2)M + · · · + ũM (y2) + c̃
)

+ 1 = 0 . (4.19)

Notice that in going from eq. (4.18) to eq. (4.19) we have replaced the parameter, ũM+1,

by a constant, c̃. Without this parameter the curve has M moduli as required from the

field theory analysis. Semiclassically, an analysis analogous to that in the SO(2k + 1) case

above, establishes that ũM+1 = 0. This allows for ũM+1 to be a constant (dependent on the

two strong coupling scales) in the full quantum theory. In fact one finds that generically

the curve (4.19) has M + 1 holomorphic differentials, odd under y → −y; this would imply

in turn M + 1 photons. The field theory and Type IIA analysis showed that we should

expect only M photons. The discrepancy is resolved by setting c̃ = −2; two branch points

now coincide reducing the number of allowed photons to M as required. The curve for the

Sp(2M) × U(2M + 4) theory is thus finally given by:

t2 + t
(

(y2)M+1 + ũ1 (y2)M + · · · + ũM (y2) − 2
)

+ 1 = 0 . (4.20)
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The reader might have noticed that in above discussion, fixing the parameter c̃ is very similar

to that involved in determining the N = 2 SP curves [9]. It would be nice to understand

these parallels better.

The dependence of the curve (4.20) on the strong coupling scales can be made manifest.

After rescaling t and y one finds14 we find:

t2 + t
(

(y2)M+1 + ũ1 (y2)M + · · · + ũM (y2) − 2 Λ
bSP
0

SP Λ
bSU
0

SU

)

+ Λ
2bSP

0
SP Λ

2bSU
0

SU = 0 .

(4.21)

Eq. (4.21) is consistent with all the symmetries of the SP (2M) × U(2M + 4) theory.

For the more general case where NL,R 6= 0, eq. (2.12) the curves can be written in a

straightforward manner. As mentioned before, NL and NR must both be even or odd. For

the even case we get the curve:

t2
NL
2
∏

i=1

(y2 − a2
i ) + e t (y2(

M
∑

j=1

ũj (y2)M−j) − c̃) + f

NR
2
∏

k=1

(y2 − b2
k) = 0. (4.22)

The constant c̃ now depends on the values of ai, bj as well. For the odd case the curve is:

t2 y
L
∏

i=1

(y2 − a2
i ) + e t y2(

M
∑

j=1

ũj (y2)M−j) + f y
R
∏

k=1

(y2 − b2
k) = 0. (4.23)

We end this section with one comment about the anomalous U(1) symmetries. The reader

might recall that the U(1) subgroup of the U(N) gauge symmetry in the SO case eq. (2.11),

and the U(1) subgroup of the U(2M + 4) gauge symmetry in the SP case, eq. (2.12), are

anomalous. As was discussed above, this anomaly is cancelled by the shift of an axion field

a. The axion supermultiplet, φ = ζ + ia, thus couples to the gauge kinetic term with a

coupling φW 2. In effect, this coupling makes the strong coupling scales of the two groups,

ΛSU and ΛSO,SP , φ dependent. However, in the SO case, we see that only a combination,

Λ
2bSU

0
SU Λ

bSO
0

SO invariant under the anomalous U(1) appears in the curve eq. (4.7), (4.15). Thus,

the φ dependence drops out of the spectral curves, eq. (4.7), (4.15). A similar argument

shows that the curve is φ independent in the SP case as well.

The spectral curves discussed here are independent of the FI term for the anomalous

U(1). This follows from the above argument. The FI term gets a contribution from the vev

of ζ . Since the spectral curve is holomorphic, ζ can only appear in it through the combination

φ. The φ independence then means that the curve is completely independent of ζ and thus

of the FI term.

It was argued in ref. [28] that giving a vev to ζ corresponds to blowing up the orbifold

and replacing it by an ALE space. The argument above for ζ independence then also implies

14With NL,R = 0, eq. (2.12), we have bSU
0 = 4M + 5, bSP

0 = 2M + 1.
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that in M theory the curves should stay the same when the orbifold is replaced by an ALE

space. In the next section we see that this is indeed the case.

5. The Hyperelliptic Curves in ALE Space Backgrounds.

In this section, we consider the effects of replacing the orbifold background with an ALE

space and show that (in appropriate coordinates) it leaves the spectral curves unchanged.

We first discuss an orbifold background without an orientifold 4-plane. Towards the end

we will comment on the orientifold case as well. Consider the case of a brane configuration,

Fig. 1, placed in aC2/ZZM background, without any semi-infinite 4-branes. This configuration

was studied in [21]; for completeness we summarize the main results here. The field theory

corresponding to placing the brane configuration in a C2/ZZM background was shown to be

an SU(N)M gauge theory with matter consisting of bifundamentals of two adjacent SU(N)

groups. This theory is in the Coulomb phase and the spectral curve can be written down

from M theory considerations. To establish notation we note that the orbifold group is a

spacetime symmetry which acts on v = X4 + iX5 and w = X8 + iX9 as:

(v, w) → (α v, α−1 w), α ≡ ei 2π
M . (5.1)

The orbifold can be represented as a hypersurface in C3. After choosing coordinates, y = vM ,

z = wM , and x = vw, it is given by:

y z = xM . (5.2)

Note that this surface has a singularity at y = z = x = 0.

The spectral curve for the SU(N)M theory (with t = exp(−(X6+iX10

R
)) is now found to

be:

t2 + t
(

yN + u1 yN−1 + · · · + uN

)

+ 1 = 0 . (5.3)

Reinstating the Λ dependence in eq.(5.3) gives, after suitable rescalings, the curve:

t2 + t
(

yN + u1 yN−1 + · · · + uN

)

+
M
∏

a=1

Λb0
a = 0. (5.4)

One can now show, by an argument analogous to that in the previous section that this

curve is independent of the FI terms for the anomalous U(1)s. In this case, there are M − 1

anomalous U(1)s, their FI terms correspond to the M − 1 blow-up modes of the orbifold.

However, it turns out that the product of Λb0
a appearing in eq.(5.4) is invariant under the

anomalous U(1)s . Thus, on replacing the orbifold by a non-singular ALE space we expect

that the curve, eq.(5.3) should stay the same. We turn to verifing this now.
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Repairing the orbifold singularity corresponds to replacing it by an ALE space, more

specifically for the ZZM case under discussion here, a multi-center Eguchi-Hanson gravita-

tional instanton, described by the metric [36]:

ds2 = V −1 ( dτ + ~A · ~dx)2 + V dx2

V =
M
∑

i=1

1

|~x − ~xi|
~∇V = −~∇× A, (5.5)

with τ being an angular variable and x labeling points in R3. By taking the limit x → ∞ it

is easy to see that (5.5) degenerates to the metric on C2/ZZM as required.

We will not use the full structure of this metric here. With a suitable choice of complex

structure, the ALE space can be described as a hypersurface in C3 governed by the equation:

y z =
M
∏

i=1

(x − ei) , (5.6)

The coordinates y, z are such that asymptotically, far from the orbifold singularity (for large

y, z), y → vM , z → wM . Comparison with eq. (5.2) shows that in eq. (5.6) the orbifold

singularity has been resolved by a complex structure deformation.

We would now like to show that the spectral curve does not change on replacing the

orbifold, eq. (5.2), by the ALE space, eq. (5.6). In M theory, the spectral curve corre-

sponds to the world volume of a single NS brane whose worldvolume has infinite extent in

X0, X1, X2, X3 and spans a two dimensional surface in t, y, z, and x. This two dimen-

sional surface can be described by two equations, in addition to (5.6), involving t, y, z, x.

Asymptotically, w → 0 along the 5-brane world volume. This boundary condition can be

implemented simply by identically setting

z = 0 (5.7)

on the brane world volume. For consistency with eq. (5.6), we also set

x = ea , (5.8)

where ea is one of the roots of the polynomial in eq. (5.6). This still leaves y and t undeter-

mined and we need one relation between them. This equation is simply eq. (5.3) again. As in

the orbifold case, it has the correct asymptotic behavior and also correctly describes various

other features of the brane configuration. Thus, as promised above, we find that in going

from the orbifold to the ALE space background, the M theory curve (in the coordinates y, z,

eq. (5.6)) stays the same.
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One observation is worth making at this stage. The ALE space, eq. (5.5) has M − 1

non-trivial two cycles. One can have an NS brane which wraps around one of these two

cycles15. If such a wrapped NS brane is brought close to the curve, eq. (5.3), additional

states can get massless. In our description of the curves above we did not have to confront

this fact since the curve, eq.(5.3), did not contain a component consisting of such wrapped

NS branes. However, these can be present in general. For example, after adding extra six

branes to the brane configuration described above the theory can be in a Higgs phase (besides

the Coulomb phase analysed above). The transition from the Coulomb branch to the Higgs

branch involves bringing the six branes down to the orbifold singularity, one expects the

extra wrapped NS branes components to be important in describing this. We leave this and

related interesting issues for further study.

We end with some comments on the orientifold case. In this paper we have considered a

ZZ3 orientifold and we restrict our remarks to this case. We saw above that the orientifold

charge forces some number of 4-branes to be stuck at the orientifold plane. A proper de-

scription of these branes in M theory leads us again to the questions mentioned in the last

paragraph relating to extra components of the curve wrapping non-trivial two cycles. We

will not be able to deal with them adequately here. However, as we saw in section 4, the

spectral curves actually factorized. One component which yielded information about the

U(1) gauge bosons was discussed in some detail and we argued that this component should

stay the same on blowing up the orbifold. We can verify this explicitly here.

In the orientifold case, the brane configuration can be thought of as being placed in

ZZ3 orbifold background and the effects of the orientifold 4-plane can be incorporated by

ensuring that the configuration is symmetric under a reflection, eq. (4.1). We now replace

the orbifold by an ALE space and would like to see how this affects the spectral curve. Most

of the discussion for the orbifold case goes through here as well. The reflection symmetry,

eq. (4.1), implies that the NS brane world volume is invariant under,

(y, z) → −( y, z ) , x → x . (5.9)

Eqs. (5.8), (5.7) which determine x and z, are consistent with this requirement. Furthermore,

by construction, the curves (4.6), (4.14), and (4.20) correctly incorporate the constraints

coming from the orientifold 4-plane. Thus one finds that in terms of the y, z variables, (5.6),

the curves (4.6), (4.14), and (4.20) stay unchanged.
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